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Abstract- Due to the inherent nonlinearity and 
uncertainty, fault diagnosis in pneumatic actuators is a 
very difficult task. Developing the models of nonlinear 
systems with adaptive network-based fuzzy inference 
systems (ANFISs) has recently received attention. 
Modeling that are built upon ANFISs overcome the 
disadvantages of ordinary fuzzy modeling and can be very 
suitable for generalized modeling of nonlinear plants. In 
this paper, we setup a group of models which are 
relatively common in practice, corresponding to various 
situations of a pneumatic actuator, including normal, low 
and high supply pressure. We construct a multiple models-
based fault diagnosis system to generate residual signals 
and detect fault occurrence using the novel concept of  
minimum index of sum of the absolute values of the 
residual errors. The trade-off between the robustness and 
the sensitivity of the developed  scheme is considered to 
isolate faults by employing a fault index. The 
effectiveness of the proposed fault isolation scheme is 
demonstrated via experiments. 

1.  Introduction 
 
With increasing demands for high reliability and 
performance of  systems, research in developing 
intelligent diagnosis methods, have been increased in 
recent years.  System modeling based on conventional 
mathematical tools  is not well suited for dealing with ill-
defined, uncertain and nonlinear systems. An example of 
such a system is a pneumatic/hydraulic servo-positioning 
actuator. In [1], the author proposed a  methodology to 
fault diagnosis with a second-truncated Volterra nonlinear 
model. Due to its time-consuming computing and 
mathematical complexity, it is very difficult to isolate 
faults on-line. By contrast, a fuzzy inference system can 
model the qualitative aspects of human knowledge and 
reasoning processes without employing precise 
quantitative analyses [2-5]. Fuzzy modeling, however, has 
the following disadvantages: (i) there is no standard 
approach for transforming human knowledge or 
experience into the rule base and database of a fuzzy 
inference  system, and (ii) there is a need for effective 
tuning of the membership functions to minimize the 
output error measure or maximize the performance index.  

Neural network modeling as a universal learning paradigm 
can equip the fuzzy inference system with learning 
capability. The adaptive-network-based fuzzy inference 
system (ANFIS) can now not only take linguistic rules 
from human experts, but also adapt itself using 
input/output data to achieve better performance. ANFIS 
provides a method for the fuzzy modeling procedure to 
learn information about a data set, in order to compute the 
membership function parameters that best allow the 
associated fuzzy inference system to track the given 
input/output data. So ANFIS has a distinguished 
advantage for modeling nonlinear plants, including 
pneumatic actuators [6,7].  
Model-based and multiple-model based fault diagnosis has 
attracted significant attention in the field of fault diagnosis 
and fault tolerant control. For example, in [8], the authors 
used a Levenberg-Marquardt method to train a Takagi-
Sugeno fuzzy system to represent the turbine engine. A 
bank of multiple models and a residual generator were 
used to detect and identify faults. Also, in [9], a model-
based fault diagnosis via parameter estimation using 
knowledge base and fuzzy logic approach was 
investigated for a special case.   
Inspired by the work reported in reference [8], this paper 
presents, for the first time, a fault diagnosis method that 
utilizes ANFIS  modeling and a multiple-model based 
fault diagnosis scheme for isolation of supply pressure 
faults in an industrial pneumatic positioning system. The 
analytical model of the plant, which is in the form of 
Takagi-Sugeno fuzzy system, has been developed using 
ANFIS. A bank of models were built by training sets of 
data related to respective working situations, which 
describe various states of the pneumatic actuator, 
including normal, low and high supply pressure. The bank 
of multiple models is used to generate residuals and 
analyze the sum of the absolute value of residuals to detect 
and identify faults. The effectiveness of the scheme is 
demonstrated via experiments. 

2.  Experimental Test Station  
 
The test station is shown in Fig. 4. The valve is a low-cost 
5-port three-position solenoid driven proportional 
directional flow control valve. It has a maximum capacity 
of 700 L/min at 100psi supply pressure. The actuator is a 



double-rod cylinder. Air is supplied to the system at a 
maximum pressure of 115psi. The valve is controlled by a 
PC equipped with a data acquisition board and an encoder 
card.  In practice, there are three relatively common types 
of faults for pneumatic actuator as below. Common faults 
in pneumatic systems include incorrect supply pressure 
fault, change in pneumatic compliance, leakage. The 
incorrect supply pressure can degrade the performance of 
the system. 
 

 
 

Fig. 1  Experimental pneumatic actuator. 
 

 
Fig. 2  Schematic of the pneumatic actuator. 

3. ANFIS Modeling 
 
ANFIS modeling applies the concept of the adaptive 
network to tackle the membership parameter identification 
in a fuzzy inference system[2,6].The outputs of the 
adaptive network depend on the parameter(s) pertaining to 
its nodes, and the learning rules specify how these 
parameters should be changed to minimize a prescribed 
error measure.  
 
3.1 Learning Rule of ANFIS Modeling 
In order to obtain a fast convergence and  to avoid to be 
trapped into a local minimum like the gradient descent 
method, a hybrid learning rule which combines the 
gradient method and the least-squares estimator is 
introduced into ANFIS modeling for fast parameter 
identification [10,11]. 
For simplicity, assume that the adaptive network has only 
one output 

),( SIFoutput =   (1) 
where I  is the vector of input variables and S is the set of 
parameters. If there exists a function H such that the 
composite function FH  is linear in some of the 
elements of S, then these elements can be identified by the 
least-squares method. Furthermore, if the parameter set S 
can be decomposed into two sets 

21 SSS ⊕=   (2) 
(where ⊕  represents direct sum) such that FH  is linear 
in the elements of S2, then upon applying H to (1), we 
have  

),()( SIFHoutputH =   (3) 
which is linear in the element of S2. Now given values of 
elements of S1, we can plug P training data into (3) and 
obtain a matrix equation: 

BA =θ   (4) 
where θ is an unknown vector whose elements are 
parameters in S2. Let MS =2 . Since P (number of the 
training data pairs) is usually greater than M (the number 
of linear parameters in S2), this equation represents a 
standard linear least-squares problem and the best solution 
for θ, which minimizes 2BA −θ , is the least-squares 

estimator (LSE) *θ : 
BAAA TT 1* )( −=θ   (5) 

where TA is the transpose of A and TT AAA 1)( − is the 
pseudo-inverse of A if TA is nonsingular.  
Specifically, let the ith row vector of matrix A defined in 
(4) be T

ia and the ith element of B be T
ib ;then θ can be 

calculated iteratively as follows: 
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1,,1,0 −= Pi    
where the least-squares estimator *θ  is equal to Pθ . The 
initial conditions to bootstrap (6) are 00 =θ and IS γ=0  
where γ is a positive large number and I is the identity 
matrix of dimension MM × .  
 
3.2  ANFIS Modeling for the Pneumatic Actuator 
We select the control signal u(k) , the piston displacement 
X(k) , previous value X(k-1)  as the inputs, and )1( +kX  
as the output of the ANFIS model. 
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where nniiii xaxaaxg ,11,0,)( +++=   (8) 
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inputs; Ri ,,2,1=  represents various rules; θ is the 
parameter vector; gi(x) (i=1,2,…,R) are consequent 
functions of the fuzzy system; ai,j are constants; 
membership function. )(xiµ  is assumed to be well defined 

such that 0)(
1

≠∑ =

R

i i xµ  for all x [12].  
In this paper, we only consider supply pressure fault 
identification. Here psiPs 50=  is considered as normal. 
We divide supply faults in the plant as shown in Table 1. 
 

Table  1  Classification of the faults. 
 

Supply pres. (psi) 30 40 50 60 70 
Fault type  VL L N H VH 

 
In Table 1, VL denotes ‘very low’ supply pressure fault; L 
represents ‘low supply’  pressure fault; N means ‘normal’ 
operation; H denotes ‘high supply’ pressure fault; finally 
VH means ‘very high’ supply pressure fault. 
 

4.  Fault Diagnosis 
 
4.1 Structure of the System 
The multiple-model based fault diagnosis requires a bank 
of models to identify different situations or different types 
of faults by comparing the residuals generated by these 
models. So the fault diagnosis consists of two parts: 
multiple model bank and fault on-line diagnosis scheme. 
Here we assume that there exist 4 possible faults, as 
shown in Fig. 3.  
 

 
Fig. 3 Structure of  the multiple-model based on-line fault 
diagnosis. 

 
Applying nonlinear system identification with ANFIS 
modeling, we may obtained 5 models 

4

0=jjM , where M0 

represents the normal model, Mj, (j=1,2,…,4) represent the 
jth fault model. A unique FI (Fault Index) value is linked 
to each of the fault models to indicate the type of the fault. 
By running multiple model bank on-line, the residuals ei 
can be generated by ii yye −= , where y is the output of 
the pneumatic actuator and iy is the output of model Mj, 
which is actually the estimator according to its ANFIS 
model. 
Considering the characteristics of  the pneumatic actuator, 
we apply Rj(k) which is the sum of absolute value of the 
residuals to detect faults. Let Rmin(k) be the minimum 
residual among the model residuals generated at the kth 
instant. Correspondingly, FI of the fault isolator with 
Rmin(k) is chosen to indicate the type of the fault. 
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)}(),(),(),(),(min{)( 43210min kRkRkRkRKRkR =  (11) 
If the dynamic behaviors of the plant at the start of the 
motion is not considered, e0 will be the minimum residual 
when the pneumatic actuator is operated in normal 
condition, because M0 is trained with the data in normal 
condition. In fact, we have to consider the dynamic 
influence of the actuator because during this transient 
phase the residuals may change drastically and some of 
them may happen to be very small for a short time and 
become large later since they are not the proper fault 
situations. So Rj(k) more suitably indicates the pneumatic 
actuator operation situation regarding to the plant's 
dynamic properties. Once there is a fault , the minimum 
index Rmin(k) will change and the fault index will indicate 
which kind of fault probably occurred. In order to alarm 
the fault situation properly, fault detector is applied to 
make sure that a fault is detected only when it lasts at least 
for T0 seconds. Similarly, a fault isolator is used to 
guarantee that a fault will be isolated only when it lasts at 
least for T1 seconds.  

 
4.2 Robustness and Sensitivity of Fault Diagnosis 
The robustness of fault diagnosis refers to the ability to 
prevent false alarms in the presence of modeling 
uncertainties, that is, if the system is in the mth fault 
situation, the fault diagnosis system should indicate the 
mth fault situation rather than the nth fault situation where 

mn ≠  or normal situation. The robustness of the fault 
diagnosis is achieved by the selections of time  alarm term 
T0  and time delay term T1 in the fault detection and 
isolation scheme. The shorter time term T0 and T1 are, the 
more sensitive the scheme is. While the larger time term 
T0  and T1,the better robustness is to modeling uncertainty 
and the noise. How to select T0  and T1, we should 
consider synthetically the fault sensitivity and the isolation 
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accuracy.  There is a trade-off between the robustness and 
the sensitivity of fault isolation.  
 
 

5.  Experimental Results 
 

In this section, we show the results of the proposed fault 
diagnosis when different supply pressure faults occur. The 
models should have been fully trained before they are 
applied to the diagnosis system. To achieve this, a 
persistent control signal should be chosen to sufficiently 
activate the plant to make the plant show its dynamic 
behaviors completely in order to insure the performance of 
the model. Fig. 4 shows the ANFIS modeling result for a 
50psi supply pressure operating condition. MATLAB 
package was used for training the network. Fig. 4 shows 
the control signal, the output of the plant and the error 
between the actual output of the plant and the predicted 
output by the ANSIF model. A data set lasting for 18 
seconds has been used to train and test the model. The 
data were sampled every 0.001 second. 2000 training data 
starting from the 12th second were used for training; 
while, the remaining data were utilized for checking the 
model. The effectiveness of the trained model was also 
examined with different testing data taken at the same 
normal operating pressure. The results are shown in Figs. 
5 to 7.  
Five different models corresponding to five different 
operation conditions (described in Table 1) were obtained  
in a manner outlined above. 
Figures 8 to 12 show how the diagnosis technique work 
given various supply pressures faults. The output (X) of 
the pneumatic actuator, the estimated outputs of multiple 
models, residual errors (where wide solid line represents 
the output or residual of the plant, thin solid line describes 
that of normal pressure model, the wide dotted line 
represents that of the very low pressure model, the thin 
dotted line describes that of the low pressure model, the 
wide dash-dotted line represents the very high pressure 
model and the thin dash-dotted line represents the high 
pressure model) and the fault indices are all shown.  
Considering the characteristics of the pneumatic actuator , 
the original oscillation are absorbed by fault detector in 
order to emphasize the robustness of the fault diagnosis. 
Here we discard Rj(k) for the first two seconds to avoid a 
wrong warning or indication at the beginning of diagnosis. 
Fig. 8 shows the normal situation, i.e. no fault occurs. The 
plot of Rj(k) shows that the residual between the plant and 
the estimated output of the nominal model, M0, declined 
to zero quickly.  R0(k) is Rmin; thus normal operating 
condition is identified. This is represented by FI=N.  
In Fig. 9, when R3(k) decreases to the minimum of Rj(k) 
and lasts for 0.5 second. This results in a warning is given, 
as shown by FI to move towards a VL signal. If the 
warning lasts for another 0.5 second, it is the indication of 
a very low supply pressure fault, i.e. FI=VL. Similarly, the 
‘low’, ‘high’ and ‘very high’ supply pressure faults can be 

detected and isolated by this system, as shown in Figs. 10 
to 12, respectively. Note that to satisfy a trade-off between 
the robustness and the sensitivity of fault isolation, we set 
T0 as 0.5 seconds and T1 as 0.5 seconds. 
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Fig. 4 Training result of pneumatic actuator with ANFIS. 
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 Fig. 5 Testing the performance of the model with Data 1. 
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 Fig. 6 Testing the performance of the model with Data2. 
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 Fig. 7 Testing the performance of the model with Data3. 
 

6.  Conclusions 
 
ANFIS modeling is a novel method to identify the model 
of a pneumatic actuator. The performance is satisfied for 
fault diagnosis. 
ANFIS based multiple models fault diagnosis employs the 
sum of absolute values of  the residual errors to identify 
fault online. The effectiveness has been illustrated via  the 
supply pressure experiments in a pneumatic actuator. We 
plan to extend this scheme to the fault diagnosis of 
leakage and the change in pneumatic compliance in the 
future. 

Note that to keep the robustness of the fault detection and 
isolation, we should consider the dynamic behaviors and 
modeling uncertainties in the design of the fault detector 
and the isolator ,i.e., the time alarm term T0 and time 
delay term T1 should be long enough. Whereas, to 
guarantee the sensitivity , we should shorten T0 and T1. In 
general, there is a trade-off between the robustness and the 
sensitivity of fault diagnosis. T0 and T1 are chosen by a 
priori understanding about the plant's characteristics and 
the requirement of fault diagnosis. 
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 Fig. 8  Fault diagnosis test when the machine operates 

under normal condition (supply pressure 50 psi). 
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Fig. 9 Fault diagnosis test when the machine operates 
under very low pressure fault (supply pressure 30 psi). 
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Fig. 10 Fault diagnosis test when the machine operates 
under low pressure fault (supply pressure 40 psi). 
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 Fig. 11 Fault diagnosis test when the machine operates 
under high pressure fault (supply pressure 60 psi). 
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