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Abstract— This paper deals with a plant output tracking
design problem of perturbed nonlinear plants by using robust
right coprime factorization approach. One of the interesting
control system design schemes, which was given by G. Chen
and Z. Han, uses robustness of the right coprime factorization
for robust stability of the closed-loop system with perturbation.
Unfortunately, the robust right coprime factorization cannot
easily improve the tracking performance of the control system
except for simple cases. In this paper, nonlinear operator-
based design method for nonlinear plant output to track a
reference input is given. Examples are presented to support
the theoretical analysis.

I. INTRODUCTION

Based on the existing research results [1, -, 5], construc-
tions of (left and right) coprime factorizations for some
nonlinear plants can be obtained. Then, Bezout identity
can be given for the above class of nonlinear plants. Their
applications to the stabilization of the nonlinear plant have
been an exciting approach. Recently, the relation between
the robustness of the right coprime factorization and the
robust stability of the perturbed nonlinear plant is shown
in [6]. That is, when a condition for the robust right co-
prime factorization of a nonlinear plant under unknown but
bounded perturbations is satisfied, robust stabilization for
the nonlinear feedback control system with the perturbation
can be ensured. Meanwhile, the perturbed signal of the
nonlinear plant does not affect the plant output error signal.
In practice, the output feedback signal often includes the
part of uncertainties and disturbances. This causes that the
desired output tracking performance of the real nonlinear
plant is difficult to realize. However, tracking issues for the
above control design scheme are not considered in [6].

This paper deals with a plant output tracking problem for
nonlinear plants under unknown but bounded perturbations
by extending the design scheme in [6]. Based on a nonlinear
operator framework, some design conditions for output
tracking are discussed. The detailed design method of the
operator for plant output tracking is given. The operator is
designed without using the information of inverse of the
nonlinear system. As a result, the perfect tracking can be
obtained for the plant with bounded perturbations.

This paper is organized as follows. In Section 2 we
give a brief outline of the result in [6] and state our
problem statement. The design method of the proposed
operator for plant output tracking is discussed in Section
3. Several examples are illustrated in Section 4 to show
the effectiveness of the proposed method. Conclusions are
drawn in Section 5.

Notations: When A : B → C is an operator, A[s] means
that it is causal, but not necessarily linear or bounded, the
domain D̄(A) = B with the range R̄(A) ⊆ C.

II. PROBLEM STATEMENT

The organization of this section is as follows. First, the
research result in [6] is outlined. Next, considering the
summary, the problem considered in this paper is given.

Consider a nonlinear unstable plant described by the
following right coprime factorization:

P = ND−1 (1)

where D : W → U , and N : W → Y are stable operators,
respectively, and the space W is called a quasi − state
space [6] of P . D is invertible, and P : U → Y . U
and V are linear spaces over the field of real numbers,
respectively. Here, we assume that input singal u is in a
subset U∗ of U and output y is in a subset Y ∗ of Y . U ∗

and Y ∗ are the normed subspaces of U and Y respectively,
called the stable subspace. A feedback control system is
said to be well-posed if every signal in the control system is
uniquely determined for any input signal in U . For the above
nonlinear plant (1), under the condition of well-posedness,
N and D are said to be right coprime factorization if there
exist two stable operators S : Y → U and R : U → U
satisfying the following Bezout identity [3]

SN + RD = I (2)

where R is invertible and I is the identify operator.
Definition [6]: A feedback control system is said to be

overall stable if all the signals of the system are bounded.
Usually, real nonlinear plants must deal with uncertainties

and disturbances, and the above perturbation affects D and
N . For the case of D → D + ∆D or N → N + ∆N , the



satisfying design scheme for robust stabilization was given
in [6]. Where, ∆D and ∆N are bounded and the operators
D + ∆D and N + ∆N are stable.

So far, we summarized the results of [6]. In the following,
the problem statement of this paper is given. We only extend
the design scheme to the case of D → D + ∆D and N →
N+∆N under the assumption of the resulting system being
well-posed under the perturbations. Then, suppose that the
plant P has a bounded perturbation ∆P , that is, ∆D and
∆N are bounded and the operators D +∆D and N +∆N
are stable (Fig.1, where M = I for the case in [6]) such
that

P + ∆P = (N + ∆N)(D + ∆D)−1 (3)
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Fig. 1. The proposed control system

We also assume that there exist S1 and R1 satisfying the
perturbed Bezout identity

S1(N + ∆N) + R1(D + ∆D) = I

Therefore, with the above presentation, the perturbed plant
retains a right comprime factorization. In Fig.1, M : Y →
U is a designed operator and it is stable.

The merit of the design method described in [6] is that
the error signal e(t) is not affected by the perturbed signal.
That is, the perturbed signal ∆Nz cannot be transmitted
back to the error signal e(t). In practice, in this sense we
can avoid the undesired influence from uncertainties, output
disturbances and feedback sensor error. However, for the
perturbed plant, the tracking problem of the plant output
y(t) (or ya(t) in some cases) is undertaken, namely, we
have two kinds of tracking problem, problem 1: y → r for
plant with uncertainty and output disturbance ∆N , problem
2: ya → r for internal sensing error ∆N in plant. Since
the error signal-based tracking techniques [3, 7] are not
valid, somewhat serious problem remains unsolved with
regard to the tracking design for this kind of system. In
this paper, the objective is to design a nonlinear operator
M (see Fig.1) such that plant output y(t) (or ya(t)) tracks to

the reference signal r(t) under the perturbations of ∆D and
∆N . Here, the normed linear subspaces of U ∗ and Y ∗ are
designed based on control objective. Namely, in some cases
we can select that Y ∗ does not belong to Y for satisfying
the desired tracking performance.

III. THE PROPOSED DESIGN SCHEME

Under the discussion in Section 2, the closed-loop system
described in Fig.1 is robust stable in the presence of ∆P
represented by ∆D and ∆N provided that u ∈ U is
bounded. The nonlinear system depicted in Fig.1 can be
regarded as a system with perturbation depicted in Fig.2.
In tracking control problem, reference signal r ∈ Y ∗ is
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Fig. 2. The equivalent diagram of the proposed control system

considered. The main result of this paper is given as follows.
Theorem: Suppose that the following operator design con-
dition is satisfied for the stable designed operator M .

NM(r)(t) = I(r)(t) (4)

where r(t) is a given reference input, and r ∈ Y ∗. Then,
the output y(t) tracks to the reference input r(t). Also, if

(N + ∆N)M(r)(t) = I(r)(t) (5)

with stable M , then, the perturbed output ya(t) tracks to
the reference input r(t).
Proof: From Fig.2, we have u(t) = M(r)(t). Then, we can
obtain N(u)(t). From condition (4), we have

N(u)M(r)(t) = I(r)(t) (6)

This fact leads to the desired result under r(t) ∈ Y ∗, y(t) ∈
Y ∗. That is, y(t) = I(r)(t) = r(t). According to the same
argument, if (N + ∆N)M(r)(t) = I(r)(t), r(t) ∈ Y ∗,
ya(t) ∈ Y ∗, we can obtain ya(t) = I(r)(t) = r(t).

Based on the proposed theorem, the detailed procedure
of checking the design conditions is as follows. To apply
the system to the reference signal r(t) ∈ Y ∗, we will design
the operator M(r) to satisfy

NM(r)(t) = I(r)(t) = r(t) ∈ Y ∗ (7)



Then we have y(t) = r(t). In the same manner, if the
reference signal r(t) ∈ Y ∗ and

(N + ∆N)M(r)(t) = I(r)(t) = r(t) ∈ Y ∗ (8)

Then we have ya(t) = r(t). As shown in the above theorem,
the plant output y(t) tracks to the reference input r(t). Even
if ya(t) is the plant output in some cases, the perturbed
signal does not affect the tracking performance.

We next present an example to illustrate the efficacy of
the design conditions of the proposed operator in tracking
performance.
Remark: In this paper, operator N is nonlinear, and not
all r(t) satisfies the proposed theorem, namely, we have
to consider whether the space Y ∗ satisfies the condition.
Then, M is different to the inverse of N . Further, in some
cases, for satisfying the theorem we have to design an
approximated r(t) for the need of plant output. That is,
for satisfying the desired tracking performance y(t) = r(t)
(or ya(t) = r(t)), we should select that Y ∗ does not belong
to Y .

IV. DESIGN PROCEDURE EXPLANATION AND

SIMULATION

The purpose of this example is to demonstrate the benefit
of the proposed method. Simulation study is conducted
using the following nonlinear plant given in [6].

P (ū)(t)=
∫ t

0

ū1/3(τ)dτ + et/3ū1/3

=ND−1(ū)(t)

N(w)(t)=
∫ t

0

e−τ/3w1/3(τ)dτ + w1/3(t)

D(w)(t)=e−tw(t) (9)

where ū ∈ U , and P (ū) ∈ Y . U and Y are two linear
spaces, where U ∈ C[0,∞] and Y = {u + et/3u′|u ∈
C1

[0,∞]} ⊂ U . C[0,∞] is the space of continuous functions
and C1

[0,∞] is the space of pieacewise continuously differ-
entiable functions. From Figs. 3-5, the step response of D
and N is stable, the step response of D−1 is unstable. From
(3), suppose that the plant P has a perturbation ∆P such
that

(P + ∆P )(ū)(t)=(1 + ∆1)
∫ t

0

(1 + ∆3)−1/3ū1/3(τ)dτ

+(et/3 + ∆2)(1 + ∆3)−1/3ū1/3

(N + ∆N)(w)(t)=(1 + ∆1)
∫ t

0

e−τ/3w1/3(τ)dτ

+(1 + e−t/3∆2)w1/3(t)
(D + ∆D)(w)(t)=(1 + ∆3)e−tw(t) (10)

where the linear space and normed linear space of P (ū)(t)
and (P +∆P )(ū)(t) are same. ∆1, ∆2 and ∆3 are bounded
functions in U = W . Based on the proposed design scheme,

we design two operators R and S as

R(ū)(t) = (1 + ∆3)−1ū(t)
S(ya)(t) = A(ya)(t) − ∆s (11)

and

A(ya)(t)=[Y 3
1 − X3

1 ](h(t))3 (12)

∆s=−3∆1 − 3(∆1)2 − (∆1)3 + 3e2/3t∆2

+3et/3(∆2)2 + (∆2)3 (13)

h(t)=e−t/3w1/3(t) (14)

N(w)(t)=X1

∫ t

0

h(τ)dτ + Y1h(τ) (15)

where X1 = 1 and Y1 = et/3.
In the following examples, tracking problem is to track

output y(t)( or ya(t)) to a step function. But for the step
function, there does not exist a solution M , hence, reference
input r(t) which has a solution M and approximates the step
function is chosen. For obtaining the tracking of y(t) = r(t)
(problem 1), from the design condition (4) of M described
in the theorem, M : Y → U is given as follows.

M(r) =
1

1 − e−t
A(r), t > 0 (16)

where ∆s = 0. In the simulation, for satisfying condition
(4), we select w̄(t) = 1

64 , r(t) =
∫ t

0 e−τ/3w̄1/3(τ)dτ +
w̄1/3(t), ∆1 = −1, ∆2 = 1/3e−2/3t, and ∆3 = 0 such
that we can obtain M and N from (15) and (16), where
w(t) is the output signal of M . In this case, the perturbed
Bezout identity remains unchanged, namely, S(N +∆N)+
R(D + ∆D) = SN + RD = I .

Fig.6 shows the reference input r(t) (dashed line: almost
overlapped by the solid line) and plant output y(t) (solid
line) using the proposed method, plant control input is given
in Fig.7, and better tracking performance is obtained. The
simulation results of r(t) (dashed line) and ya(t) (solid line)
are also given in Fig.8. From Fig. 8, ya(t) is perturbed. In
this case, for satisfying the theorem we have to design an
approximated r(t) = 1−3e−t/3 for the need of plant output.

Concerning the tracking of ya(t) = r(t), from the design
condition (5) of M , M : Y → U is also given as (16)
but r(t) is different to the former case. We select w̄(t) =
1 − e−20t, r(t) =

∫ t

0 e−τ/3w̄1/3(τ)dτ + w̄1/3(t). ∆s, ∆1,
∆2, and ∆3 are same as in the former case. For satisfying
the theorem, we can also obtain M and N as former case,
where w(t) is the output signal of M . Fig.9 shows the
reference input r(t) (dashed line) and plant output ya(t)
(solid line) and control input is given in Fig.10, satisfying
tracking performance is obtained. The simulation results
of the reference input r(t) (dashed line) and perturbed
y(t) (solid line) are shown in Fig.11. Meanwhile, when
∆1 = ∆2 = ∆3 = 0, we have ∆N = ∆D = 0, the
perfect tracking of the reference input r(t) (dashed line:
almost overlapped by the solid line) and y(t) (solid line)
are shown in Fig.12, where w̄(t) = 1

64 .
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Fig. 3. Step response of D
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Fig. 4. Step response of N
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Fig. 5. Step response of D−1
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Fig. 6. The plant output y(t) and the reference input r(t)
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Fig. 7. The plant input for the case of Fig.6
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Fig. 8. ya(t) and the reference input r(t) when y(t) = r(t)



0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [s]

O
ut

pu
t

Fig. 9. The plant output ya(t) and the reference input r(t)
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Fig. 10. The plant input for the case of Fig.9
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Fig. 11. y(t) and the reference input r(t) when ya(t) = r(t)
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Fig. 12. y(t) and the reference input r(t) when ∆N = ∆D = 0

V. CONCLUSIONS

In this paper, from the viewpoint of robustness of the
right coprime factorization, a plant output tracking design
problem of perturbed nonlinear plants was considered by
using robust right coprime factorization approach. Under the
condition of robust stability of the closed-loop system with
perturbation, tracking conditions are derived and nonlinear
operator-based design method for real nonlinear plant out-
put to track a reference input is given. The effectiveness of
the proposed method is also confirmed through simulations.
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