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Abstract— In analyzing large-scale systems, it is often desir-
able to treat the overall system as a collection of interconnected
subsystems. Solution properties of the large-scale system are
then deduced from the solution properties of the individual
subsystems and the nature of the system interconnections. In
this paper we develop an analysis framework for discrete-
time large-scale dynamical systems based onvector dissipa-
tivity notions. Specifically, using vector storage functions and
vector supply rates, dissipativity properties of the discrete-
time composite large-scale system are shown to be determined
from the dissipativity properties of the subsystems and their
interconnections.

I. I NTRODUCTION

Modern complex dynamical systems are highly intercon-
nected and mutually interdependent, both physically and
through a multitude of information and communication
network constraints. The sheer size (i.e., dimensionality)
and complexity of these large-scale dynamical systems often
necessitates a hierarchical decentralized architecture for
analyzing and controlling these systems. Specifically, in the
analysis and control-system design of complex large-scale
dynamical systems it is often desirable to treat the overall
system as a collection of interconnected subsystems. The
behavior of the aggregate or composite (i.e., large-scale)
system can then be predicted from the behaviors of the
individual subsystems and their interconnections. The need
for decentralized analysis and control design of large-scale
systems is a direct consequence of the physical size and
complexity of the dynamical model. In particular, computa-
tional complexity may be too large for model analysis while
severe constraints on communication links between system
sensors, actuators, and processors may render centralized
control architectures impractical.

An approach to analyzing large-scale dynamical systems
was introduced by the pioneering work ofŠiljak [1] and
involves the notion ofconnective stability. In particular, the
large-scale dynamical system is decomposed into a collec-
tion of subsystems with local dynamics and uncertain inter-
actions. Then, each subsystem is considered independently
so that the stability of each subsystem is combined with
the interconnection constraints to obtain avector Lyapunov
function for the composite large-scale dynamical system
guaranteeing connective stability for the overall system.
Vector Lyapunov functions were first introduced by Bellman
[2] and Matrosov [3] and further developed by Laksh-
mikanthamet al. [4], with [1], [5]–[10] exploiting their
utility for analyzing large-scale systems. The use of vector
Lyapunov functions in large-scale system analysis offers a
very flexible framework since each component of the vector
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Lyapunov function can satisfy less rigid requirements as
compared to a single scalar Lyapunov function. Moreover,
in large-scale systems several Lyapunov functions arise
naturally from the stability properties of each subsystem.
An alternative approach to vector Lyapunov functions for
analyzing large-scale dynamical systems is an input-output
approach wherein stability criteria are derived by assuming
that each subsystem is either finite gain, passive, or conic
[11]–[14].

Since most physical processes evolve naturally in
continuous-time, it is not surprising that the bulk of large-
scale dynamical system theory has been developed for
continuous-time systems. Nevertheless, it is the overwhelm-
ing trend to implement controllers digitally. Hence, in this
paper we extend the notions of dissipativity theory [15],
[16] to developvector dissipativitynotions for large-scale
nonlinear discrete-time dynamical systems; a notion not
previously considered in the literature. In particular, we
introduce a generalized definition of dissipativity for large-
scale nonlinear discrete-time dynamical systems in terms of
a vector inequalityinvolving a vector supply rate, a vector
storage function, and a nonnegative, semistable dissipation
matrix. Generalized notions of vector available storage and
vector required supply are also defined and shown to be
element-by-element ordered, nonnegative, and finite. On the
subsystem level, the proposed approach provides a discrete
energy flow balance in terms of the stored subsystem energy,
the supplied subsystem energy, the subsystem energy gained
from all other subsystems independent of the subsystem
coupling strengths, and the subsystem energy dissipated.
Furthermore, for large-scale discrete-time dynamical sys-
tems decomposed into interconnected subsystems, dissipa-
tivity of the composite system is shown to be determined
from the dissipativity properties of the individual subsys-
tems and the nature of the interconnections.

II. M ATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,
and some key results needed for analyzing discrete-time
large-scale nonlinear dynamical systems. LetR denote the
set of real numbers,Z+ denote the set of nonnegative
integers,Rn denote the set ofn × 1 column vectors,Sn

denote the set ofn×n symmetric matrices,Nn (respectively,
Pn) denote the the set ofn × n nonnegative (respectively,
positive) definite matrices,(·)T denote transpose, and let
In or I denote then × n identity matrix. Forv ∈ Rq

we write v ≥≥ 0 (respectively,v >> 0) to indicate that
every component ofv is nonnegative (respectively, positive).
In this case we say thatv is nonnegativeor positive,
respectively. LetRq

+ andRq
+ denote the nonnegative and

positive orthants ofRq; that is, if v ∈ Rq, thenv ∈ Rq

+ and
v ∈ Rq

+ are equivalent, respectively, tov ≥≥ 0 andv >> 0.
Finally, we write ‖ · ‖ for the Euclidean vector norm,



∆V (x(k)) for V (x(k + 1)) − V (x(k)), Bε(α), α ∈ Rn,
ε > 0, for the open ball centered atα with radiusε, and
M ≥ 0 (respectively,M > 0) to denote the fact that the
Hermitian matrixM is nonnegative (respectively, positive)
definite. The following definition introduces the notion of
nonnegative matrices.

Definition 2.1 ( [17]–[19]): Let W ∈ Rq×q. W is non-
negative(respectively,positive) if W(i,j) ≥ 0 (respectively,
W(i,j) > 0), i, j = 1, . . . , q.

The following definition introduces the notion of class
W functions involving nondecreasing functions.

Definition 2.2: A function w = [w1, ..., wq]T : Rq → Rq

is of classW if wi(r′) ≤ wi(r′′), i = 1, ..., q, for all
r′, r′′ ∈ Rq such thatr′j ≤ r′′j , j = 1, ..., q, where rj

denotes thejth component ofr.

Note that if w(r) = Wr, where W ∈ Rq×q, then
the function w(·) is of classW if and only if W is
nonnegative. The following definition introduces the notion
of nonnegative functions [19].

Definition 2.3: Let w = [w1, · · · , wq]T : V → Rq,
whereV is an open subset ofRq that containsRq

+. Then
w is nonnegativeif w(r) ≥≥ 0 for all r ∈ Rq

+.

Note that if w : Rq → Rq is such thatw(·) ∈ W and
w(0) ≥≥ 0, then w is nonnegative. Note that, ifw(r) =
Wr, thenw(·) is nonnegative if and only ifW ∈ Rq×q is
nonnegative.

Proposition 2.1 ( [19]): SupposeRq

+ ⊂ V. ThenRq

+ is
an invariant set with respect to

r(k + 1) = w(r(k)), r(0) = r0, k ∈ Z+, (1)

wherer0 ∈ Rq

+, if and only if w : V → Rq is nonnegative.

The following definition and lemma are needed for de-
veloping several of the results in later sections.

Definition 2.4: The equilibrium solutionr(k) ≡ re of
(1) is Lyapunov stableif, for every ε > 0, there exists
δ = δ(ε) > 0 such that if r0 ∈ Bδ(re) ∩ Rq

+, then
r(k) ∈ Bε(re) ∩ Rq

+, k ∈ Z+. The equilibrium solution
r(k) ≡ re of (1) is semistableif it is Lyapunov stable and
there existsδ > 0 such that ifr0 ∈ Bδ(re) ∩ Rq

+, then
limk→∞ r(k) exists and converges to a Lyapunov stable
equilibrium point. The equilibrium solutionr(k) ≡ re of
(1) is asymptotically stableif it is Lyapunov stable and
there existsδ > 0 such that if r0 ∈ Bδ(re) ∩ Rq

+,
then limk→∞ r(k) = re. Finally, the equilibrium solution
r(k) ≡ re of (1) is globally asymptotically stableif the
previous statement holds for allr0 ∈ Rq

+.

Recall that a matrixW ∈ Rq×q is semistableif and only
if limk→∞W k exists [19] whileW is asymptotically stable
if and only if limk→∞W k = 0.

Lemma 2.1:SupposeW ∈ Rq×q is nonsingular and non-
negative. IfW is semistable (respectively, asymptotically
stable), then there exist a scalarα ≥ 1 (respectively,α > 1)
and a nonnegative vectorp ∈ Rq

+, p 6= 0, (respectively,
positive vectorp ∈ Rq

+) such that

W−Tp = αp. (2)
Next, we present a stability result for discrete-time large-

scale nonlinear dynamical systems using vector Lyapunov
functions. In particular, we consider discrete-time nonlinear

dynamical systems of the form

x(k + 1) = F (x(k)), x(k0) = x0, k ≥ k0, (3)

whereF : D → Rn is continuous onD, D ⊆ Rn is an
open set with0 ∈ D, and F (0) = 0. Here, we assume
that (3) characterizes a discrete-time large-scale nonlinear
dynamical system composed ofq interconnected subsystems
such that, for alli = 1, ..., q, each element ofF (x) is given
by Fi(x) = fi(xi) + Ii(x), wherefi : Rni → Rni defines
the vector field of each isolated subsystem of (3),Ii : D →
Rni defines the structure of interconnection dynamics of
the ith subsystem with all other subsystems,xi ∈ Rni ,
fi(0) = 0, Ii(0) = 0, and

∑q
i=1 ni = n. For the discrete-

time large-scale nonlinear dynamical system (3) we note
that the subsystem statesxi(k), k ≥ k0, for all i = 1, ..., q,
belong toRni as long asx(k) , [xT

1 (k), ..., xT
q (k)]T ∈

D, k ≥ k0. The next theorem presents a stability result for
(3) via vector Lyapunov functions by relating the stability
properties of acomparison systemto the stability properties
of the discrete-time large-scale nonlinear dynamical system.

Theorem 2.1 ( [4]):Consider the discrete-time large-
scale nonlinear dynamical system given by (3). Suppose
there exist a continuous vector functionV : D → Rq

+ and
a positive vectorp ∈ Rq

+ such thatV (0) = 0, the scalar
function v : D → R+ defined byv(x) = pTV (x), x ∈ D,
is such thatv(0) = 0, v(x) > 0, x 6= 0, and

V (F (x)) ≤≤ w(V (x)), x ∈ D, (4)

wherew : Rq

+ → Rq is a classW function such thatw(0) =
0. Then the stability properties of the zero solutionr(k) ≡ 0
to

r(k + 1) = w(r(k)), r(k0) = r0, k ≥ k0, (5)

imply the corresponding stability properties of the zero
solution x(k) ≡ 0 to (3). That is, if the zero solution
r(k) ≡ 0 to (5) is Lyapunov (respectively, asymptotically)
stable, then the zero solutionx(k) ≡ 0 to (3) is Lyapunov
(respectively, asymptotically) stable. If, in addition,D = Rn

and V (x) → ∞ as ‖x‖ → ∞, then global asymptotic
stability of the zero solutionr(k) ≡ 0 to (5) implies global
asymptotic stability of the zero solutionx(k) ≡ 0 to (3).

If V : D → Rq

+ satisfies the conditions of Theorem 2.1
we say thatV (x), x ∈ D, is a vector Lyapunov function
for the discrete-time large-scale nonlinear dynamical system
(3). Finally, we recall the notions of dissipativity [20] and
geometric dissipativity [19], [21] for discrete-time nonlinear
dynamical systemsG of the form

x(k + 1) = f(x(k)) + G(x(k))u(k),
x(k0) = x0, k ≥ k0, (6)

y(k) = h(x(k)) + J(x(k))u(k), (7)

where x ∈ D ⊆ Rn, u ∈ U ⊆ Rm, y ∈ Y ⊆ Rl,
f : D → Rn and satisfiesf(0) = 0, G : D → Rn×m,
h : D → Rl and satisfiesh(0) = 0, andJ : D → Rl×m.
For the discrete-time nonlinear dynamical systemG we
assume that the required properties for the existence and
uniqueness of solutions are satisfied; that is,u(·) satisfies
sufficient regularity conditions such that (6) has a unique
solution forward in time. Note that since all input-output
pairs u ∈ U , y ∈ Y, of the discrete-time nonlinear
dynamical systemG are defined onZ+, the supply rate
[15] satisfying s(0, 0) = 0 is locally summable for all
input-output pairs satisfying (6), (7); that is, for all input-
output pairsu ∈ U , y ∈ Y satisfying (6), (7),s(·, ·) satisfies∑k2

k=k1
|s(u(k), y(k))| < ∞, k1, k2 ∈ Z+.



Definition 2.5 ( [20], [21]): The discrete-time nonlinear
dynamical systemG given by (6), (7) is geometrically
dissipative (respectively,dissipative) with respect to the
supply rates(u, y) if there exist a continuous nonnegative-
definite functionvs : Rn → R+, called astorage function,
and a scalarρ > 1 (respectively,ρ = 1) such thatvs(0) = 0
and thedissipation inequality

ρk2vs(x(k2)) ≤ ρk1vs(x(k1))

+
k2−1∑

i=k1

ρi+1s(u(i), y(i)), k2 ≥ k1, (8)

is satisfied for allk2 ≥ k1 ≥ k0, wherex(k), k ≥ k0, is
the solution to (6) withu ∈ U . The discrete-time nonlinear
dynamical systemG given by (6), (7) islossless with respect
to the supply rates(u, y) if the dissipation inequality is
satisfied as an equality withρ = 1 for all k2 ≥ k1 ≥ k0.

III. V ECTORDISSIPATIVITY THEORY FOR

DISCRETE-TIME LARGE-SCALE NONLINEAR

DYNAMICAL SYSTEMS

In this section we extend the notion of dissipative
dynamical systems to develop the generalized notion of
vector dissipativity for discrete-time large-scale nonlinear
dynamical systems. We begin by considering discrete-time
nonlinear dynamical systemsG of the form

x(k + 1) = F (x(k), u(k)), x(k0) = x0, k ≥ k0, (9)
y(k) = H(x(k), u(k)), (10)

where x ∈ D ⊆ Rn, u ∈ U ⊆ Rm, y ∈ Y ⊆ Rl, F :
D × U → Rn, H : D × U → Y , D is an open set with
0 ∈ D, andF (0, 0) = 0. Here, we assume thatG represents
a discrete-time large-scale dynamical system composed of
q interconnected controlled subsystemsGi such that, for all
i = 1, ..., q,

Fi(x, ui) = fi(xi) + Ii(x) + Gi(xi)ui, (11)
Hi(xi, ui) = hi(xi) + Ji(xi)ui, (12)

wherexi ∈ Rni , ui ∈ Ui ⊆ Rmi , yi , Hi(xi, ui) ∈ Yi ⊆
Rli , (ui, yi) is the input-output pair for theith subsystem,
fi : Rni → Rni and Ii : D → Rni are continuous and
satisfy fi(0) = 0 and Ii(0) = 0, Gi : Rni → Rni×mi

is continuous,hi : Rni → Rli and satisfieshi(0) = 0,
Ji : Rni → Rli×mi ,

∑q
i=1 ni = n,

∑q
i=1 mi = m, and∑q

i=1 li = l. Furthermore, for the systemG we assume that
the required properties for the existence and uniqueness of
solutions are satisfied. We define the composite input and
composite output for the discrete-time large-scale systemG
as u , [uT

1 , ..., uT
q ]T and y , [yT

1 , ..., yT
q ]T, respectively.

Note that in this case the setU = U1 × · · · × Uq contains
the set of input values andY = Y1× · · · ×Yq contains the
set of output values.

Definition 3.1: For the discrete-time large-scale nonlin-
ear dynamical systemG given by (9), (10) a vector function
S = [s1, ..., sq]T : U × Y → Rq such thatS(u, y) ,
[s1(u1, y1), ..., sq(uq, yq)]T and S(0, 0) = 0 is called a
vector supply rate.

Definition 3.2: The discrete-time large-scale nonlinear
dynamical systemG given by (9), (10) isvector dissipative
(respectively,geometrically vector dissipative) with respect
to the vector supply rateS(u, y) if there exist a continuous,
nonnegative definite vector functionVs = [vs1, ..., vsq]T :

D → Rq

+, called avector storage function, and a nonsin-
gular nonnegativedissipation matrixW ∈ Rq×q such that
Vs(0) = 0, W is semistable (respectively, asymptotically
stable), and thevector dissipation inequality

Vs(x(k)) ≤≤ W k−k0Vs(x(k0))

+
k−1∑

i=k0

W k−1−iS(u(i), y(i)),

k ≥ k0, (13)

is satisfied, wherex(k), k ≥ k0, is the solution to (9) with
u ∈ U . The discrete-time large-scale nonlinear dynamical
systemG given by (9), (10) isvector lossless with respect
to the vector supply rateS(u, y) if the vector dissipation
inequality is satisfied as an equality withW semistable.

Note that if the subsystemsGi of G are disconnected;
that is, Ii(x) ≡ 0 for all i = 1, ..., q, and W ∈ Rq×q is
diagonal, positive definite, and semistable, then it follows
from Definition 3.2 that each of isolated subsystemsGi
is dissipative or geometrically dissipative in the sense of
Definition 2.5. A similar remark holds in the case where
q = 1. Next, define thevector available storageof the
discrete-time large-scale nonlinear dynamical systemG by

Va(x0)

, sup
K≥k0, u(·)

[
−

K−1∑

k=k0

W−(k+1−k0)S(u(k), y(k))

]
,

(14)

wherex(k), k ≥ k0, is the solution to (9) withx(k0) = x0
and admissible inputsu ∈ U . The supremum in (14) is taken
componentwise which implies that for different elements
of Va(·) the supremum is calculated separately. Note, that
Va(x0) ≥≥ 0, x0 ∈ D, sinceVa(x0) is the supremum over
a set of vectors containing the zero vector (K = k0). To
state the main results of this section the following definition
is required.

Definition 3.3 ( [19]): The discrete-time large-scale
nonlinear dynamical systemG given by (9), (10) is
completely reachableif for all x0 ∈ D ⊆ Rn, there exist
a ki < k0 and a square summable inputu(·) defined on
[ki, k0] such that the statex(k), k ≥ ki, can be driven
from x(ki) = 0 to x(k0) = x0. A discrete-time large-scale
nonlinear dynamical systemG is zero-state observableif
u(k) ≡ 0 andy(k) ≡ 0 imply x(k) ≡ 0.

Theorem 3.1:Consider the discrete-time large-scale non-
linear dynamical systemG given by (9), (10) and as-
sume thatG is completely reachable. LetW ∈ Rq×q

be nonsingular, nonnegative, and semistable (respectively,
asymptotically stable). Then

K−1∑

k=k0

W−(k+1−k0)S(u(k), y(k)) ≥≥ 0,

K ≥ k0, u ∈ U , (15)

for x(k0) = 0 if and only if Va(0) = 0 andVa(x) is finite
for all x ∈ D. Moreover, if (15) holds, thenVa(x), x ∈ D,
is a vector storage function forG and henceG is vector
dissipative (respectively, geometrically vector dissipative)
with respect to the vector supply rateS(u, y).

It follows from Lemma 2.1 that ifW ∈ Rq×q is nonsin-
gular, nonnegative, and semistable (respectively, asymptot-
ically stable), then there exist a scalarα ≥ 1 (respectively,
α > 1) and a nonnegative vectorp ∈ Rq

+, p 6= 0,



(respectively,p ∈ Rq
+) such that (2) holds. In this case,

pTW−k = αpTW−(k−1) = · · · = αkpT, k ∈ Z+. (16)

Using (16), we define the (scalar)available storagefor the
discrete-time large-scale nonlinear dynamical systemG by

va(x0) , sup
K≥k0, u(·)

[
−

K−1∑

k=k0

pTW−(k+1−k0)S(u(k), y(k))

]

= sup
K≥k0, u(·)

[
−

K−1∑

k=k0

αk+1−k0s(u(k), y(k))

]
, (17)

where s : U × Y → R defined ass(u, y) , pTS(u, y)
is the (scalar) supply rate for the discrete-time large-scale
nonlinear dynamical systemG. Clearly, va(x) ≥ 0 for all
x ∈ D. As in standard dissipativity theory, the available
storageva(x), x ∈ D, denotes the maximum amount of
(scaled) energy that can be extracted from the discrete-time
large-scale nonlinear dynamical systemG at any instantK.

The following theorem relates vector storage functions
and vector supply rates to scalar storage functions and scalar
supply rates of discrete-time large-scale dynamical systems.

Theorem 3.2:Consider the discrete-time large-scale non-
linear dynamical systemG given by (9), (10). SupposeG is
vector dissipative (respectively, geometrically vector dissi-
pative) with respect to the vector supply rateS : U ×Y →
Rq and with vector storage functionVs : D → Rq

+. Then
there existsp ∈ Rq

+, p 6= 0, (respectively,p ∈ Rq
+) such that

G is dissipative (respectively, geometrically dissipative) with
respect to the scalar supply rates(u, y) = pTS(u, y) and
with storage functionvs(x) , pTVs(x), x ∈ D, satisfying

vs(x(k)) ≤ α−(k−k0)vs(x(k0))

+
k−1∑

i=k0

α−(k−1−i)s(u(i), y(i)),

k ≥ k0, u ∈ U , (18)

whereα ≥ 1 (respectively,α > 1). Moreover, in this case
va(x), x ∈ D, is a storage function forG and

0 ≤ va(x) ≤ vs(x), x ∈ D. (19)
Remark 3.1:It follows from Theorem 3.1 that if (15)

holds for x(k0) = 0, then the vector available storage
Va(x), x ∈ D, is a vector storage function forG. In this
case, it follows from Theorem 3.2 that there existsp ∈ Rq

+,
p 6= 0, such thatvs(x) , pTVa(x) is a storage function
for G that satisfies (18), and hence by (19),va(x) ≤
pTVa(x), x ∈ D.

Remark 3.2:It is important to note that it follows from
Theorem 3.2 that ifG is vector dissipative, thenG can either
be (scalar) dissipative or (scalar) geometrically dissipative.

The following theorem provides sufficient conditions
guaranteeing that all scalar storage functions defined in
terms of vector storage functions; that is,vs(x) = pTVs(x),
of a given vector dissipative discrete-time large-scale non-
linear dynamical system are positive definite.

Theorem 3.3:Consider the discrete-time large-scale non-
linear dynamical systemG given by (9), (10) and assume
that G is zero-state observable. Furthermore, assume that
G is vector dissipative (respectively, geometrically vector
dissipative) with respect to the vector supply rateS(u, y)
and there existα ≥ 1 and p ∈ Rq

+ such that (2) holds. In

addition, assume that there exist functionsκi : Yi → Ui
such thatκi(0) = 0 and si(κi(yi), yi) < 0, yi 6= 0, for
all i = 1, ..., q. Then for all vector storage functionsVs :
D → Rq

+ the storage functionvs(x) , pTVs(x), x ∈ D,
is positive definite; that is,vs(0) = 0 and vs(x) > 0, x ∈
D, x 6= 0.

Next, we introduce the concept ofvector required supply
of a discrete-time large-scale nonlinear dynamical sys-
tem. Specifically, define the vector required supply of the
discrete-time large-scale dynamical systemG by

Vr(x0)

, inf
K≥−k0+1, u(·)

k0−1∑

k=−K

W−(k+1−k0)S(u(k), y(k)), (20)

wherex(k), k ≥ −K, is the solution to (9) withx(−K) =
0 and x(k0) = x0. Note that since, withx(k0) = 0, the
infimum in (20) is the zero vector it follows thatVr(0) = 0.
Moreover, sinceG is completely reachable it follows that
Vr(x) << ∞, x ∈ D. Using the notion of the vector
required supply we present necessary and sufficient con-
ditions for dissipativity of a large-scale dynamical system
with respect to a vector supply rate.

Theorem 3.4:Consider the discrete-time large-scale non-
linear dynamical systemG given by (9), (10) and assume
thatG is completely reachable. ThenG is vector dissipative
(respectively, geometrically vector dissipative) with respect
to the vector supply rateS(u, y) if and only if

0 ≤≤ Vr(x) << ∞, x ∈ D. (21)

Moreover, if (21) holds, thenVr(x), x ∈ D, is a vector
storage function forG. Finally, if the vector available
storageVa(x), x ∈ D, is a vector storage function forG,
then

0 ≤≤ Va(x) ≤≤ Vr(x) << ∞, x ∈ D. (22)
The next result is a direct consequence of Theorems 3.1

and 3.4.
Proposition 3.1:Consider the discrete-time large-scale

nonlinear dynamical systemG given by (9), (10). LetM =
diag [µ1, ..., µq] be such that0 ≤ µi ≤ 1, i = 1, ..., q.
If Va(x), x ∈ D, and Vr(x), x ∈ D, are vector storage
functions forG, then

Vs(x) = MVa(x) + (Iq −M)Vr(x), x ∈ D, (23)

is a vector storage function forG.
Next, recall that ifG is vector dissipative (respectively,

geometrically vector dissipative), then there existp ∈
Rq

+, p 6= 0, andα ≥ 1 (respectively,p ∈ Rq
+ and α > 1)

such that (2) and (16) hold. Now, define the (scalar)required
supplyfor the large-scale nonlinear dynamical systemG by

vr(x0)

, inf
K≥−k0+1, u(·)

k0−1∑

k=−K

pTW−(k+1−k0)S(u(k), y(k))

= inf
K≥−k0+1, u(·)

k0−1∑

k=−K

αk+1−k0s(u(k), y(k)),

x0 ∈ D, (24)

where s(u, y) = pTS(u, y) and x(k), k ≥ −K, is the
solution to (9) withx(−K) = 0 andx(k0) = x0. It follows
from (24) that the required supply of a discrete-time large-
scale nonlinear dynamical system is the minimum amount



of generalized energy which can be delivered to the discrete-
time large-scale system in order to transfer it from an initial
statex(−K) = 0 to a given statex(k0) = x0. Using the
same arguments as in case of the vector required supply, it
follows thatvr(0) = 0 andvr(x) < ∞, x ∈ D.

Next, using the notion of required supply, we show that
all storage functions of the formvs(x) = pTVs(x), where
p ∈ Rq

+, p 6= 0, are bounded from above by the required
supply and bounded from below by the available stor-
age. Hence, a dissipative discrete-time large-scale nonlinear
dynamical system can only deliver to its surroundings a
fraction of all of its stored subsystem energies and can only
store a fraction of the work done to all of its subsystems.

Corollary 3.1: Consider the discrete-time large-scale
nonlinear dynamical systemG given by (9), (10). Assume
that G is vector dissipative with respect to a vector supply
rateS(u, y) and with vector storage functionVs : D → Rq

+.
Thenvr(x), x ∈ D, is a storage function forG. Moreover,
if vs(x) , pTVs(x), x ∈ D, wherep ∈ Rq

+, p 6= 0, then

0 ≤ va(x) ≤ vs(x) ≤ vr(x) < ∞, x ∈ D. (25)
Remark 3.3:It follows from Theorem 3.4 that ifG is

vector dissipative with respect to the vector supply rate
S(u, y), then Vr(x), x ∈ D, is a vector storage function
for G and, by Theorem 3.2, there existsp ∈ Rq

+, p 6= 0,
such thatvs(x) , pTVr(x), x ∈ D, is a storage function
for G satisfying (18). Hence, it follows from Corollary 3.1
that pTVr(x) ≤ vr(x), x ∈ D.

The next result relates vector (respectively, scalar) avail-
able storage and vector (respectively, scalar) required sup-
ply for vector lossless discrete-time large-scale dynamical
systems.

Theorem 3.5:Consider the discrete-time large-scale non-
linear dynamical systemG given by (9), (10). Assume that
G is completely reachable to and from the origin. IfG
is vector lossless with respect to the vector supply rate
S(u, y) andVa(x), x ∈ D, is a vector storage function, then
Va(x) = Vr(x), x ∈ D. Moreover, if Vs(x), x ∈ D, is a
vector storage function, then all (scalar) storage functions of
the form vs(x) = pTVs(x), x ∈ D, wherep ∈ Rq

+, p 6= 0,
are given by

vs(x0) = va(x0) = vr(x0)

= −
K−1∑

k=k0

αk+1−k0s(u(k), y(k))

=
k0−1∑

k=−K

αk+1−k0s(u(k), y(k)), (26)

where x(k), k ≥ k0, is the solution to (9) withu ∈ U ,
x(−K) = 0, x(K) = 0, x(k0) = x0 ∈ D, and s(u, y) =
pTS(u, y).

The next proposition presents a characterization for
vector dissipativity of discrete-time large-scale nonlinear
dynamical systems.

Proposition 3.2:Consider the discrete-time large-scale
nonlinear dynamical systemG given by (9), (10) and assume
Vs = [vs1, ..., vsq]T : D → Rq

+ is a continuous vector
storage function forG. Then G is vector dissipative with
respect to the vector supply rateS(u, y) if and only if

Vs(x(k + 1)) ≤≤ WVs(x(k)) + S(u(k), y(k)),
k ≥ k0, u ∈ U . (27)

As a special case of vector dissipativity theory we can
analyze the stability of discrete-time large-scale nonlinear
dynamical systems. Specifically, assume that the discrete-
time large-scale dynamical systemG is vector dissipative
(respectively, geometrically vector dissipative) with respect
to the vector supply rateS(u, y) and with a continuous
vector storage functionVs : D → Rq

+. Moreover, assume
that the conditions of Theorem 3.3 are satisfied. Then it
follows from Proposition 3.2, withu(k) ≡ 0 andy(k) ≡ 0,
that

Vs(x(k + 1)) ≤≤ WVs(x(k)), k ≥ k0, (28)

wherex(k), k ≥ k0, is a solution to (9) withx(k0) = x0
and u(k) ≡ 0. Now, it follows from Theorem 2.1, with
w(r) = Wr, that the zero solutionx(k) ≡ 0 to (9), with
u(k) ≡ 0, is Lyapunov (respectively, asymptotically) stable.

More generally, the problem of control system design for
discrete-time large-scale nonlinear dynamical systems can
be addressed within the framework of vector dissipativity
theory. In particular, suppose that there exists a continuous
vector functionVs : D → Rq

+ such thatVs(0) = 0 and

Vs(x(k + 1)) ≤≤ F(Vs(x(k)), u(k)), k ≥ k0, u ∈ U , (29)

whereF : Rq

+ × Rm → Rq and F(0, 0) = 0. Then the
control system design problem for a discrete-time large-
scale dynamical system reduces to constructing anenergy
feedback control lawφ : Rq

+ → U of the form

u = φ(Vs(x)) , [φT
1 (Vs(x)), ..., φT

q (Vs(x))]T, x ∈ D, (30)

whereφi : Rq

+ → Ui, φi(0) = 0, i = 1, ..., q, such that the
zero solutionr(k) ≡ 0 to the comparison system

r(k + 1) = w(r(k)), r(k0) = Vs(x(k0)), k ≥ k0, (31)

is rendered asymptotically stable, wherew(r) , F(r, φ(r))
is of classW. In this case, if there existsp ∈ Rq

+ such that
vs(x) , pTVs(x), x ∈ D, is positive definite, then it follows
from Theorem 2.1 that the zero solutionx(k) ≡ 0 to (9),
with u given by (30), is asymptotically stable.

As can be seen from the above discussion, using an
energy feedback control architecture and exploiting the
comparison system within the control design for discrete-
time large-scale nonlinear dynamical systems can signif-
icantly reduce the dimensionality of a control synthesis
problem in terms of a number of states that need to be
stabilized. It should be noted however that for stability
analysis of discrete-time large-scale dynamical systems the
comparison system need not be linear as implied by (28).
A discrete-time nonlinear comparison system would still
guarantee stability of a discrete-time large-scale dynamical
system provided that the conditions of Theorem 2.1 are
satisfied. For further details see [22].

IV. CONCLUSION

In this paper we have extended the notion of dissipativity
theory to vector dissipativity theory. Specifically, using vec-
tor storage functions and vector supply rates, dissipativity
properties of aggregate large-scale discrete-time dynamical
systems are shown to be determined from the dissipativity
properties of the individual subsystems and the nature of
their interconnections. Detailed proofs of the results in this
paper are given in [22]. In addition, [22] develops extended
Kalman-Yakubovich-Popov conditions, in terms of the local
subsystem dynamics and the interconnection constraints,
for characterizing vector dissipativeness via vector storage
functions for large-scale discrete-time dynamical systems.



Furthermore, using the concepts of vector dissipativity and
vector storage functions as candidate vector Lyapunov func-
tions, feedback interconnection stability results of large-
scale discrete-time nonlinear dynamical systems are also
developed in [22]. General stability criteria are given for
Lyapunov and asymptotic stability of feedback intercon-
nections of large-scale discrete-time dynamical systems.
In the case of vector quadratic supply rates involving net
subsystem powers and input-output subsystem energies,
these results provide a positivity and small gain theorem
for large-scale discrete-time systems predicated on vector
Lyapunov functions.
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