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Abstract— For non-linear state space models, model reduc-
tion alone does not decrease the time required to compute
the state update. This paper suggests methods for generating
models that approximate the original reduced order models
by faster equivalents. Where updating reduced order models
normally requires the computation of the original large-scale
model, we only compute the original large-scale model for
a subset of its states. The new state of the reduced order
model can then no longer be computed exactly, but has to be
estimated from subset of states that have been computed using
the large-scale model. It is shown that the new state of the
reduced order model can be estimated accurately using spatial
and temporal correlations. This acceleration method can be
viewed as a partial linearization of the system equations.
The methods in this paper are illustrated using a simulation
example of a physical system.

I. INTRODUCTION

First principal models of complex systems often consist
of a set of complex non-linear partial differential equations
(PDE). The solutions of these equations are often approx-
imated numerically by transforming the PDEs into a set
of ordinary differential equations (ODE) on a fine discrete
grid. These ODEs can finally be rewritten in the familiar
state space form. An advantage of using state space models
that have been derived in this manner is that the state vector
often has a clear physical meaning.

State space models derived using first principle are
generally very high order non-linear models. In order to
use these models for control or monitoring purposes, it
can be necessary to use non-linear control or monitoring
algorithms. Using these algorithms can often be difficult for
two reasons. The first problem is that the state dimension is
very high. This generally makes it very difficult to do the
manipulations required by a chosen algorithm. The second
problem is that these techniques often require a high number
of model evaluations. This can be a problem with first
principle models, because computing the time update step
often takes a relatively long time.

Given the mentioned problems, our goal is to find a
general method for reducing both the model order and com-
putational complexity of complex first principles models,
but without losing the physical interpretation of the state
vector.

Both goals can be obtained by using a coarser grid to
approximate the PDEs with ODEs. A coarser grid will
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decrease both the state dimension and the number of com-
putations required to evaluate the state update. A drawback
of course is that increasing the average cell size will also
decrease model accuracy.

Another method is to linearize the high order model.
After a model reduction step, both model order and compu-
tation time will be reduced. A drawback of this method is
that the linearized model will only be accurate in a certain
operating region.

In this paper we will take another approach to reducing
the order and computational complexity of first principe
models. First by using a set of basis functions for the
solution of the ODE, the model order can be reduced. In
literature, different methods for choosing a set of basis
functions can be identified. Examples of popular methods
are Proper Orthogonal Decomposition [1] and Empirical
Balancing [2]. Experience with both techniques shows that
often very high order systems (order > 1000) can be
accurately approximated with much lower order models
(order < 25) [3][4].

After a suitable set of basis functions has been found,
a lower dimensional approximation of the model can be
obtained using Galerkin projection [1][5]. If the original
model was linear, this procedure also reduces the number of
computations required to update the system state. For non-
linear models, this procedure does not reduce the number
of computations required for the evaluation of the model.
The reason is that in order to update a reduced-order model,
we still need to compute the state update for the original
large-scale model. The state update of the original model
generally is the most time consuming step in updating the
reduced order model. This means that potentially much
could be gained if it would not be necessary to update the
original model for all states, but only for a subset of its
states.

If we only compute the state update for a subset of the
original model’s states, the new reduced state in the reduced
order model can no longer be calculated exactly, but has
to be estimated. This paper describes two techniques for
estimating the new reduced order state from a subset of the
original state. The first technique is a linear least squares
estimation. The accuracy of this estimation is improved
in the second technique by using spatial and temporal
correlations that can be gathered in off-line simulations with
the original large-scale model. The new information is used
in the estimation using the Best Linear Unbiased (BLU)
estimator. It will be shown that using this second technique,
the estimation results can be much more accurate than the



least squares estimate.
The outline of this paper is as follows. In section 2 a

brief introduction of model reduction techniques is given.
Section 3 describes methods that can be used to speed up
computations. Section 4 illustrates the methods of sections
2 and 3 using an example.

II. MODEL REDUCTION

Suppose a physical model can be represented by the
following high order state space system:

xk+1 = f(xk, uk) (1)

yk = h(xk, uk) (2)

where xk is a n-dimensional state vector, yk is a vector
of measurements, uk is a vector containing the inputs to
the system and f and h are non-linear functions. We will
assume that the state dimension n is very high (n > 1000).

Since xk is an n-dimensional vector, all possible vectors
xk can be written as a linear combination of a set of n
independent basis vectors b(1) through b(n). In practice
however the solutions of (1) largely remain in a lower
dimensional subspace. Therefore, in good approximation it
is often possible to write:

xk ≈
m∑

i=1

a
(i)
k b(i) (3)

with a
(i)
k a time dependant scalar value, b(i) a constant

basis vector, m << n, provided that the vectors b(i) have
been chosen appropriately. Since the basis vectors b(i) are
constant, all information about the currently approximated
state vector is contained in time varying the coefficients
a
(i)
k . We can therefore introduce a new state vector as:

xred
k = [a(1)

k a
(2)
k . . . a

(m)
k ]T . (4)

Define B as the matrix whose columns consist of the m
chosen basis vectors b(1) through b(m). The approximated
state at sample instant k can then be written as:

xk ≈ Bxred
k . (5)

The optimal reduced state can be calculated by:

xred
k = B†xk, (6)

where B† is the pseudo inverse of matrix B:

B† = (BT B)−1BT . (7)

Using Galerkin projection, a reduced order approximate of
the state update model (1) can now be constructed as:

xred
k+1 = B†f(Bxred

k , uk). (8)

Problem remains of course, how the basis vectors b(i)

should be chosen. Two generally applicable methods for
chosing B are Proper Orthogonal Decomposition (POD)
[1] and Empirical Balancing [2].

III. ACCELERATING MODEL COMPUTATIONS

For non-linear models, the computation of (8) consists of
three steps:

1) Expand the reduced state xred
k to xk via (5),

2) compute new state xk+1 via (1),
3) compute reduced state xred

k+1 from xk+1 via (6).

So in order to update the reduced order model, we not only
need to compute the original high order model, but we also
have to do two linear projections. As a result the number of
calculations required to compute (8) is actually larger than
the number of calculations required to update the original
high order model. In this section we focus on methods that
reduce the number of computations required for the reduced
model (8).

Generally, by far the most time consuming step in updat-
ing (8) is the update of the original state vector via (1).
Therefore much could potentially be gained if it would
not be necessary to compute (1) for all of the original
state elements, but only for a subset of the original state
elements. For this purpose, we will create an approximate
model that only requires a part of the complete full state
to be calculated. Later in this section, it will be shown that
the information in the new state that is lost by only using
a part of the state update function, can be recovered using
spatial and temporal correlations.

In order for this acceleration to be possible, we thus
require that the original state can be partitioned into at least
two parts for which the update can be calculated separately.
Mathematically this means that we require that (1) can be
rewritten as: [

x
(1)
k+1

x
(2)
k+1

]
=

[
f1(xk, uk)
f2(xk, uk)

]
. (9)

A second requirement is that after partitioning the original
model as in (9), the time required to update x(1) is less
than the time required to calculate the full state. Although
this is a rather obvious requirement, it can limit the allowed
number of elements of x(1).

It is obvious that if we only calculate certain elements
of the original state vector, we can no longer exactly
calculate (8). The new reduced state xred

k+1, now has to be
estimated using those elements of the full state vector that
are calculated exactly.

In the remainder of this section two methods of estimat-
ing the reduced order state xred

k+1 will be discussed. The
first method is based on a least squares collocation scheme.
Then, a second method is introduced that incorporates more
knowledge of the system to reduce the approximation error.
In both methods we will assume that when updating (8),
only the elements in x

(1)
k+1 will be calculated using (9).

Both estimators of xred
k+1in this section will be linear, since

these allow a rapid computation of the estimate for the new
reduced state.

Even though we only use linear estimators for the new
reduced state, the accelerated model will remain non-linear,



since we update selected elements of the original state
vector with the original non-linear model. Therefore the
methods discussed in this section can also be interpreted
as a partial linearization of the original system.

A. Least squares

The first method for estimating xred
k+1 that we will de-

scribe is a least squares based method. This method is
based on the missing data problem in [6]. It can be shown
that a property of the reduced order state xred

k+1 computed
using Galerkin projection (8) is that it is the solution to the
following least squares problem:

xred
k+1 = arg min

x̃red
k+1

‖f(Bxred
k , uk) − Bx̃red

k+1‖2. (10)

So the new reduced order state is that state which minimizes
a least squares criterion in which all states are weighted
equally. If we choose to compute only a subset of the
original state, a natural method to obtain an approximation
of the new reduced state vector would be to replace the least
squares criterion over all elements with a criterion that only
takes into to account those elements of the state which we
have actually computed. If we partition the long original
state vector as in (9) and we only choose to compute the
elements in x

(1)
k+1, the new criterion will thus be:

x̂red
k+1 = min

x̃red
k+1

‖f1(Bxred
k , uk) − B1x̃

red
k+1‖2, (11)

where B1 is a matrix consisting of the rows of B that
correspond to the elements in x(1). The solution of this
least squares problem is given by:

x̂red
k+1 = B†

1f1(Bxred
k , uk), (12)

where B†
1 is the pseudo inverse of B1. By doing so, our

procedure to update xred
k becomes:

1) Expand the reduced state: x̂k = Bx̂red
k via (5),

2) compute new partial state via x̂
(1)
k+1 = f1(x̂k, uk),

3) estimate new reduced state x̂red
k+1 = B†

1x̂
(1)
k+1.

This new procedure involves considerably less computation
time, because the computation time of step 2 (the most
time consuming) and 3 are drastically decreased, since the
operators f(·) and B† are replaced by operators f1(·) and
B† of lower order.

The estimate for xred
k+1 is the best possible linear estimate

using only x
(1)
k+1. Experience with this technique shows

that quite often it is possible to generate a reasonable
approximation even if x

(1)
k+1 contains only a limited fraction

of the total number of states.

B. Improved estimation

When we use (12) to estimate the reduced state vector
xred

k+1 at time k + 1, we lose the information on xred
k+1

that was contained in the neglected vector x
(2)
k+1. In this

subsection we will show how a part of this lost information
can be recovered without losing the advantage of a shorter
computation time.

A better estimate of xred
k+1 can be computed by taking

into account the correlation between x
(1)
k+1 and x

(2)
k+1, but

also, as will be shown later, the correlation between xred
k+1

and the same vector one time step earlier (ie. xred
k ) and the

correlation between xred
k+1 and uk. The correlation between

x
(1)
k+1 and x

(2)
k+1 gives us spatial information, because it

relates states at the same time. The correlation between
xred

k+1 and xred
k and the correlation between xred

k+1 and uk

gives us temporal information, since it relates quantities at
different times.

These correlation matrices are not known and have to be
estimated in a separate experiment. After they have been
estimated, they are assumed to be constant for all k. Note
that if POD is used in the reduction step, the correlation
between x

(1)
k+1 and x

(2)
k+1 has already been estimated for the

reduction step.
Our method for improving the estimate xred

k+1 is based on
the notion of the BLU estimator [7]. If two random variables
P and Q have means µP and µQ and covariance:

E

[
P
Q

]
[P Q] =

[
RPP RPQ

RQP RQQ

]
(13)

the best linear unbiased estimate of P given Q = q is:

p̂ = µP + RPQR−1
QQ(q − µQ). (14)

The covariance matrix of the estimate is:

E(p − p̂)(p − p̂)T = RPP − RPQR−1
QQRQP . (15)

Simply applying the BLU estimator for the estimation of
xred

k+1 from x
(1)
k+1 yields:

x̂red
k+1 = µxred

k+1
+R

xred
k+1x

(1)
k+1

R−1

x
(1)
k+1x

(1)
k+1

(x(1)
k+1−µ

x
(1)
k+1

) (16)

in which µxred
k+1

and µ
x
(1)
k+1

are the means of xk+1
red and

x
(1)
k+1. Like the covariance matrices, the means have the

be estimated in separate experiments, and are assumed to
be constant. In the previous expression, covariance matrix
between the xred

k+1 and x
(1)
k+1 is equal to:

R
xred

k+1x
(1)
k+1

= E(xred
k+1 − µxred

k+1
)(x(1)

k+1 − µ
x
(1)
k+1

)T (17)

= E


[B†

1 B†
2]


 x

(1)
k+1 − µ

x
(1)
k+1

x
(2)
k+1 − µ

x
(2)
k+1


 (x(1)

k+1 − µ
x
(1)
k+1

)T




= B†
1Rx

(1)
k+1x

(1)
k+1

+ B†
2Rx

(2)
k+1x

(1)
k+1

, (18)

where B†
1 and B†

2 consist of the columns of B† correspond-
ing to x

(1)
k+1 and x

(2)
k+1. Using this relation, (16) becomes:

x̂red
k+1 = µxred

k+1
+(

B†
1 + B†

2Rx
(2)
k+1x

(1)
k+1

R−1

x
(1)
k+1x

(1)
k+1

)
(x(1)

k+1 − µ
x
(1)
k+1

) (19)

From this last equation it can be seen that in order to
obtain the BLU estimate for xred

k+1 from x
(1)
k+1 we require



information about the average value of the complete state
and the covariance matrix of the complete state xk+1.

By applying (15) the error covariance matrix of the BLU
estimate can be shown to be equal to:

E
{
(x̂red

k+1 − xred
k+1)(x̂

red
k+1 − xred

k+1)
T
}

=

B†
2

[
Rx(2)x(2) − Rx(2)x(1)R−1

x(1)x(1)Rx(1)x(2)

]
B†

2

T
. (20)

The total MSE can be calculated by computing the trace of
this matrix. It can be used to determine how many elements
of the original state vector need to be exactly calculated in
order to achieve a certain estimation accuracy. It can also
be used to determine which elements of the original state
vector need to be computed for an optimal result.

The BLU estimate is generally more accurate than the
least squares estimate. The accuracy is improved more if
there is more correlation between the sets of states x(1)

and x(2).
A drawback of using the BLU estimate is that the results

will depend on how accurately the covariance matrix of the
complete state, Rxkxk

, is known. As mentioned earlier, this
matrix can be estimated in separate off-line experiments. A
problem with this covariance matrix is that it is dependent
on the chosen input uk, so in order to estimate Rxkxk

we
already need to know which input signals are likely to be
used. If the estimated covariance matrix that is used in (16)
deviates from the true covariance matrix, results will be
less accurate. If the required means are not equal to the
true means, (16) no longer results in an unbiased estimate,
and the true error will be higher than the expected error
(20).

So far we have used the BLU to incorporate only spatial
information, i.e. we have only used the relation between
state elements at the same time instant. We can thus
refine the estimate even further by also including temporal
information, i.e. the relation between the current state with
the previous state and inputs. Since the system is in state
space form all information about the past is contained in
these two quantities.

The BLU estimate x̂red
k+1 from x

(1)
k+1, xred

k and uk is:

x̂red
k+1 = µxred

k+1
+ V W−1(


 x

(1)
k+1 − µ

x
(1)
k+1

xred
k − µxred

k

uk − µuk


) (21)

with

V =
[
R

xred
k+1x

(1)
k+1

Rxred
k+1xred

k
Rxred

k+1uk

]
(22)

and

W =




R
x
(1)
k+1x

(1)
k+1

R
x
(1)
k+1xred

k

R
x
(1)
k+1uk

R
xred

k x
(1)
k+1

Rxred
k xred

k
Rxred

k uk

R
ukx

(1)
k+1

Rukxred
k

Rukuk


 . (23)
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Fig. 1. Simulated heated plate example. The plate is heated or cooled
along the complete edges on all sides. The physical equation are solved
on a 32 by 32 grid in 5 Euler integration steps.

The expected estimation error is given by:

E
{
(x̂red

k+1 − xred
k+1)(x̂

red
k+1 − xred

k+1)
T
}

=

Rxred
k+1xred

k+1
− V W−1V T . (24)

The new BLU estimator that also includes the temporal
information will in general be more accurate then the
previous BLU estimate. Accuracy is especially improved if
there is significant correlation between the current reduced
state and the previous state and input (e.g. slowly varying
systems).

Although the accuracy is again improved, more informa-
tion is required that has to be estimated in advance.

So far, we have not mentioned how the partition (9)
should be done. The chosen partition can seriously influence
the the accuracy of the accelerated model. An optimal par-
tition for the BLU techniques can be found by searching for
that partition that minimizes the expected error, which can
be computed by taking the trace of (20) or (24), depending
on the chosen BLU estimator. This optimization problem
quickly gets impossible to solve, because the number of
possible partitions is very large. Sometimes however, it may
be possible to create a good partition using physical insight
in the process model.

IV. SIMULATION EXAMPLE

In this section the presented methods of the previous
sections will be illustrated by a simulation example. The
chosen example is that of a fictive solid square plate that
is heated and cooled at the edges, see Figure 1. Each side
of the solid plate is connected to a surface of which the
temperature can be controlled. This means the model has
four inputs.

For an infinitesimal element in the interior of the plate,
the temperature of this element is given by:

∂T (x, y, t)
∂t

= κ

(
∂2T (x, y, t)

∂x2
+

∂2T (x, y, t)
∂y2

)
. (25)



where T (x, y, t) is the temperature of the plate at location
x, y at time instant t. The κ factor is often chosen as
a constant depending on material properties in a given
operating region. If κ is constant the resulting model in
state space form would be linear. In our example we have
chosen to make κ temperature dependent. The physical
interpretation is that we now create a model that can
describe the behavior of the system in a larger operating
region. The resulting state-space model will be non-linear.

The PDE can be translated into a state space model by
imposing a grid on the plate. We have chosen to use a grid
of 32 by 32 elements. In each element the temperature and
all other material properties are assumed to be constant. The
PDE can now be translated into an ODE consisting of 1024
coupled equations. To compute the solution of the ODE for
T = t+∆t, all that is required is the solution at time t and
all inputs in the interval t and t+∆t. It is therefore logical
to choose the vector containing all the temperatures of the
grid elements as the system’s state vector. The resulting
state space system therefore has order 1024.

The new state is solved on the grid by dividing each
sampling interval into 5 steps, and using Euler integration
for each step. Using this integration method, the new tem-
perature of an element is dependent on up to 40 neighboring
elements.

The sampling interval for this model was chosen to be
1 second. This rather short sampling interval causes the
system to evolve rather slowly. This also causes high corre-
lation between successive state vectors. The short sampling
interval also causes a high correlation between adjacent grid
elements.

The temperature input signals were constructed by giving
each signal a mean and then adding a signal that changed
every 2s with a standard deviation of 25 degrees. During
the 2 seconds between temperature changes, the signals are
kept constant.

The model order was reduced from 1024 to just 15
using POD model reduction. For the model reduction, the
covariance of the state vector was estimated using 500 state
vectors obtained in a separate simulation run. The first 15
eigenvalues of the covariance matrix accounted for 96% of
the power of the system.

After the model reduction step we still want to accelerate
model computations. In order the compare the different
accelerated models, we need to choose an error criterium.
The criterium we shall use in this paper is the one step
ahead prediction criterium:

Err = ‖xred
k+1 − x̂red

k+1‖2 (26)

2000 Test inputs were applied to the reduced order model.
This data will serve as test data for the accelerated models.

Because of the simple structure of the model it is very
easy to create partitions of the full state in the required form
of (9). As mentioned at the end of the previous section,
the accuracy of the accelerated models is dependent on the
choice of the partition (9). The state partition we have used
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Fig. 2. Time required to compute a partial state vector as a function of
the number of elements in the partial vector. Time required is normalized
using the time required to update the complete system.

in the experiment was created as follows. First the order
of elements in the state vectors was randomly shuffled.
Afterwards the elements of x(1) were simply chosen as
the first l states. Given the fact that this partition was
randomly generated, it will likely not be optimal for any
of the estimators.

A requirement on the partition is that computing the
partial state vector requires less time than updating the
complete model. Figure 2 shows the fraction of operations
required to update x(1) as a function of the number of
elements in x(1). The figure shows that the fraction of
operations required rises quickly for this example. In order
to reduce the computation time by a factor 2, x(1) cannot
contain more than 70 elements. It is therefore important
that a chosen approximation method gives good results,
especially if x(1) contains few elements.

Figure 3 gives the prediction error of the least squares
approach (12) as a function of the number of elements
in x(1). As can be seen, the error drops slowly as the
number of elements in x(1) increases. This is a problem
for accelerating the system using the least squares approach
since it is not possible to get accurate results if x(1) has only
a few elements. Thus using least squares approximation, we
are forced to compute close to the entire state so that no
significant speed up is possible.

In Figure 4 the performance of the BLU based estimators
is tested. Both the BLU using only spatial information
(19) as well as the BLU estimate that also uses temporal
information (21) is given. Immediately clear is that both
estimates perform much better than the least squares es-
timate. Apparently the extra information contained in the
covariance between states and the state averages allows
significant improvements. This was to be expected in this
simulation example, because correlation between elements
is very high. The error of both estimates quickly approaches
zeros if more than 45 elements are calculated.
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Fig. 3. Approximation error of the least squares based estimate (12) as
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see (21). Apart from the found one step ahead prediction errors, the
predicted errors using (20) and (24) are also plotted.

Although the BLU estimate with temporal information
performs better than the spatial only BLU estimate, the
main difference between the two estimators is the approxi-
mation error if x(1) contains less than 45 elements. If x(1)

contains less than 45 elements, the approximation error of
the spatial only BLU method increases rapidly while the
temporal BLU methods error remains small. As mentioned
before, since the system evolves relatively slowly, there is
a high correlation between successive state vectors. This
correlation can be exploited if it is included for estimation.

Finally, Figure 4 also compares the found prediction
errors with the theoretically calculated errors using (20) and
(24). The actually found errors are well predicted by their
respective equations. This shows that these equations can
be used for determining how many elements x(1) should

have to obtain a certain maximal error, or to choose that
subset of state elements that minimizes the approximation
error.

The results in this section are all for the one step
ahead prediction error. If the accelerated model is used for
longer prediction horizons, the approximation errors might
accumulate. This is not a problem however if an accelerated
model is used in conjunction with a state filter. Using the
feedback from a state estimation filter the prediction errors
will remain limited.

V. CONCLUSION

State space models creating using first principles mod-
elling are often non-linear, high dimensional and require
a lot of time to evaluate. The order of systems can be
reduced using model reduction techniques, but this does
not solve the computational complexity of the model. This
paper introduces and compares methods for acceleration of
model evaluations.

Using a least squares based collocation method a rea-
sonable approximation of the state can be obtained. To
improve performance, extra knowledge can be included
using a BLU based estimate. The BLU estimate uses spatial
and temporal correlations to improve results. If there is
high spatial or temporal correlation between states, this can
severely improve the accuracy of the accelerated model.
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