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Abstract— The problem of global output feedback stabiliz-
ation for a class of nonlinear systems, whose zero dynamics
are not necessarily stable, is addressed in this paper. It is
shown that, using a novel observer design tool together with
standard backstepping and small-gain techniques, it is possible
to design a stabilizing output feedback controller, which
ensures robustness with respect to dynamic uncertainties. The
proposed stabilization method generalizes existing tools in
several directions. Finally, the method is illustrated by means
of a simple example.

I. INTRODUCTION

The problem of output feedback stabilization of nonlinear
systems has been an active area of research in recent years.
Several control methodologies have been proposed, which
achieve global or semiglobal results by exploiting certain
feedback structures. In particular, the class of systems in
“triangular” form has received special attention, see e.g. [8],
[6] and references therein.

In [6] an adaptive backstepping method, known as tuning
functions design, has been introduced and has been used
extensively on systems with parametric uncertainties. In [3]
this method has been combined with the nonlinear small-
gain theorem [4] and the notion of input-to-state stability [9]
to tackle systems with unstructured dynamic uncertainties,
described by equations of the form

η̇ = f(η, x1)

ẋ1 = x2 + ∆1(η, x1)
...

ẋi = xi+1 + ∆i(η, x1)
...

ẋn = u + ∆n(η, x1)

y = x1,

(1)

where (η, x1, . . . , xn) ∈ R
m × R × · · · × R is the state of

the system, y = x1 is the output and u is the control input.
It is assumed that only x1 is available for measurement and
∆i(·) are uncertain functions. Note that in [6] the functions
∆i(·) are replaced by the structured uncertainty φi(y)T η,
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where η is a vector of unknown parameters (i.e. η̇ = 0).
Special instances of the system (1) have also been studied
in [7], where the matrix ∂f/∂η is constant and Hurwitz.

A common hypothesis in the aforementioned methods
is that the zero dynamics of the considered systems pos-
sess some strong stability property, i.e. they are globally
asymptotically stable (GAS) or input-to-state stable (ISS).
A method by means of which it is possible to relax this
assumption has been recently proposed in [2] and has
been shown to achieve semiglobal practical stability. Note
that in [2] the functions ∆i(·) may depend also on the
unmeasured states x2, . . . , xi.

The purpose of this paper is to partially extend the results
of [3]. In particular, we relax the hypothesis that the η-
subsystem is ISS with respect to x1 and replace it with an
input-to-state stabilizability condition (see Assumption 2).
This is mainly achieved by extending the reduced-order
observer design of [3] using the methodology proposed
in [5], which, in turn, is based on the stabilization tools
developed in [1].

The paper is organized as follows. In Section II we
define the considered class of systems and the assumptions
under which the proposed method will be applicable. In
Section III we propose a reduced-order observer for the
unmeasured states and design the output feedback controller
by combining a backstepping construction with a small-gain
condition. Some special cases are considered in Section IV.
In Section V we apply the proposed method to a paradigm
comprising an uncertain system with unstable (linear) zero
dynamics and in Section VI we provide some conclusions.

II. PROBLEM FORMULATION

We consider a class of uncertain nonlinear systems de-
scribed by equations of the form

η̇ = F (x1)η + G(x1) + ∆0(η, x1)

ẋ1 = x2 + φ1(x1)
T η + ∆1(η, x1)

...
ẋi = xi+1 + φi(x1)

T η + ∆i(η, x1)
...

ẋn = u + φn(x1)
T η + ∆n(η, x1)

y = x1

(2)

with state (η, x1, . . . , xn) ∈ R
m × R × · · · × R, input u

and output y = x1, where ∆i(·) are unknown perturbation
functions. We assume that the origin is an equilibrium for
the system (2) with u = 0, i.e. ∆i(0, 0) = 0 and G(0) = 0,



and all functions are sufficiently smooth and we pose the
following stabilization problem.

Problem 1 (Output feedback stabilization): For the sys-
tem (2), find (if possible) a dynamic output feedback control
law described by equations of the form

ξ̇ = π(ξ, y)
u = α(ξ, y)

(3)

with ξ ∈ R
p such that the closed-loop system (2)-(3) is

globally asymptotically stable.
Note that the system (2) has relative degree n and its

zero dynamics are given by

η̇ = F (0)η + ∆0(η, 0),

hence they are not necessarily stable. Moreover, the func-
tions ∆i(·) need not be bounded. However, the following
conditions must hold.

Assumption 1: There exist known positive-definite and
smooth functions ρi1(·) and ρi2(·), i = 0, . . . , n, such that

|∆i(η, x1)|
2 ≤ ρi1(|η|) + ρi2(|x1|), (4)

where | · | denotes the Euclidean norm, the function ρ11(|η|)
is quadratic and ρ12(|x1|) = 0.

Assumption 2: There exists a smooth function x?
1(η)

such that the system

η̇ = F (x?
1(η + d1) + d2)η + G(x?

1(η + d1) + d2)
+∆0(η, x?

1(η + d1) + d2)

is ISS with respect to d1 and d2, i.e. there exists a positive-
definite and proper function V1(η) such that

V̇1 ≤ −κ11(|η|) + γ11(|d1|) + γ12(|d2|),

where κ11, γ11 and γ12 are smooth class-K∞ functions.
Remark 1: In [3] it is assumed that the η-subsystem is

ISS with respect to x1, i.e. Assumption 2 holds for x?
1 = 0.

It must be noted that in [3] the functions ρi of Assumption 1
are multiplied by unknown coefficients, which are estimated
on-line using standard Lyapunov techniques.

Remark 2: Assumption 2 is a robust stabilizability con-
dition on the zero dynamics. In the linear case, i.e. when
the matrix F is constant and the vectors G and ∆0

are linear functions, it is always satisfied, if the pair
(F + ∂∆0/∂η,G + ∂∆0/∂x1) is stabilizable, or if the pair
(F,G) is stabilizable and ∂∆0/∂η and ∂∆0/∂x1 are suffi-
ciently small.

III. OUTPUT FEEDBACK STABILIZATION

In this section a solution to the output feedback stabiliza-
tion problem is proposed based on a reduced-order observer
and a combination of backstepping and small-gain ideas. In
particular, it is shown that the closed-loop system can be
described as an interconnection of ISS subsystems, whose
gains can be tuned to satisfy the small-gain theorem.

A. Reduced-order observer design

To begin with, we will construct an observer for the
unmeasured states η and x2, . . . , xn. To this end, we define
the estimation errors

z1 = η̂ − η + β1(x1)

z2 = x̂2 − x2 + β2(x1)

...
zn = x̂n − xn + βn(x1)

and the update laws

˙̂η = F (x1) (η̂ + β1(x1)) + G(x1)

−
∂β1

∂x1

[

x̂2 + β2(x1) + φ1(x1)
T (η̂ + β1(x1))

]

˙̂x2 = x̂3 + β3(x1) + φ2(x1)
T (η̂ + β1(x1))

−
∂β2

∂x1

[

x̂2 + β2(x1) + φ1(x1)
T (η̂ + β1(x1))

]

...
˙̂xn = u + φn(x1)

T (η̂ + β1(x1))

−
∂βn

∂x1

[

x̂2 + β2(x1) + φ1(x1)
T (η̂ + β1(x1))

]

,

where βi(x1) are continuous functions yet to be defined.
The “error dynamics” are described by the system

ż = A(x1)z − ∆r(η, x1) + ∆1(η, x1)
∂β

∂x1

, (5)

where
z =

[

zT
1 , z2, . . . , zn

]T
,

∆r =
[

∆T
0 ,∆2, . . . ,∆n

]T
,

β =
[

βT
1 , β2, . . . , βn

]T

and

A(x1) =























F (x1) 0 0 · · · 0

φ2(x1)
T 0 1 · · · 0

...
...

. . .

φn−1(x1)
T 0 0 · · · 1

φn(x1)
T 0 0 · · · 0























−

−
∂β

∂x1

[

φ1(x1)
T 1 0 . . . 0

]

. (6)

In addition to the estimation error z, we define the output
error

x̃1 = x1 − x?
1,

where
x?

1 = x?
1(η̂ + β1(x1)) = x?

1(η + z1)

verifies Assumption 2.



Consider now the function V2(z) = zT Pz, where P is
a constant, positive-definite matrix, and its time-derivative
along the trajectories of (5), namely

V̇2 = zT
(

A(x1)
T P + PA(x1)

)

z

−2∆r(η, x1)
T Pz + 2∆1(η, x1)

∂β

∂x1

T

Pz.

Define the matrix

B(x1) = I +
∂β

∂x1

∂β

∂x1

T

and note that

V̇2 ≤ zT

(

A(x1)
T P + PA(x1) +

PB(x1)P

γ(x1)

)

z

+γ(x1)
(

|∆r(η, x1)|
2 + |∆1(η, x1)|

2
)

,

for any function γ(x1) > 0. From Assumption 1 and the
definition of x̃1 it is possible to select functions γ21(·),
γ22(·) and γ23(·) such that

V̇2 ≤ zT

(

A(x1)
T P + PA(x1) +

PB(x1)P

γ(x1)

)

z

+γ21(|η|) + γ22(|x̃1|) + γ23(|z1|). (7)

Consider now the following condition.
Assumption 3: There exist functions βi(x1) and a class-

K∞ function κ21(·) such that, for any x1,

zT

(

A(x1)
T P + PA(x1) +

PB(x1)P

γ(x1)

)

z

+γ23(|z1|) ≤ −κ21(|z|).

Remark 3: Assumption 3 is a robust detectability con-
dition on the system (2) and can be considered as dual to
Assumption 2. In fact, in the linear case, it is a necessary
and sufficient condition for detectability when ∆i = 0 (see
Section IV-D).

B. Small-gain condition

Consider again the η-subsystem, which is described by
the equation

η̇ = F (x?
1(η + z1) + x̃1)η + G(x?

1(η + z1) + x̃1)

+∆0(η, x?
1(η + z1) + x̃1), (8)

and note that from Assumption 2 we have

V̇1 ≤ −κ11(|η|) + γ11(|z1|) + γ12(|x̃1|). (9)

Moreover, from Assumption 3 and condition (7) we con-
clude that the system

ż = A(x?
1(η + z1) + x̃1)z − ∆r(η, x?

1(η + z1) + x̃1)

+∆1(η, x?
1(η + z1) + x̃1)

∂β

∂x1

(10)

is ISS with respect to η and x̃1, i.e.

V̇2 ≤ −κ21(|z|) + γ21(|η|) + γ22(|x̃1|). (11)

η

z

z1

η

x̃1

x̃1

Fig. 1. Block diagram of the interconnected systems (8) and (10).

Thus we have assumed that each of the systems (8) and (10)
can be rendered ISS by selecting the functions βi(x1) and
x?

1(η + z1) appropriately. In the following we will consider
the stability of their interconnection (depicted in Fig. 1) by
means of the Lyapunov formulation of the nonlinear small-
gain theorem [4].

To this end, define class-K∞ functions κ1, κ2, γ1, γ2

such that

γ−1

2 ◦ γ21(|η|) ≤ V1(η) ≤ κ−1

1 ◦ κ11(|η|)
γ−1

1 ◦ γ11(|z1|) ≤ V2(z) ≤ κ−1

2 ◦ κ21(|z|)
(12)

and note that conditions (9) and (11) can be written as

V̇1 ≤ −κ1(V1) + γ1(V2) + γ12(|x̃1|)

V̇2 ≤ −κ2(V2) + γ2(V1) + γ22(|x̃1|).

We are now ready to state the main result of the paper.

Theorem 1: Consider a system described by equations of
the form (2) and such that Assumptions 1, 2 and 3 hold.
Let κ1, κ2, γ1 and γ2 be class-K∞ functions satisfying (12)
with V1 as in Assumption 2 and V2 = zT Pz and suppose
that there exist constants 0 < ε1 < 1 and 0 < ε2 < 1 such
that

1

1 − ε1

κ−1

1 ◦ γ1 ◦

(

1

1 − ε2

κ−1

2 ◦ γ2(r)

)

< r, (13)

for all r > 0. Then the system (8)-(10) with input x̃1 is
ISS. If, in addition, the ISS gain of this system is locally
Lipschitz, then there exists a dynamic output feedback
control law, described by equations of the form (3), such
that the closed-loop system (2)-(3) is GAS.

Remark 4: Theorem 1 states that it is possible to globally
asymptotically stabilize the system (2), where ∆i(·) satisfy
the growth condition (4), provided three subproblems are
solvable. The first problem is the robust stabilization of
the η-subsystem with input x1 (Assumption 2). The second
problem is the input-to-state stabilization of the observer
dynamics with respect to η (Assumption 3). The third
problem is the stabilization of the interconnection of the
two subsystems, which can be achieved by satisfying the
small-gain condition (13). This “reduction” idea is also the
basis of the methodology proposed in [2], although therein
an entirely different route is followed.



Proof: Using condition (13) and the small-gain the-
orem in [4] it is straightforward to show that the system (8)-
(10) with input x̃1 is ISS. Since the gain of this system
is locally Lipschitz, it suffices to prove that there exists a
continuous control law u(x1, x̂2, . . . , x̂n, η̂) such that the
gain of the system with state (x̃1, x̂2, . . . , x̂n, η̂), output
x̃1 and input (η, z) can be arbitrarily assigned. This can
be achieved using a standard backstepping construction.
Namely, starting from the dynamics of x̃1, which are
described by the equation

˙̃x1 = x̂2 + β2(x1) − z2 + φ1(x1)
T (η̂ + β1(x1) − z1)

+∆1(η, x1) −
∂x?

1

∂(η + z1)

[

F (x1) (η̂ + β1(x1))

+G(x1) +
∂β1

∂x1

(

−z2 − φ1(x1)
T z1 + ∆1(η, x1)

)

]

,

we consider x̂2 as a virtual control input and define the
error x̃2 = x̂2 − x?

2, where

x?
2 = λ1(x1, η̂) − β2(x1) − φ1(x1)

T (η̂ + β1(x1))

+
∂x?

1

∂(η + z1)

[

F (x1) (η̂ + β1(x1)) + G(x1)
]

,

for some function λ1(·) yet to be defined. Continuing
with this design philosophy through the dynamics of
x̃2, x̃3, . . . , x̃n, we finally select the control u as

u = λn(x1, x̂2, . . . , x̂n, η̂) − φn(x1)
T (η̂ + β1(x1))

+
∂βn

∂x1

[

x̂2 + β2(x1) + φ1(x1)
T (η̂ + β1(x1))

]

+
∂x?

n

∂x1

[

x̂2 + β2(x1) + φ1(x1)
T (η̂ + β1(x1))

]

+

n−1
∑

i=2

∂x?
n

∂x̂i

˙̂xi +
∂x?

n

∂η̂
˙̂η.

A straightforward calculation shows that the functions λi(·)
can be selected in such a way that the x̃-subsystem admits
the ISS Lyapunov function W (x̃) = |x̃|2. Moreover, for any
positive constants α, ε1 and ε2,

Ẇ ≤ −α|x̃|2 + ε1|η|
2 + ε2|z|

2. (14)

Note that the quadratic term in η is a result of the perturba-
tion ∆1 and the fact that the function ρ11 in Assumption 1
is quadratic.

IV. SPECIAL CASES

In this section, we discuss the applicability of Theorem 1
for special cases of systems described by equations of the
form (2). It is worth noting that Theorem 1 is more general
than some of the results in [7], [6], [3], although therein
unknown parameters are also present.

A. Systems without zero dynamics

Consider the system (2), where η is an empty vector, i.e.
there are no zero dynamics, and supppose that Assumption 1
holds. Note that, in this case, Assumption 2 is trivially
satisfied with x?

1 = 0 (i.e. x̃1 = x1). Then the matrix (6)
can be reduced to a constant (n − 1) × (n − 1) Hurwitz
matrix by selecting

βi(x1) = kix1, i = 2, . . . , n

and choosing the constants ki appropriately. Moreover, we
can select γ21 = γ23 = 0. As a result, Assumption 3 is
trivially satisfied for any linear function κ21(·) by taking γ
sufficiently large and condition (13) holds.

B. Systems with ISS zero dynamics

Consider the system (2) and suppose that Assumptions
1 and 2 hold for x?

1 = 0, i.e. the η-subsystem is ISS with
respect to x1. Then condition (9) reduces to

V̇1 ≤ −κ11(η) + γ12(|x1|),

i.e. γ11 = 0, hence condition (13) holds. Finally, Assump-
tion 3 is simplified with γ23 = 0. Note that, in this case,
we could define new perturbation functions

∆′

i(η, x1) = φi(x1)
T η + ∆i(η, x1), i = 2, . . . , n

and select the functions βi(x1) as in Section IV-A to yield
a constant Hurwitz matrix A, thus recovering the design
proposed in [3].

C. Unperturbed systems

Assumption 3 and condition (13) can be relaxed in the
case of an unperturbed system, i.e. with ∆i(·) = 0, as the
following corollary shows.

Corollary 1: Consider a system described by equations
of the form (2) with ∆i(·) = 0, i = 0, 1, . . . , n, and such
that Assumption 2 holds. Suppose that there exist functions
βi(x1), i = 1, . . . , n and a positive-definite matrix P such
that

zT
(

A(x1)
T P + PA(x1)

)

z ≤ −κ21(|z|),

for any x1. Then there exists a dynamic output feedback
control law, described by equations of the form (3), such
that the closed-loop system (2)-(3) is GAS.

Proof: We simply verify that Theorem 1 applies. To
begin with, note that Assumption 1 is trivially satisfied, and
Assumptions 2 and 3 hold by hypothesis. Consider now
conditions (12) and note that the function γ21 is zero, hence
γ2 can be arbitrarily selected. As a result, condition (13)
holds.



D. Linear perturbed systems

Consider a linear system described by equations of the
form

η̇ = F0η + Gx1 + ∆0(η, x1)

ẋ1 = x2 + FT
1 η + ∆1(η, x1)

... (15)
ẋn = u + F T

n η + ∆n(η, x1)

y = x1

and suppose that Assumption 1 holds for quadratic functions
ρi1 and ρi2 and Assumption 2 holds for a linear function
x?

1(η + z1). The system (15) can be written in matrix form
as

[

ζ̇
ẋ1

]

=











A0

G
...
0

C0 0











[

ζ
x1

]

+











0
...
1

0











u + ∆(η, x1)

y =
[

0 1
]

[

ζ
x1

]

,

where ζ =
[

ηT , x2, . . . , xn

]T
, ∆ =

[

∆T
0 ,∆2, . . . ,∆n,∆1

]T
,

A0 =











F0 0 0 · · · 0
FT

2 0 1 · · · 0
...

...
. . .

FT
n 0 0 · · · 0











,

C0 =
[

FT
1 1 0 · · · 0

]

.

Define the function

β(x1) = Kx1,

where K is a constant vector, and note that the matrix (6)
can be written as

A = A0 − KC0.

As a result, Assumption 3 can be replaced by the following.
Assumption 4: There exist a vector K and a constant

κ21 > 0 such that

zT

(

AT P + PA +
P
(

I + KKT
)

P

γ

)

z

+γ23|z1|
2 ≤ −κ21|z|

2.

Remark 5: If the system (15) is detectable for ∆ = 0,
then the pair {A0, C0} is also detectable, hence there
exists a positive-definite matrix P such that the matrix
AT P+PA is negative-definite. Note that, since γ23 depends
on γ, this does not imply (in general) that Assumption 4
holds. However, if the system (15) is also minimum-phase,
then γ23 = 0 and Assumption 4 is always satisfied for
sufficiently large γ.

Finally, conditions (9) and (11) reduce respectively to

V̇1 ≤ −κ11|η|
2 + γ11|z1|

2 + γ12|x̃1|
2

and
V̇2 ≤ −κ21|z|

2 + γ21|η|
2 + γ22|x̃1|

2.

Hence, the small-gain condition (13) reduces to

γ11

(1 − ε1)κ11

γ21

(1 − ε2)κ21

< 1.

V. AN ILLUSTRATIVE EXAMPLE

In this section we apply the proposed method to a simple
example, whose zero dynamics are linear and unstable,
hence the result in [3] is not applicable. Consider the system

η̇ = η + x1 + δ(t)x1

ẋ1 = x2 +
(

1 + x2
1

)

η
ẋ2 = u +

(

2 + x2
1

)

η
y = x1,

(16)

where δ(t) is an unknown disturbance such that |δ(t)| ≤
p, for all t, with p ∈ [0, 1) a known constant. Hence,
Assumption 1 is satisfied with ρ1(|η|) = 0 and ρ2(|x1|) =
p2x2

1.
Assumption 2 is also satisfied with the function

x?
1(η) = −k1η,

for some positive constant k1. In fact, the time-derivative
of the function V1(η) = η2/2 along the trajectories of the
system

η̇ = η + (1 + δ(t)) (x?
1(η + z1) + x̃1) (17)

is given by

V̇1 = − (k1 (1 + δ(t)) − 1) η2 − k1 (1 + δ(t)) z1η

+(1 + δ(t)) x̃1η,

which implies

V̇1 ≤ − (k1 (1 − p) − 1 − γ1) η2 +
k2
1(1 + p)2

2γ1

z2
1

+
(1 + p)2

2γ1

x̃2
1, (18)

for some γ1 > 0. Hence, for k1 > (1 + γ1)/(1 − p), the
system (17) is ISS with respect to z1 and x̃1. The error
dynamics (5) are given by the system

[

ż1

ż2

]

=











1 −
∂β1

∂x1

(

1 + x2
1

)

−
∂β1

∂x1

2 + x2
1 −

∂β2

∂x1

(

1 + x2
1

)

−
∂β2

∂x1











[

z1

z2

]

−

[

δ(t)x1

0

]

.



Consider the Lyapunov function V2(z) = zT Pz with

P =

[

1 0
0 a

]

,

where a > 1 is a constant. Assigning the functions β1(x1)
and β2(x1) so that

∂β1

∂x1

=
a

1 + x2
1

,

∂β2

∂x1

=
2 + x2

1

1 + x2
1

−
1

(1 + x2
1)

2

yields

V̇2 ≤ −c1z
2
1 − c2z

2
2 + γ2p

2x2
1 +

1

4γ2

z2
1 ,

for some γ2 > 0, where c2 = 1 + c1 = a. Noting that

x2
1 ≤ (1 + d) x̃2

1 + k2
1

(

1 +
1

d

)2

η2

+k2
1

(

1 +
1

d

)

(1 + d) z2
1

with d > 0 yields

V̇2 ≤ −

(

c1 −
1

4γ2

− γ2p
2k2

1

(

1 +
1

d

)

(1 + d)

)

z2
1

−c2z
2
2 + γ2p

2k2
1

(

1 +
1

d

)2

η2 + γ2p
2 (1 + d) x̃2

1.

Hence, for sufficiently large c1, Assumption 3 is satisfied.
The design is completed by choosing all the constants in
the foregoing inequalities to satisfy the small-gain condi-
tion. Clearly, such a selection is always possible since the
constants c1 and c2 can be chosen arbitrarily large. Fig. 2
shows the response of the closed-loop system to the initial
conditions η(0) = −1, x1(0) = 0, x2(0) = 0 for various
disturbances δ(t).

Remark 6: Applying the change of co-ordinates ξ1 = x1,
ξ2 = x2 + (1 + x2

1)η, the system (16) can be transformed
into the system

η̇ = η + ξ1 + δ(t)ξ1

ξ̇1 = ξ2

ξ̇2 = u +
(

3 + 2ξ2
1 + 2ξ1ξ2

)

η +
(

1 + ξ2
1

)

ξ1 (1 + δ(t))

y = ξ1,

for which the result in [2] is applicable. However, its
application hinges upon the hypothesis (see Assumption 2
in [2]) that a robust global output feedback stabilizer is
available for the auxiliary system

η̇ = η + ξ1 + δ(t)ξ1

ξ̇1 = ua

ya =
(

3 + 2ξ2
1 + 2ξ1ua

)

η +
(

1 + ξ2
1

)

ξ1 (1 + δ(t))

with input ua and output ya. Although it may be possible
in this case to satisfy this hypothesis, it is certainly not a
trivial task.
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Fig. 2. Initial response of the system for various disturbances. Dotted
line: δ(t) = 0. Dashed line: δ(t) = −0.4. Solid line: δ(t) = −0.4 cos(t).

VI. CONCLUSIONS AND OUTLOOK

The problem of output feedback stabilization of a class
of nonlinear systems with dynamic uncertainties has been
studied. It has been shown that, by using a novel ob-
server design tool together with a standard backstepping
construction and a small-gain condition, it is possible to
obtain a globally stabilizing output feedback control law.
The proposed method applies to systems with unstable zero
dynamics, thus extending the result in [3]. It also allows for
cross-terms between the output and the unmeasured states to
appear in the system equations, hence it is more general than
the observer backstepping method used in [6]. However,
in the present context, it does not allow for parametric
uncertainties. An extension in such a direction is currently
under study.
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