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Abstract— In disturbance-observer-based control, the closed
loop system consists of a main feedback control loop and
an inner disturbance observer loop. This paper presents a
design method for a disturbance observer to satisfy closed
loop performance specifications, provided that the main feed-
back controller is known. Taking advantage of certain fixed-
structure disturbance observers, the disturbance observer de-
sign problem can be transformed into the synthesis problem of
H∞ (sub-)optimal static output feedback gain for an extended
plant. The static output feedback gain, and therefore the
disturbance observer, can be obtained by solving a series of
convex optimization problems. Since the disturbance observer
is designed based on closed loop consideration, the robust
stability of the closed loop system is guaranteed.

I. INTRODUCTION

In motion control design, disturbance rejection and ro-
bustness to parametric uncertainties are important issues
besides tracking performance. Disturbance-observer-based
control is an effective method often used to deal with
these issues. Experimental results in [1]–[3] have shown
the effectiveness of disturbance-observer-based control. In
disturbance-observer-based control design, an inner distur-
bance observer loop is added into a main feedback control
loop. The key of the disturbance observer design is to select
a proper low-pass filter. The inner disturbance observer loop
has been studied by several researchers [3], [4]. Various
guidelines were suggested for the selection of the low-
pass filter. These suggestions make the disturbance observer
loop behave more desirable. However, since the disturbance
observer loop is just a part of the overall closed loop
system, the robust stability of the closed loop system is
not guaranteed. In this paper, we present a design method
for the disturbance observer based on closed loop consid-
eration. The resulting closed loop system satisfies given
specifications, which ensure desired disturbance attenuation
and robust stability.

The remainder of this paper is organized as follows.
Section II provides a brief overview of disturbance ob-
servers and certain fixed-structure disturbance observers.
Section III gives the problem statement of the disturbance
observer design based on closed loop consideration. The
problem is solved by the algorithm presented in Section IV.
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Section V gives an example to illustrate the design method.
Conclusions are given in Section VI.

II. DISTURBANCE OBSERVERS

A. Overview

Fig. 1 shows the general structure of a disturbance
observer for a SISO plant, wherev, u, d, y and ξ are the
command input, control input, external disturbance, output
and sensor noise, respectively.P(s) represents the physical
plant to be controlled.Pn(s) is a nominal plant model.
In practice,Pn(s) is chosen as a low order approximation
of the physical plant. The disturbance observer considers
the mismatch between the plant and nominal model as
an equivalent disturbance acting on the nominal model.
It estimates the equivalent disturbance combined with the
external disturbance, and feeds back the estimate as a
cancellation signal, as shown in Fig. 1. The behavior of
the disturbance observer loop can be analyzed by looking
at the transfer functions fromv, d, andξ to the outputy.

y = Gyv (s)v+Gyd (s)d +Gyξ (s)ξ (1)

where

Gyv (s) =
P(s) Pn (s)

Pn (s)+Q(s)(P(s)−Pn (s))
(2)

Gyd (s) =
P(s) Pn (s)(1−Q(s))

Pn (s)+Q(s)(P(s)−Pn (s))
(3)

Gyξ (s) =
P(s) Q(s)

Pn (s)+Q(s)(P(s)−Pn (s))
(4)

WhenQ(s) ≈ 1, (1) becomesy ≈ Pn(s)v+ξ . This indicates
that the disturbance observer rejects the disturbance and
compensates for the model mismatch. The disturbance
observer loop behaves as the nominal model. On the other
hand, whenQ(s) ≈ 0, (1) becomesy ≈ P(s)v+P(s)d. The
disturbance observer loop is essentially cut, and the output
is not affected by the sensor noise. In control applications,
disturbances normally dominate at low frequencies, whereas
sensor noise dominates at high frequencies. This suggests
that Q(s) should be a low-pass filter with a steady state
gain of one. Besides the low-pass characteristic ofQ(s),
for the disturbance observer in Fig. 1 to be realizable, the
relative degree ofQ(s) must be greater than or equal to that
of Pn(s).
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Fig. 1. Disturbance observer loop

B. Fixed-structure Disturbance Observers

In the state estimator design, assuming that the distur-
bance model is available, the model can be included in the
estimator equations, and the disturbance can be estimated
along with the plant state [5]. Although the disturbance
is estimated under the assumption of known disturbance
modes, it has be shown that the augmented state estimator
is indeed a disturbance observer if the assumed disturbance
model includes modes 1/si, wherei ≥ 1 [6].

It is assumed that the plant modelPn(s) is strictly proper
and does not have a zero at the origin. The state space
representation ofPn(s) is given by

ẋ = Ax+B (u+d)

y = C x (5)

wherex ∈ Rn, (A,B) controllable and(A,C ) observable. It
is also assumed that the disturbance model is represented
by

ẋd = Ad xd

d = Cd xd (6)

wherexd ∈Rnd , (Ad ,Cd) observable, andAd has at least one
zero eigenvalue. In order to estimate the disturbanced, the
plant model (5) is augmented with the disturbance model
(6), resulting in an augmented plantPz. Let z = [ xT xT

d ]T

be the augmented state, then the augmented plantPz is given
by

ż = Ā z+ B̄u

y = C̄ z (7)

where

Ā =

[

A BCd

0 Ad

]

, B̄ =

[

B
0

]

, C̄ =
[

C 0
]

(8)

It can be shown that the augmented plantPz is observable if
none of the eigenvalues ofAd are at the same locations as
the zeros of the plant modelPn(s), that is, the disturbance
state can be ”seen” at the plant outputy.

Suppose that the above assumptions are all satisfied, then
the state estimator ofPz can be constructed as follows.

˙̂z = Ā ẑ+ B̄u−L
(

y−C̄ ẑ
)

=
(

Ā+LC̄
)

ẑ+
[

B̄ −L
]

[

u
y

]

(9)

The poles of the estimator can be placed anywhere in the
left-half plane. The disturbance estimated̂ can be obtained
by

d̂ =
[

0 Cd
]

ẑ := C̄d ẑ (10)

Following (9) and (10),d̂ can be written as

d̂ = −G1(s)u+G2(s)y (11)

where

G1(s) =

[

Ā+LC̄ −B̄

C̄d 0

]

; G2(s) =

[

Ā+LC̄ −L

C̄d 0

]

(12)

Notice that the disturbance estimated̂ in Fig. 1 is given by
(let ξ = 0)

d̂ = −Q(s)u+Q(s)P−1
n (s)y (13)

Hence, for (11) to be directly comparable to (13),G1(s)
should be a low-pass filter with a steady state gain of one
and G2(s) should be equal toG1(s)P−1

n (s). These are true
if the assumptions imposed on the plant and disturbance
models hold [6].

We can consider (9) and (10) as an alternative way to
design and implement the disturbance observer.Q(s) filter
in Fig. 1 is designed via the selection of the disturbance
model and estimator gainL. Once the disturbance model
(i.e. the pair (Ad ,Cd)) is selected, the order of the dis-
turbance observer is fixed. The remaining design of the
disturbance observer is to select a proper estimator gain
L, such that the poles ofQ(s) are at desired locations.

III. DESIGN OF DISTURBANCE OBSERVERS

A. Design Based on Disturbance Observer Loop

As mentioned in the previous section, the key issue of the
disturbance observer design is to selectQ(s). Assuming that
P = Pn in Fig. 1, 1−Q(s) andQ(s) represent the sensitivity
and complementary sensitivity functions of the disturbance
observer loop, respectively. The selection ofQ(s) is a
design trade-off between disturbance rejection versus noise
rejection and robust stability. The following structure of
Q(s) is commonly utilized by several researchers [1]–[3],
[7]:

Q(s) =
1+∑N−r

k=1 ak (τs)k

1+∑N
k=1 ak (τs)k

(14)

whereN is the order ofQ(s), r is the relative degree ofQ(s)
and theak’s are normally chosen to be a binomial model
or Butterworth low-pass filter. The design trade-off ofQ(s)
is achieved through the selection of the cut-off frequency,
ωc = 1/τ, of Q(s). The allowable cut-off frequencyωc is
limited by the model uncertainty when we consider the
robust stability of the disturbance observer loop. Suppose
that the model uncertainty can be treated as a multiplicative
perturbation, that is,

P(s) = Pn(s)(1+∆(s)) (15)
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Fig. 2. Closed loop system with the disturbance observer andC(s)

where ∆(s) is stable. The disturbance observer loop is
robustly stable [3] if,

|Q(s)∆(s)| < 1 ∀s = jω (16)

Therefore, the cut-off frequencyωc is selected as high as
reasonable, while (16) is satisfied.

Although the selection ofQ(s) based on the disturbance
observer loop is straightforward with clear physical interpre-
tation, it is important to notice that the disturbance observer
is only a part of the overall controller. There is also a
feedback controllerC(s) in the closed loop system as shown
in Fig. 2. AssumingP = Pn, the outputy of the closed loop
system can be written as

y =
Pn (s)C (s)

1+Pn (s)C (s)
r +

Pn (s) (1−Q(s))
1+Pn (s)C (s)

d

+
Pn (s)C (s)+Q(s)

1+Pn (s)C (s)
ξ (17)

The sensitivity functionS(s) and complementary sensitivity
function T (s) of the closed loop system are respectively
defined as

S(s) =
1−Q(s)

1+Pn (s)C (s)
; T (s) =

Pn (s)C (s)+Q(s)
1+Pn (s)C (s)

(18)

Notice thatS(s) and T (s) depend onQ(s) andC(s). As a
result, even thoughQ(s) is selected such that the disturbance
observer loop is robustly stable, there is no guarantee of
the robust stability of the closed loop system. This suggests
that the selection ofQ(s) should take into consideration the
feedback controllerC(s) as well.

B. Design Based on Closed Loop Consideration

Since the disturbance observer loop behaves asPn(s)
in the low frequency region, the feedback controllerC(s)
is normally designed based on the nominal modelPn(s).
Hence, it is assumed that the feedback controllerC(s) has
been designed before the selection ofQ(s). It is suggested
that the design ofC(s) should focus on the tracking per-
formance Pn(s)C(s)

1+Pn(s)C(s) , while the disturbance observer will
improve the attenuation of disturbance.

Suppose that the closed loop performance specifications
are selected as follows.

|Ws(s)S(s)| < 1 ∀s = jω (19)

|Wu(s)T (s)| < 1 ∀s = jω (20)

where S(s) and T (s) are as defined in (18), andWs(s)
and Wu(s) are two stable weighting functions. Equation

(19) specifies desired disturbance attenuation, while (20)
guarantees the robust stability of the closed loop system,
if Wu(s) is chosen such that the multiplicative perturbation
∆(s) in (15) satisfies

|∆(s)| ≤ |Wu(s)| ∀s = jω. (21)

Notice that (19) can be rewritten as
∣

∣

∣

∣

(

Ws(s)
1

1+Pn(s)C(s)

)

· (1−Q(s))

∣

∣

∣

∣

< 1 ∀s = jω (22)

which can be considered as a constraint on 1−Q(s). If a
stable weighting functionWp(s) is selected so that

∣

∣

∣

∣

Ws(s)
1

1+Pn(s)C(s)

∣

∣

∣

∣

≤
∣

∣Wp(s)
∣

∣ ∀s = jω, (23)

then (24) is a sufficient condition for (22).

|Wp(s)(1−Q(s)) | < 1 ∀s = jω (24)

It is preferable to use (24) over (22) as a design criterion,
sinceWp(s) can also impose a lower bound on the cut-off
frequency of the high-pass filter 1−Q(s). Hence, the selec-
tion of Wp(s) should also consider the desired bandwidth
of Q(s), which is implicitly assumed to be high enough for
the design ofC(s) based onPn(s).

The disturbance observer design based on closed loop
consideration is to selectQ(s) so that (20) and (24) are
simultaneously satisfied. It is straightforward to verify that,
in Fig. 2, the transfer function fromd to u, Gud(s), is−T (s),
while the transfer function fromd to d̂ is Q(s). Let w =
d − d̂, then the transfer function fromd to w, Gwd(s), is
1−Q(s). The disturbance observer design can be stated as
the following H∞ optimization problem:

Find Q(s) such that (25)

(i) the closed loop system is stable and

(ii)

∥

∥

∥

∥

Wp(s)Gwd(s)
Wu(s)Gud(s)

∥

∥

∥

∥

∞
< 1

Notice thatQ(s) in the problem statement (25) is searched
in the proper rational transfer function space, the dimension
of which is infinite, subject to the constraints: 1)Q(s) is a
low-pass filter with a steady state gain of one, and 2) the
relative degree ofQ(s) is greater than or equal to that of
the plantPn(s). This problem may not be easy to solve.

The problem (25) can be simplified, if the fixed-structure
disturbance observer is utilized. As mentioned in Section
II-B, the design of the fixed-structure disturbance observer
is to select estimator gainL, once the disturbance model
(6) is chosen. Thus, the problem (25) becomes:

Find L ∈ Rn+nd such that (26)

(i) the closed loop system is stable and

(ii)

∥

∥

∥

∥

Wp(s)Gwd(s)
Wu(s)Gud(s)

∥

∥

∥

∥

∞
< 1

This is a problem to search the static gainL in the
finite dimensional vector space. By extracting the gainL



from the closed loop system, the problem (26) can be
transformed into the synthesis problem ofH∞ (sub-)optimal
static output feedback gainL for an extended plantPL(s), as
shown in Figure 3(a), such that the transfer function matrix
FL(PL(s),L) = Ged(s) satisfies

‖FL(PL(s),L)‖∞ < 1 (27)

The details of the extended plantPL(s) are shown in Fig.
3(b). The combination ofPobs(s) and L is the disturbance
observer defined in (11). Following (9) and (10), the state
space representation ofPobs(s) in Fig. 3(b) is given by

Pobs(s) =







Ā B̄ 0 I

C̄d 0 0 0

C̄ 0 −I 0






(28)

The H∞ (sub-)optimal static output feedback gainL for
PL(s) can be found by the algorithm given in the next
section.

We summarize below the procedure for the disturbance
observer design based on the closed loop consideration.

Design Procedure:
1) Design the feedback controllerC(s) based on the

nominal modelPn(s), focusing on the tracking per-
formance.

2) Select weighting functionsWp(s) andWu(s).
3) Determine the disturbance model (6). The simplest

choice of the pair(Ad ,Cd) is (Ad = 0, Cd = 1), i.e.
assume that the disturbance model is 1/s. If any
disturbance mode is explicitly known, it can also be
included in the disturbance model.

4) Construct the extended plantPL(s) as shown in Fig.
3(b). Use the algorithm provided in the next section
to find the gainL.

5) If the gainL can not be found, increase the order of
the disturbance model and/or relax the specifications
of the closed loop system. Go to step 4).

IV. H∞ OPTIMIZATION ALGORITHM FOR
SEARCHING GAINL

Define the state space realization ofPL(s) as:

PL(s) =





AL BL1 BL2

CL1 DL11 DL12

CL2 DL21 DL22



 (29)

where AL ∈ RnL×nL , DL11 ∈ R2×1 and DL22 ∈ R1×(n+nd).
Due to the separation property, the closed loop system is
stable, if C(s) stabilizesPn(s) and the gainL is chosen
such that the estimator (9) is stable (see Appendix). If
Wp(s) and Wu(s) are stable transfer functions, then there
exists a stabilizing static output feedback gainL for the
extended plantPL(s). As a result,(AL, BL2) is stabilizable
and (AL,CL2) is detectable. It is also straightforward to
verify that DL22 = 0. Under these conditions, the following
theorem can be used to determine the existence of static

(a) Extraction of gainL
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(b) Block diagram ofPL(s)

Fig. 3. Static output feedback of the extended plantPL(s)

output feedback gainL such that‖FL(PL(s),L)‖∞ < γ for
given γ > 0 [8].

Theorem 1: There exists a gain L such that
‖FL(PL(s),L)‖∞ < γ if and only if there exist two
symmetric matricesX ∈ RnL×nL andY ∈ RnL×nL such that

[

N1 0
0 I

]T




ALX +XAT
L XCT

L1 BL1

CL1X −γ I DL11

BT
L1 DT

L11 −γ I





[

N1 0
0 I

]

≺ 0 (30)

[

N2 0
0 I

]T




AT
LY +YAL Y BL1 CT

L1
BT

L1Y −γ I DT
L11

CL1 DL11 −γ I





[

N2 0
0 I

]

≺ 0 (31)

[

X I
I Y

]

� 0 (32)

rank (XY − I) = 0 (33)

where N1 and N2 denote bases of the null spaces of
[

BT
L2 DT

L12

]

and
[

CL2 DL21
]

, respectively.

Notice that (30)∼ (32) are convex constraints onX
andY , but the rank condition (33) is not. The problem of
searching the matricesX andY that satisfy constraints (30)
∼ (33) is equivalent to the following trace minimization
problem [9].

min
X ,Y∈RnL×nL

tr(XY ) = nL subject to (30)∼ (32) (34)

This is not a convex optimization problem, since the ob-
jective function in (34) is not a convex function of bothX
andY . As suggested in [9], we use the cone complementar-
ity linearization algorithm [10] to solve the minimization
problem. It starts with linearizing the objective function
with respect toX and Y . The minimization problem (34)
becomes

min
Xk+1,Yk+1

tr(Xk+1Yk +XkYk+1) subject to (30)∼ (32) (35)



The objective function in (35) is a convex function ofXk+1

and Yk+1, when Xk and Yk are fixed. It can be solved by
convex optimization then. The algorithm is stated as follows
[10].

Algorithm 1:

1) Find feasibleX0 = XT
0 ∈RnL×nL andY0 =Y T

0 ∈RnL×nL

that satisfy (30)∼ (32). If there are none, exit. Set
k = 0.

2) Solve the convex optimization problem (35) forXk+1

andYk+1.
3) If a stopping criterion is satisfied, exit. Otherwise, set

k = k +1 and go to Step 2).
El Ghaoui et al. [10] showed the algorithm converges and

demonstrated its search performance by extensive numerical
experiments. Once the optimalX andY that satisfy (34) are
found, the (sub-)optimal gainL can be found by solving the
following convex feasibility problem [8].




AT
LY +YAL Y BL1 CT

L1
BT

L1Y −γ I DT
L11

CL1 DL11 −γ I



+





CT
L2

DT
L21
0



LT [

BT
L2Y 0 DT

L12

]

+





Y BL2

0
DL12



L
[

CL2 DL21 0
]

≺ 0

(36)

V. EXAMPLE

This section provides an example to illustrate the design
method for the disturbance observer. We consider track-
following control of a hard disk drive. The goal of track-
following control is to maintain the read/write head on
the track in the presence of external disturbances. The
controlled plant is modelled as follows [11].

P(s)=
Kω2

n1

s2 +2ζ1ωn1 s+ω2
n1

·
ω2

n2

s2 +2ζ2ωn2 s+ω2
n2

·
−0.5TD s+1
0.5TD s+1

(37)
The first term represents the low frequency dynamics, while
the second and last term represent a structural resonant
mode and Pade approximation of time delay, respectively.
The bode plot ofP(s) is shown in Fig 4. The resonant mode
appears at 3.6 kHz. The nominal modelPn(s) is chosen as
(38), ignoring the resonant mode and time delay.

Pn(s) =
Kω2

n1

s2 +2ζ1ωn1 s+ω2
n1

(38)

The multiplicative perturbation∆(s) in (15) can be com-
puted by

∆(s) = P(s)/Pn(s)−1 (39)

The feedback controllerC(s) is designed to be

C(s) =
5850(0.00084s+1)

0.00011s+1
(40)

This controller sets the gain cross-over frequency of
Pn(s)C(s) to about 3310rad/s and the (nominal) phase
margin to 55 degrees. The controller does not include an

integral action because disturbances are to be taken care of
by the disturbance observer. The weighting functionsWp(s)
andWu(s) are selected as

Wp(s) =
0.5(s+2000)

(s+0.1)
; Wu(s) =

1647.41s
(

s+1.3×104
)2

(s+106)(s+5×104)2

(41)
Wp(s) specifies the cut-off frequency of 1− Q(s) to be
higher than 1150rad/s, andWu(s) satisfies|∆(s)| ≤ |Wu(s)|
for all s = j ω.

The disturbance model is chosen to be 1/s, and the
order of the disturbance observer is fixed to be three. The
extended plantPL(s) is constructed according to Fig. 3(b).
The remaining step is to find the (sub-)optimal gainL
by implementing the algorithm presented in the previous
section. In this paper, the algorithm has been carried out
by usingLMI Control Toolbox of MATLAB. The gainL is
found to place the poles of the estimator (9) at−4412 and
−3801±279j. The achieved‖FL(PL(s),L)‖∞ is 0.97. This
choice ofL corresponds to the use of the followingQ(s) in
the fixed-structure disturbance observer:

Q(s) =
6.409·1010

s3 +1.2014·104s2 +4.8068·107s+6.409·1010

(42)
Fig. 5 shows the frequency magnitude response of the

complementary sensitivity function with the fixed-structure
disturbance observer (DOB1). The magnitude response is
under that ofW−1

u (s). The robust stability of the closed
loop system is guaranteed. Fig. 5 also shows the magnitude
response of the complementary sensitivity function with
another disturbance observer (DOB2). TheQ-filter of DOB2
is selected as (43).

Q2(s) =
3τ s+1

τ3 s3 +3τ2 s2 +3τ s+1
(43)

whereτ is equal to 1/3900, that is, theQ-filter bandwidth
of DOB2 is close to that of DOB1. The infinity norm
‖Q2(s)Wu(s)‖∞ is computed to be 0.80. According to (16),
Q2(s) seems to be an acceptable choice based on the
disturbance observer loop. However, Fig. 5 shows that the
closed loop system with DOB2 may not be robustly stable.
Indeed, whenC(s) and DOB2 are applied to the plantP(s),
the resulting system is unstable.

VI. CONCLUSIONS

This paper presented a design method for a disturbance
observer based on closed loop consideration. Given that
the feedback controller of the closed loop system has been
selected, the disturbance observer is designed to directly
satisfy closed loop performance specifications. Taking ad-
vantage of the fixed-structure disturbance observers, the
disturbance observer design problem can be transformed
into the synthesis problem ofH∞ (sub-)optimal static output
feedback gain for an extended plant. The static output
feedback gain, and therefore the disturbance observer, can
be obtained by implementing the algorithm presented in



Section IV. An example was provided to illustrate the
design method. In the example, the disturbance observer
designed based on closed loop consideration guaranteed
robust stability, while the disturbance observer designed
based on the disturbance observer loop resulted in an
unstable system.

APPENDIX

Assume that C(s) =

[

Ac Bc

Cc Dc

]

stabilizes Pn(s) =
[

A B
C 0

]

, (i.e.

[

A−BDcC BCc

−BcC Ac

]

is Hurwitz), and L =
[

LT
1 LT

2

]T
is chosen so that the estimator (9) is stable (i.e.

Ā + LC̄ =

[

A+L1C BCd

L2C Ad

]

is Hurwitz). The ”A” matrix

of the closed loop system withC(s) and the disturbance
observer is given by

Aclosed =









A−BDcC BCc 0 −BCd

−BcC Ac 0 0
−BDcC−L1C BCc A+L1C 0

−L2C 0 L2C Ad









(44)

Equation (45) shows the separation property.

det









λ I −A+BDcC −BCc 0 BCd

Bc C λ I −Ac 0 0
BDcC +L1C −BCc λ I −A−L1C 0

L2C 0 −L2C λ I −Ad









= det









λ I −A+BDcC −BCc 0 BCd

Bc C λ I −Ac 0 0
0 0 λ I −A−L1C −BCd

0 0 −L2C λ I −Ad









= det

[

λ I −A+BDcC −BCc

Bc C λ I −Ac

]

det

[

λ I −A−L1C −BCd

−L2C λ I −Ad

]

(45)
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