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Abstract— In this paper analysis of interconnected dynam-
ical systems is considered. A framework for the analysis of
the stability of interconnection is given. The results from
Fax and Murray[2] that studies the SISO-case for a constant
interconnection matrix are generalized to the MIMO-case
where arbitrary interconnection is allowed. The analysis show
existness of a separation principle that is very useful in the
sense of the simplicity for stability analysis. Stability could
be checked graphically using a Nyquist-like criterion. The
problem with time-delays and interconnection variation and
robustness appear to be natural special cases of the general
framework, and hence, simple stability criteria are derived
easly.

I. I NTRODUCTION

A. Motivation

In recent years there has been a large amount of interest
in analysis of interconnected systems and networks, where
the relation between the interconnection and stability of the
resulting systems are related. In particular, there has been an
attempt to focus on distributed systems where the controller
is decentralized, i.e each plant of the interconnected system
makes a decision based on limited information that might
be available to it. Interconnection can be found in our
everyday life. There are many examples of such systems,
and here we give only a sample of different problems that
have the issue of interconnection in common. The internet
is a very large network where stability issues are of great
interest. The information flow transported along different
links could, for instance, be delayed which makes it hard to
stabilize the entire network if the delays are not taken into
account. Economy markets are another example of rather
complicated pricing system where we do have a lot of
manual control, and at the same time a lot of interconnection
between different pricing dynamics. The power network
is probabely one of the most complex networks. We can
find stability problems not only when trying to robustly
stabilize the physical power network(which is hard enough),
but also stabilize the economics market that is embedded
into it. Consumers, distributers, and power generators tryto
optimize their profit. Therefore, we have to take into account
the economics network that could be unstable also, where
the pricing plays a large role. An example is the California
power crisis of 2000. In later years, even stability of vehicle
formations has been of great interest, e.g. formation of
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unmanned air vehicles (UAV), robots, and sattelites are only
few examples.

B. Previous Work

There has been a lot of research on interconnected sys-
tems where some focused on particular "real-world" prob-
lems and some on trying to find a more general approach
to analyze interconnected systems and give a constructive
way for designing the decetralized controller. In Fax and
Murray [2] a Nyquist-like criterion is derived for stability
check under a constant feedback matrix for SISO systems.
Also a sufficient condition is given for interconnected
MIMO systems. In Olfati-Saber and Murray [3] the average-
consensus problem was considered for the case of single
integrators. Briefly, the average-consensus problem is about
trying to make a group of plants to agree on the average of
their states or outputs under some interconnection between
different plants. Also, [3] touches the idea of introducing
an interconnection matrix that is frequency dependent and
examine its eigenvalues to derive stability conditions. The
work by V. Guptaet al[4] derives stability conditions for
stochastically varying interconnection. In A. Jadababaieet
al[5] the problem with switched interconnection is also
considered for the case where the switching rule is restricted
to certain properties. M. Rotkowitzet al [7] introduces the
notion of quadratic invariance and how it could be used in
constructing a descentralized control law by minimizing the
closed-loop norm of the feedback-controlled system subject
to constraints on the controller structure. G. Vinnicombe [6]
considers the effect of time-delays in the stability of end-
to-end congestion control for the internet.

C. Contributions of the Paper

Initially, the problem of how time-delays affected stability
of vehicle formations was considered, building on the work
done in [2]. Trying to find an approach to solve the problem,
the framework given in [2] needed to be extended, starting
with translating the problem formulation from the time-
domain to the frequency domain. The new formulation
of the problem was one of the vital parts of this paper.
Interesting properties showed up and proved to be very
useful for other kind of problems.
Hence the main goal of the paper is to introduce a general
framework for interconnected systems where we try to
include all problems discussed in the previous section and
state them in a simple and classical form, which hopefully
reveals many properties that give us an easy way of stability
analysis and system design. Here we try to show how the



problem with time-varying connections and delays could be
easly modelled using the general framework. Also we show
a Nyquist-like criterion inspired by the one in [2], that could
ease the analysis of the interconnection.

II. PRELIMINARIES

A. Notation

We denote a set of elements{a1,a2, ...,an} by {ai}. A⊗B
defines theKroneckerproduct between the matricesA and
B. We let Ik be thek×k identity matrix.

B. Matrix Algebra

For a set ofN matrices{M1, ...,MN} of size r × s, we
define thedirect sumas theNr×Ns blockdiagonal matrix
M̂ whoser ×s diagonal blocks are the matricesM1, ...,Mn

(in this order), and the other entries are zero, which we
write as

M̂ = ⊕
N

∑
i=1

Mi

For a givenN×N matrix Q, define anNk×Nk matrix Q(k)
by the equation

Q(k) = Q⊗ Ik

Finally, we state theGeršgorin disc theorem(for a proof
consult e.g. [8]):

Proposition 1: Let A = [Ai j ] be ann×n matrix, and let

Cj(A) =
n

∑
i=1,i 6= j

|Ai j |.

Then all eigenvalues ofA are located in the union ofn discs
n⋃

j=1

{z∈ C : |z−A j j | ≤Cj}.

C. Algebraic Graph Theory

A (simple) graphG is a mathematical structure that
consists of finite set of elementsV = {v1,v2, . . . ,vn} called
vertices, or nodes, with a prescribed setE of unordered
pairs ofdistinct vertices ofV . Every elemente∈ E can be
written ase= (vi ,v j), vi ,v j ∈ V , and e is called anedge,
or arc, of the graphG . We call vi and v j the endpoints
of e. We say thatvi and v j are connected if(vi ,v j) ∈ E .
We also infer the notion of adirected edgeei j = (vi ,v j),
which could be considered geometrically as an arrow from
the nodevi to v j . A graph with directed edges is called a
directedgraph. Consider a matrixA such that the element
ai j is equal to one if(vi ,v j)∈E (G ) and zero otherwise. This
matrix is called theadjacencymatrix of G . The outdegree
of a vertex is the number of incident edges with the vertex
that point out from the edge. The set of vertices that point
out from vertexvi is denoted byJi . Hence, the outdegree
of vi is simply |Ji |. There is a special matrix that has been
used frequently in connection with modelling of networks.
Let D be a diagonal matrix withDii equal to the out-degree
of vertex i. The Laplacianof a graph is defined as

L = D−A.
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Fig. 1. The interconnected system.

Though, we will make a slight modification and define the
Laplacian as

Li j =






1 if i = j
− 1

|Ji |
∀ j ∈ Ji

0 otherwise

or more algebraically

L = D−1(D−A)

assuming thatDii 6= 0 for all i(note that the first definition
does not require the latter condition). The question of
which definition to be used depends on the application. The
Laplacian is useful since many studies has been focused on
its properties, and especially the spectral properties.

III. M AIN RESULTS

A. Stability of Interconnection Represented by Feedback
Transfer Matrix

We start by considering a set ofN identical plants and
its controllers given by the matrix functionsP(s) andK(s)
of sizen×m andm×n respectively. Let

P̂(s) = ⊕
N

∑
i=1

P(s)

and

K̂(s) = ⊕
N

∑
i=1

K(s)

Now consider theinterconnectedMIMO system given as in
Figure 1, whereH(s) is the interconnection matrix function
with proper dimensions. We can state a simple stability
theorem for the system above, but first we need a very useful
relation that was first shown in [2]:

Lemma 1:Let Q be an N×N matrix, M be an r × s
matrix with M̂ of size Nr ×Ns such thatM̂ = IN ⊗M =
diag(M, ...,M) and letQ(k) = Q⊗ Ik where⊗ denotes the
Kronecker product, andIk is thek×k identity matrix. Then

M̂Q(s) = Q(r)M̂. (1)
Theorem 2:Let U(s) be a vector of sizemN, Y(s) and

Z(s) be vectors of sizenN, H(s) a matrix of sizeN×N.
Also set

P̂(s) = ⊕
N

∑
i=1

P(s)

and

K̂(s) = ⊕
N

∑
i=1

K(s),



where P(s) and K(s) are matrices of sizen× m and
m× n respectively. LetT(s) = S(s)∗H(s)S(s) where S(s)
is the unitary Schur-transformation matrix such thatT(s)
is upper triangular with the eigenvalues{λi(s)} of H(s)
on its diagonal. Letp be the number of unstable poles of
H(n)(s)P̂(s)K̂(s). Then the control lawU(s) = K̂(s)(Uref−
Z(s)) stabilizes the system

{
Y(s) = P̂(s)U(s)
Z(s) = H(n)(s)Y(s)

(2)

iff the Nyquist plotof

n

∏
i=1

det[IN + λi(s)P(s)K(s)]

makesp anti-clockwise encirclements of the origin.
Proof: The closed-loop dynamics are given by

Z(s) = H(n)(s)Y(s)
= H(n)(s)P̂(s)U(s)
= H(n)(s)P̂(s)K̂(s)(Uref−Z(s)).

Thus, the transfer matrix betweenZ(s) andUref is given by

(InN +H(n)(s)P̂(s)K̂(s))−1H(n)(s)P̂(s)K̂(s)Uref(s)

Using the generalized Nyquist Theorem, we see that the
closed-loop system is stable iff the Nyquist plot of

det[InN +H(n)(s)P̂(s)K̂(s)]

makesp anti-clockwise encirclements of the origin. But by
applying Lemma 1 and the fact that det(S(n)) = det(S∗(n)) =
1, we get

det[InN +H(n)(s)P̂(s)K̂(s)] =

det[InN +S(n)(s)T(n)S
∗
(n)(s)P̂(s)K̂(s)] =

det[S(n)(InN +T(n)(s)P̂(s)K̂(s))S∗(n)] =

det[InN +T(n)(s)P̂(s)K̂(s)]. (3)

SinceT(n)(s) is block upper triangular and botĥP(s) and
K̂(s) are block diagonal, we get

det[InN +T(n)(s)P̂(s)K̂(s)] =

N

∏
i=1

det[In + λi(s)P(s)K(s)]. (4)

so the number of anti-clockwise encirclements of the origin
made by the Nyquist plot of

det[InN +T(n)(s)P̂(s)K̂(s)]

is the same as the number of encirclements of the origin
made by the Nyquist plot of

N

∏
i=1

det[In + λi(s)P(s)K(s)].

IV. A PPLICATIONS

Theorem 2 is stated in such a way to give as general
framework as possible for the interconnection of systems
with homogeneous dynamics. There are many interesting
special cases that are far from being trivial when trying
to use traditional techniques. But the use of our new
framework, together with Theorem 2, enables us to analyse
complicated interconnections easly.

A. The Consensus Problem

It is of great interest to make a group of plants, e.g. aerial
vehicles, to reach agreement, orconsensusas it is called in
Olfati-Saber and Murray[3]. We would like, for instance, to
make these plants to agree on some common state or output.
We want to explore how the information topology and
dynamics affects the stability of the interconnected system.
We will consider the problem based on the framework
presented in Fax and Murray [2], but with a frequency-
domain approach.

Consider a system ofN plantsP = {Pi}
N such that each

plant hasm inputs andn outputs. Note that assuming that
the plants have the same dimensions does not imply any loss
of generality. We assume that the dynamics for each plant
are decoupled from the otherN−1 plants in the system.
Then we can write the system for planti in the frequency
domain as

Yi(s) = Pi(s)Ui(s) (5)

for all i ∈ {1, ...,N}. The outputYi(s) is considered as
a sensed information which represents theinternal state
measurement for planti. The externalstate measurements
Zi j (s) for Vi relative to other plants is given by

Zi j (s) = Yi(s)−Yj(s),∀ j ∈ Ji (6)

whereJi ⊂ {1, ...,N}\{i} represents the set of plants that
Pi can sense. For simplicity, we assume that|Ji | ≥ 1, ∀i ∈
{1, ...,N}. This condition implies that each plant can sense
at least one other plant. Notice that a single plant cannot
drive all the termsZi j (s) to zero simultaneously. Therefore,
all errors must be synthesized into one signal. We introduce
the new error measurementZi(s) by building a weighted
sum over the relative state measurements. For simplicity,
we assume that the termsZi j (s) are equally weighted, hence

Zi(s) =
1

|Ji |
∑

j∈Ji

Zi j (s). (7)

Note that this assumption doesnot give us a weaker result.
Let Ki(s) denote the decentralized control law for planti. In-
troduceU(s) = (U1(s), ...,UN(s)), Y(s) = (Y1(s), ...,YN(s))
and Z(s) = (Z1(s), ...,ZN(s)). Thus, lettingLi

(n) denote the
ith row of L(n), we see that

Zi(s) = Li
(n)Y(s)

Hence, the equation for thetotal system is given by
{

Y(s) = P̂(s)U(s)
Z(s) = L(n)Y(s)

(8)



where P̂(s) is the direct sum for the set of plantsP =
{P1(s), . . . ,PN(s)}.

We will explore the stability of the interconnection with
plants of equal dynamics, i.e.Pi(s) = P(s) for all i ∈
{1, ...,N}.

B. Stable SISO Plants and Interconnection

Let us consider the case whenP(s) andK(s) are SISO-
stable, and the interconnection matrixH(s) is stable, that is
H(s) has no poles in the RHP. Then the criterion for stability
of the interconnected system (1) is that the Nyquist plot of

n

∏
i=1

(1+ λi(s)P(s)K(s)),

makes zero encirclements around the origin, or equivalently
that the Nyquist plot of

λi(s)P(s)K(s)

makes no encirclements around−1+0 j, for i = 1, ...,n.
Now let the interconnection matrix be the Laplacian

matrix, that is H(s) = L. Then we see that the system
is stable iff the Nyquist plot ofλiP(s)K(s) makes no
encirclements around−1+ 0 j, which is equivalent to that
the Nyquist plot ofP(s)K(s) does not encircle− 1

λi
for

i = 1, ...,n.

C. Interconnection with Fixed Time-delays

A common problem with interconnected systems is the
presence of time-delays. In this section, we will find
necessary and sufficient conditions, using the techniques
discussed earlier.

Consider the interesting case whereH(s) = L, that is the
interconnection is given by the Laplacian matrix. Suppose
that there is a fixed time-delayτi j for plant i to get the
sensed measurement from plantj that it is connected with.
Then we can write the interconnection matrix as

[H(s)]i j = Li j e
−τi j s.

For instance, if the plants are SISO and stable, necessary
and sufficient conditions for stability of the interconnected
system is that the Nyquist plot of

N

∏
i=1

(1+ λi(s)P(s)K(s))

makes zero encirclements around the origin, whereλi is the
ith eigenvalue ofH(s). This is equivalent to that the Nyquist
plot of

λi(s)P(s)K(s)

makes zero encirclements around -1+0j, for alli. So we
can see that stability of the interconnected system depends
on the structure of the interconnection given by the matrix
H(s), which is spanned by the topology of the interconnec-
tion(the Laplacian), and the structure of the time-delays.

A similar argument is easy to obtain for MIMO plants
P(s) which are not necessarily stable, using the results in
section 3.
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Fig. 2. The interconnected system with interconnection uncertainty.
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Fig. 3. The interconnected system with interconnection uncertainty.

D. Time-varying Interconnection

It is very interesting to explore the robustness of an
interconnected system, where links between different plants
could be broken or intentionally changed to achieve perfor-
mance. Consider a system interconnected by the Laplacian
matrixL. Let L be a set of Laplacian matrices such that the
closed loop system with respect to every LaplacianL̃ ∈ L
is stable.

1) Stable Plants and Multiplicative Uncertainty:Con-
sider time-varying interconnection in the case where the
plants in the system are stable. Let∆ denote the uncerttain
Laplacian matrix for the system. A diagram for the closed-
loop system is given by Figure 2.

It is known that the eigenvalues for the Laplacian lie
inside the unit disc centered at 1+ 0 j (a proof could be
derived using the Geršgorin disc theorem presented in the
second section). Thus,||L||∞ = σ̄ ≤ 2.

Then by the Small Gain Theorem, the interconnected
system is stable if

γ = ||P̂(s)K̂(s)||∞ = ||P(s)K(s)||∞ <
1
2
.

2) Unstable Plants and Additive Uncertainty:Set

∆ = {L̃−L|L̃ ∈ L }

It is not hard to find that||L̃−L||∞ ≤ 2 using Geršgorin disc
theorem.

Now consider the closed-loop system shown in Figure 3:
By the Small Gain Theorem, the system is stable if

γ = ||LP̂(s)K̂(s)(I +LP̂(s)K̂(s))−1||∞

= max
i

||λiP(s)K(s)(I + λiP(s)K(s))−1||∞ <
1
2
.

(9)

There are many ways of stabilizing the system. One way,
that is straight-forward, is to change the feedback gain,
which is simply multiplying the Laplacian matrixL with
some proper real constant. Another way is to useH∞ −
control to minimizeγ.
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Fig. 4. The graph representing the interconnection betweenthe plants.
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Fig. 5. The Nyquist-like plot of the interconnected system .

E. A Numerical Example

Consider a system of 6 stable plants{Pi}
6
i=1 with equal

dynamics P(s) = b1s+b0
s+a associated with identical stable

controllersK(s) = c1s+c0
s+d . Suppose that plantPi can sense

plant Pi+1 and Pi−1 for i = 1, ...,6, P7 = P1 and P−1 = P6.
The graph representing the interconnection is given by
Figure 4. Let τi be the time-delay forPi to recieve
the sensed signal ofPi+1 and Pi−1. Then building the
relative measurementZi j = [Yi(s)−Yi+1(s)]e−τi s gives us the
following interconnection matrix for the system (compare
with the problem setup):

H(s) =





e−τ1s − 1
2eτ1s 0 · · · − 1

2eτ1s

− 1
2eτ2s e−τ2s − 1

2eτ2s · · · 0
...

...
...

. . .
...

− 1
2eτ6s 0 − 1

2eτ6s · · · e−τ6s





Checking the Nyquist-like plot we see that the net encir-
clement of the origin is zero, hence the system must be
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Fig. 6. The Nyquist-like plot of the interconnected system zoomed around
-1+ 0j.
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Fig. 7. Simulation results of the interconnected system with time-delays.
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Fig. 8. The graph to switch to in the example.

stable.
Simulation of the system is shown in Figure 7. Now
consider the case when we switch from the Laplacian above
to another Laplacian for the graph in Figure 8. Choosing a
controller such that

||LK̂(s)P̂(s)||∞ = ||λiK(s)P(s)||∞ < 1

guarentees stability, as seen in the simulation result shown
in Figure 9.

V. CONLCLUSIONS AND FUTURE WORK

In this paper a framework for interconnected systems was
extended from the one introduced in Fax and Murray [2].

0 2 4 6 8 10 12 14 16 18 20
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Fig. 9. Switching between two topologies of the interconnection. First
we give a change of the reference values, then we switch topologies.



An efficient Nyquist-like method for stability check is
developed for homogeneous and almost homogeneous in-
terconnected systems with arbitrary connection. We have
seen that many problems that arise in the context of system
networks could be modelled in a way that fits our general
framework, e.g. time-varying interconnection and the prob-
lem with time-delays.

There is still a lot to explore. The problem where the
plants are heterogeneous is still important to analyze. It
is very interesting to find out whether there is a similar
separation principle when the plant dynamics are different.
Another important issue is the problem withboundedtime-
varying delays. It is also of great interest to explore the role
of robust control theory to obtain less conservative results
and improve on the framework.
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