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Abstract— An output feedback design technique is pre-
sented, by means of which it is possible to achieve semi-
global practical stabilization for a class of non-minimum
phase nonlinear systems, subject to parameter uncertainties.
This work is an extension of the result by (Isidori, 2000).
It provides a constructive controller design method for an
auxiliary system, whose existence is crucial, but is assumed
in (Isidori, 2000). Simulation results demonstrate satisfactory
stabilization performances.

I. INTRODUCTION

In practice, controller implementation is generally subject
to limited number of measurements available for feedback,
due to sensor cost and/or availability. In such cases, one
relies on the design of controller based on imperfect state
measurements, often termed output feedback controller
design. Most existing output feedback controller designs
require that the zero dynamics of the controlled plant be
stable, that is, to be minimum phase. However, a number
of processes exhibit non-minimum phase (i.e. inverse re-
sponse) behavior. For instance, this phenomenon can be
encountered in a continuous exothermic reactor, where
the inlet stream flowrate is used to control the reactor
temperature. In this situation, a positive step change in the
inlet flowrate will cause an initial decrease in the reactor
temperature [8].

For linear systems, the output feedback control of non-
minimum phase systems is generally solved by factorizing
the system dynamics into a minimum phase and non-
minimum phase part [10]. Only the invertible minimum
phase part is considered in controller design, while the
non-minimum phase part, generally viewed as an obstacle
to closed-loop performances, remains in the open-loop.
Although attempts have been made to generate such fac-
torization in the nonlinear case, the problem remains open.
A non-minimum phase compensation structure for nonlinear
systems was developed in [14], based on a synthetic output,
which is minimum phase and statically equivalent to the
original output. The synthetic output can either be chosen
in an ISE-optimization formulation [8], or by prescribing
zeros in a systematic manner [9]. However, the afore-
mentioned approaches can only be applied to open-loop
stable processes. In [6], a semi-global practical stabilization
design tool is proposed for a general class of uncertain
non-minimum phase nonlinear systems. This approach is

based on the assumption of global stabilizability of an
auxiliary system. In addition, the authors identify a class
of nonlinear systems that are semi-globally stabilizable via
“uniformly completely observable” (UCO) functions in the
sense of [11]. In [4], an adaptive dynamic output feedback
stabilization tool is proposed, for a class of nonlinear
systems. The high-gain result is extended by considering
the adaptation of the gain parameter as a time varying scalar
function, which depends on the magnitude of the output and
a quantity of the dynamic feedback compensator.

For the related problem of output tracking for non-
minimum phase nonlinear systems, there are two major
approaches in the literature. In the first approach proposed
in [1] and [2], and further modified in [12], the stabilizing
control consists of a feedforward component that generates
the zero dynamics trajectory, and a feedback component
that stabilizes the whole system. This approach is based on
the assumption that the inverse system is kinematically hy-
perbolic, with slowly time-varying outputs that have small
amplitude. The second approach is the nonlinear output
regulator problem [5]. This approach uses center manifold
theory, and gives necessary and sufficient conditions under
which the closed-loop system can be driven to a center
manifold contained in the output zeroing manifold. This
approach yields a local result around the equilibrium point.
In addition, if only the output information is available,
it requires detectablility of the linearized system, which
implies that the system has to be locally minimum-phase.

In this work, we examine the assumption from [6],
stating that “the auxiliary system is globally stabilizable
by dynamic output feedback”. We provide a controller
design procedure and outline the requirements for auxiliary
systems with relative degree zero, a problem not addressed
in [6].

This paper is organized as follows, the main results are
provided in section 2, and simulation results are presented
in section 3, followed by conclusions in section 4.

II. OUTPUT FEEDBACK CONTROLLER DESIGN

A. Problem Formulation and Motivation

We first give a brief review of the results in [6].
Consider a smooth nonlinear system modelled by equa-



tions of the following form

ż = f0(z, x1, · · · , xr−1, xr, p)
ẋ1 = x2

...
ẋr−1 = xr

ẋr = h0(z, x1, · · · , xr−1, xr, p) + b(x1)u
y = x1,

(1)

where z ∈ Rn−r, and p is a (possibly vector-valued)
unknown parameter, ranging over a compact setP. The
following is assumed for system (1).

Assumption 1: For all p ∈ P
f0(0, · · · , 0, p) = 0
h0(0, · · · , 0, p) = 0

andb(x1) 6= 0.
The control objective is to stabilize system (1) using

a robust output feedback, given that the system is non-
minimum phase. The solution of this problem is based on
the existence of a dynamic output feedback controller for an
auxiliary system associated with system (1). The auxiliary
system is defined as follows,

ẋa = fa(xa, ua, p)
ya = ha(xa, ua, p) (2)

where

xa =




z
x1

· · ·
xr−2

xr−1




fa(xa, ua, p) =




f0(z, x1, · · · , xr−1, ua, p)
x2

· · ·
xr−1

ua




ha(xa, ua, p) = h0(z, x1, · · · , xr−1, ua, p).

The basic hypothesis about the auxiliary system (2) is
the knowledge of a robust global dynamic output feedback
stabilizer of the following form ([6], Assumption 2),

η̇ = L(η) + Mya

ua = N(η) (3)

in which η ∈ Rν , L(0) = 0, N(0) = 0, andM is a ν × 1
constant matrix.

Under the above assumption, it is proved in [6] that
system (1) can be semi-globally practically stabilized by
the following dynamic output feedback law

ξ̇ = Pξ + Qy
η̇ = L(η) + MσL(k[ξr −N(η)])
u = 1

b(x1)

[
∂N
∂η (L(η) + MσL(k[ξr −N(η)])

−σL(k[ξr −N(η)])
]

(4)

wherek is a positive number,σL(·) is a saturation function

σL(r) =
{

r, if |r| < L
sgn(r)L, if |r| ≥ L,

andξr is the estimation of statexr under the following high
gain observer

ξ̇ =




ξ̇1

ξ̇2

· · ·
ξ̇r−1

ξ̇r




=




ξ2 + gcr−1(y − ξ1)
ξ3 + g2cr−2(y − ξ1)

· · ·
ξr + gr−1c1(y − ξ1)

grc0(y − ξ1)




=: Pξ + Qy,

in which c0, c1, · · · , cr−1 are the coefficients of some
Hurwitz polynomial,g is a positive number.

There are two limitations to the above approach. First,
even though it is shown in [6] that the assumption of global
stabilizability of the auxiliary system is not restrictive, how
to find such a dynamic output feedback is not a trivial task.
Second, it is also observed that, for most applications, the
auxiliary outputha is a function ofua, in other word, the
auxiliary system (2) has relative degree zero, which makes
the problem even more difficult.

It is suggested in [6] that the relative degree zero problem
be solved by moving theua term to the controlu, provided
thatya is a linear function ofua. However, this is not always
possible, as shown in the following illustrative example.

Example I Consider a continuous stirred tank reactor
(CSTR), where the series/parallel van de Vusse reaction [13]
is taking place:

A
k1−→ B

k2−→ C

2A
k3−→ D

whereA is the reactant,B the desired product,C and D
are unwanted by-products.

The dynamics of the CSTR can be described in terms of
the material balance for speciesA and B and an energy
balance for the reactor as follows:

dCA

dt = −k1(T )CA − k3(T )C2
A + (CA0 − CA)u

dCB

dt = k1(T )CA − k2(T )CB − CBu
dT
dt = 1

ρCp

[
(−4H1)k1(T )CA + (−4H2)k2(T )CB

+(−4H3)k3(T )C2
A + Q

]
+ (T0 − T )u

where CA, CB are the concentrations of the speciesA
andB inside the reactor, respectively;T is the temperature
inside the reactor;CA0 is the concentration ofA in the
feed stream;T0 is the feed stream temperature;ki(T ) is
the rate coefficient given by the Arrhenius expressions,
ki(T ) = ki0exp(−Ei/RT ), i = 1, 2, 3; u is the dilution
rate, given byu = F/V , whereF is the inlet flow rate,
andV is the reactor volume (assumed constant);ρ andCp

are the density and specific heat of the reaction mixture,
respectively;−4Hi, i = 1, 2, 3 are the heat of reactions,
−Q is the cooling rate per unit volume.



The control objective is to make the outputy = CB track
its setpoint, by manipulating the dilution rate,u = F/V .

Assuming thatCB 6= 0, the following change of vari-
ables,z1 = CA0−CA

CB
, z2 = T0−T

CB
, x1 = CB , y = x1,

transforms the CSTR dynamics into the normal form:

ż1 = 1
x1

[
(1− z1)k1(CA0 − z1x1)

+k3(CA0 − z1x1)2 + k2z1x1

]

ż2 = −1
ρCpx1

[

(−4H1)k1(CA0 − z1x1) + (−4H2)k2x1

+(−4H3)k3(CA0 − z1x1)2 + Q
]

− z2
x1

[k1(CA0 − z1x1)− k2x1]
ẋ1 = k1(CA0 − z1x1)− k2x1 − x1u
y = x1.

(5)

It can be shown later in section III-A that system (5) is
locally non-minimum phase around a reference steady state.

The auxiliary system associated with (5) is as follows,

ż1 = 1
ua

[
(1− z1)k1(CA0 − z1ua)

+k3(CA0 − z1ua)2 + k2z1ua

]

ż2 = −1
ρCpua

[

(−4H1)k1(CA0 − z1ua) + (−4H2)k2ua

+(−4H3)k3(CA0 − z1ua)2 + Q
]

− z2
ua

[k1(CA0 − z1ua)− k2ua]
ya = k1(CA0 − z1ua)− k2ua.

(6)

It is observed from the last equation in (6) that the
term multiplyingua is −k1z1 − k2, which depends on the
zero dynamicsz1 andz2. Since the zero dynamics are not
observable, we can not move this term to the controlu to
make the relative degree greater than zero as in [6].

In order to alleviate the two limitations, we provide in
the next section a systematic design procedure to construct
a dynamic output feedback for the relative degree zero
auxiliary system (2). It is shown that the original system
(1) can still be semi-globally practically stabilized.

B. Controller Design

To construct a robust dynamic output feedback for the
auxiliary system (with relative degree zero), we add an
integratoru̇a = v on the auxiliary inputua. The auxiliary
system (2) becomes

ż = f0(z, x1, · · · , xr−1, ua, p)
ẋ1 = x2

...
ẋr−1 = ua

u̇a = v
ya = h0(z, x1, · · · , xr−1, ua, p).

wherev is the new control. Differentiatingya, we have

ż = f0(z, x1, · · · , xr−1, ua, p)
ẋ1 = x2

...
ẋr−1 = ua

ẏa = ∂h0
∂xa

fa(z, x1, · · · , xr−1, ua, p) + ∂h0
∂ua

v

(7)

wherexa is the state vector as in (2).
The following assumptions are made for the auxiliary

system (7).
Assumption 2: The zero dynamics of (7) is stable with

respect to the outputya.
Assumption 3: ∂h0

∂xa
fa(z, x1, · · · , xr−1, ua, p) is glob-

ally Lipschitz in z and locally Lipschitz in(x2, · · · , xr−1).
Assumption 4: ‖ ∂h0

∂ua
‖ > ε > 0, and the sign of∂h0

∂ua
is

known.
Remark 1: Assumption 2 is not restrictive, as shown in

[6], that a memoryless feedback transformationu → u+hy
can render this property with a proper choice ofh.

Under these assumptions, it is guaranteed that there exists
a robust dynamic output feedback for the auxiliary system
(2), as shown in the following lemma.

Lemma 2.1: There exists a smooth dynamic system of
the form

η̇ = L(x1, · · · , xr−1, η) + Mya

ua = η
(8)

in which η ∈ R, L(0) = 0, M is a nonzero constant.
In addition, there is a positive definite and proper smooth
functionV (xa, η) whose derivative along the trajectories of
the interconnected system (2) and (8) is negative definite,
i.e.,

∂V

∂xa
fa(xa, η, p) +

∂V

∂η
[L(x1, · · · , xr−1, η, p) + Mya]

< 0 (9)

for all (xa, η) 6= (0, 0).
Proof: Under the above assumptions, it is obvious that

the following controller

v =
1

∂h0
∂ua

(
−k0ya − ∂h0

∂xa
fa(0, x1, · · · , xr−1, ua)

)

= L(x1, · · · , xr−1, ua)− k0(
∂h0

∂ua
)−1ya. (10)

is able to stabilize the auxiliary system (7), provided that
k0 is a large enough positive number. By Assumption 4,
there exists a positive numberm such that(‖ ∂h0

∂ua
‖)−1 ≤ m.

Denoting

M = −k0msgn
(∂h0

∂ua

)
,

the following controller

v = L(x1, · · · , xr−1, ua) + Mya (11)

is able to stabilize the auxiliary system (7) as well.



Given thatu̇a = v and (11) stabilizes (7), it is implied
that the dynamic output feedback (8) stabilize the auxiliary
system (2). In addition, by the converse Lyapunov theorem
[7], there exists a Lyapunov functionV (xa, η) such that (9)
is satisfied.¤

Next, consider the dynamic state feedback control

η̇ = L(x1, · · · , xr−1, η) + Mk[xr − η]
u = 1

b(x1)

[
L(x1, · · · , xr−1, η) + Mk(xr − η)

−k(xr − η)
] (12)

wherek is a positive number. Changing the state variable
xr into the new variable

θ = xr − η,

the interconnection of the feedback control (12) and system
(1) becomes

ẋa = fa(xa, θ + η, p)
θ̇ = ha(xa, θ + η, p)− kθ
η̇ = L(x1, · · · , xr−1, η) + Mkθ.

(13)

Let Bk
R denote the closed cube

Bk
R = {x ∈ Rk : |xi| ≤ R, 1 ≤ i ≤ k}. (14)

Consider the positive definite and proper function

W (xa, η, θ) = V (xa, η + Mθ) + θ2

and letΩb denote the set

Ωb = {(xa, η, θ) : W (xa, η, θ) ≤ b}. (15)

Then Lemma 2 in [6] applies to the closed-loop system
(13) in the same manner, which shows that the original
system (1) is semi-globally practically stabilizable by (12).

Lemma 2.2: (Lemma 2 in [6]) For anyR > 0 andε > 0,
and for anyρ > 0 andc > 0 such that

Ωρ ⊂ Bn+1
ε ⊂ Bn+1

R ⊂ Ωc

whereBn+1
ε andBn+1

R are defined as in (14), andΩρ and
Ωc are defined as in (15), then there is a numberk∗ such
that, if k > k∗, the derivative of the functionW (xa, η, θ)
along the trajectories of (13) is negative at each point of
the set

S = {(xa, η, θ) : ρ ≤ W (xa, η, θ) ≤ c}.
Proof: See [6].

The dynamic state feedback (12) uses the states
(x2, · · · , xr), which need to be estimated. A high gain
observer together with a saturation element are shown to
provide a systematic design approach.

The resulting output feedback controller is as follows,

ξ̇ = Pξ + Qy
η̇ = L(y, ξ2, · · · , ξr−1, η) + MσL(k[ξr − η])
u = 1

b(y)

[
L(y, ξ2 · · · , ξr−1, η) + MσL(k[ξr − η])

−σL(k[ξr − η])
]
.

(16)

The control law (16) takes similar form with the control
law (4), which was developed in [6]. The only difference is
the presence of the estimated states(ξ2, · · · , ξr−1) in (16),
which does not add any difficulty in the stability proof.
Therefore, Theorem 1 in [6] applies to the closed-loop
system (16) and (1), which is stated below.

Theorem 2.1: Suppose Assumptions 1 to 4 hold and
consider system (1). Given any arbitrary large numberR >
0 and any arbitrary small numberε > 0, there are numbers
k > 0, g > 0, L > 0, k0 > 0 such that, in the closed-
loop system (16) and (1), any initial condition inBn+1+r

R

produces a trajectory which is captured by the setBn+1+r
ε .

Proof: This proof amounts to showing that the presence
of the estimated states in (16) will not affect the stability
conditions imposed in the proof of the Theorem 1 in [6].

Consider the change of variableθ = xr− η, we have the
following closed-loop system

ẋa = fa(xa, θ + η, p)
θ̇ = ha(xa, θ + η, p)− σL(k[ξr − η])
η̇ = L(y, · · · , xr−1, η) + MσL(k[ξr − η])
ξ̇ = Pξ + Qy.

(17)

Define the following scaled state estimation error

ei = gr−i(xi − ξi)

for i = 1, · · · , r, i.e.,

e = Dg(x− ξ)

in which Dg = diag[gr−1, · · · , g, 1].
Then (17) can be written in the following perturbation

form,

ẋa = fa(xa, θ + η, p)
θ̇ = ha(xa, θ + η, p)− kθ + φ1(θ, e)
η̇ = L(y, · · · , xr−1, η) + Mkθ −Mφ1(θ, e)
ė = gAe + Bφ2(xa, θ, η, e, p)

(18)

in which A is a Hurwitz matrix,B = [0, 0, · · · , 0, 1]T , with
perturbationsφ1 andφ2 as follows,

φ1(θ, e) = kθ − σL(kθ − ker) +
[
L(y, · · · , ξr−1, η)

−L(y, · · · , xr−1, η)
]

φ2(xa, θ, η, e, p) = ha(xa, θ + η, p)− σL(kθ − ker) + η̇.

It is shown in [6] that the key for the stability proof is
to prove that the perturbation terms satisfy the following
requirements: for all((xa, η, θ), e) ∈ Ωc+1 × Rr

|φ1(θ, e)| ≤ β1

|φ2(xa, θ, η, e, p)| ≤ β2

|φ1(θ, e)| ≤ γ(‖e‖)
in which β1, β2 are fixed numbers, andγ(·) is a continuous
function such thatγ(0) = 0.

The only difference between the perturbation in this
case with the perturbation term in [6] is the extra term
L(y, · · · , ξr−1, η)−L(y, · · · , xr−1, η) in φ1. However, the



above requirements can be easily verified given Assumption
3.

The rest of the proof follows the proof in [6].¤
Remark 2: Note that the assumption of

∂h0
∂xa

fa(z, x1, · · · , xr−1, ua, p) being globally Lipschitz inz
(Assumption 3) is rather restrictive. This can be relaxed to
a more general locally Lipschitz assumption, which yields
a semi-global stability result for the auxiliary system.
Moreover, this relaxation doesn’t affect the stability result
in Theorem 2.1.

III. APPLICATION

A. Example I

Consider again the van de Vusse reaction system in
section II-A. An example is the production of cyclopen-
tenol (B) from cyclopentadiene (A) by acid-catalyzed
electrophilic addition of water in dilute solution, where
cyclopentanediol (C) and dicyclopentadiene (D) are also
produced as side products [3].

The operating condition isCA0 = 5 gmol·L−1, andT0 =
403.15 K. In addition, the following parameters values are
assumed [3]:

TABLE I

PARAMETER VALUES FOR THE VAN DE VUSSEREACTOR

k10 = 1.287 · 1012h−1 k20 = 1.287 · 1012h−1

k30 = 9.043 · 109L(mol · h)−1 E1/R = −9758.3K
E2/R = −9758.3K E3/R = −8560K
4H1 = 4.2kJ ·mol−1 4H2 = −11kJ ·mol−1

4H3 = −41.85kJ ·mol−1 ρ = 0.9342kgL−1

Cp = 3.01kJ(kg · K)−1 Q = −451.509kJ

The control objective is to make the outputy = CB track
its setpoint, by manipulating the dilution rate,u = F/V . In
this work, we would like the outputCB to track a setpoint
change to1.0 mol · L−1, from the following reference
steady-state:CBs = 0.9 mol · L−1, CAs = 1.25 mol · L−1,
Ts = 407.15 K, which corresponds tous = 19.5218 hr−1.

To check the stability of the zero dynamics of (5), we
linearize the zero dynamics around the reference steady
state, and get the following eigenvalues:λ1 = 122.68, and
λ2 = −11.17. This shows that system (5) is locally non-
minimum phase around the reference steady state.

Checking the stability of the zero dynamics of (6) around
the reference steady state, we get the following eigenval-
ues: λ = −21.86 ± 8.93I. This shows that the auxiliary
system is locally minimum phase. Therefore, Assumption
2 is satisfied. For Assumption 3, only the local Lipschitz
condition is satisfied. To verify Assumption 4, we check
the term ∂h0

∂ua
= −k1z1 − k2. Since k1, z1 and k2 are

all positive numbers, we know that the sign of∂h0
∂ua

is
always negative. In addition,z1 = CA0−CA

CB
> 0, k2 =

k20e
−E2/RT > k20e

−E2/RT0 = k̃2, since the reaction is
exothermic, it follows that the temperatureT is always
greater than the cooling water temperatureT0. As a result,

(
‖ ∂h0

∂ua
‖
)−1

< (k̃2h)−1 = m. Assumption 4 is therefore
satisfied.

In the simulation, controller (16) is implemented with the
following design parametersk0 = 150, k = 150. The initial
conditions for the states are the reference steady state. The
control action is restricted in the range of5 h−1 ≤ u ≤
35 h−1 [3].

Simulation results are shown in Figure 1. It can be seen
that the outputCB tracks the new set point within a short
period of time (about 2/3 times shorter than the result in
[9]).
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Fig. 1. State trajectory and controller performance of example I

IV. CONCLUSIONS

In this work, we proposed a robust control design
that semi-globally practically stabilize a general uncertain
non-minimum phase nonlinear system. Simulation results
demonstrate that satisfactory controller performance is ob-
tained. In particular, we show that the approach yields
excellent performance for the control of the bench mark
van de Vusse reactor.
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