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Abstract— This paper presents an optimal filter for a contin-
uous dynamic system with continuous, multirate and randomly
sampled measurements. Using the optimal filtering theory
for the Ito-Volterra systems with discontinuous measure, the
optimal filter for linear state space model with continuous
and discrete measurements is rigorously derived, and several
known results are recovered, including the Kalman-Bucy and
Jazwinski filters. A previously unknown optimal filter for the
continuous systems with continuous and sampled measure-
ments, including the case of multirate and random sampling,
is obtained. Using the Monte Carlo simulations, the derived
filter is compared with the previously reported alternatives.
The comparison shows that the developed filter gives the
least-mean-squares estimates of the states and the correct
estimation error covariance. The alternative filters produce
less than optimal estimates, and, at the same time, tend to
overestimate the quality of the obtained estimations. Numerical
simulations demonstrate that the proposed approach is more
convenient in practice: It allows one to simultaneously handle
analog and sampled measurements without approximations,
and is particularly convenient in the case of the multirate
and randomly sampled measurements, often present with a
human-in-the-loop and networked data acquisition.

I. I NTRODUCTION

Most processes of practical interest are continuous in
nature, while the available measurements used to probe the
current state of the process are either sampled (discrete), or
a combination of sampled and continuous measurements.
There are three fundamental options in approaching the
problem of state estimation of a continuous process with
the combination of continuous and discrete measurements,
summarized in Figure 1: (1) Discrete state estimator ap-
proach requires the sampling of the continuous model of the
process and the approximation of the available continuous
measurements. Subsequently, one of the known state esti-
mators for discrete systems (i.e. discrete Kalman filter, KF)
can be applied. (2) A second alternative is to lift the discrete
measurements into the space of continuous functions (e.g.
by using a polynomial fit of discrete measurements in a
sliding window) and then apply one of the known results
for state estimation for the continuous system (i.e. Kalman-
Bucy filter). (3) The final option is to directly consider the
state estimation problem with a continuous model and the
combination of the discrete and continuous measurements.
The simplicity and the applicability of the classical methods
of the state estimation resulted in a wide acceptance of the
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Fig. 1. State estimation problem for continuous process with continuous
and sampled measurements.

first two approaches. However, the last approach must be
followed to obtain the optimal state estimation, and is more
theoretically challenging since it leads to continuous filter
equations with discontinuous inputs.

Most of the existing algorithms on multirate state es-
timation are based on the application of the discrete KF
(Approach 1). For example, a multirate extended KF (EKF)
was used in [1] to estimate the unmeasurable process states
using frequently available measurements of temperature and
density and the infrequent and delayed measurements of
average molecular weights. Shah et al. [2] implemented a
multirate formulation of the iterated EKF on a bioreactor.
Mutha et al. [3] proposed fixed-lag smoothing-based EKF
algorithm. The Kalman filter has also been a basis of
multirate digital filters (decimators and interpolators) and
filter banks [4]. A lifting technique was used in [6] to
transform a multirate single-input single-output system to a
single-rate MIMO system, which allowed them to use slow-
rate measurements to generate high rate control inputs.

In this paper, we first present the description of the
stochastic linear systems in the integral form of the Ito-
Volterra (IV) equations. To allow for the case of discon-
tinuities in controls, measurements and states, we modify
the standard Ito-Volterra model by introducing an integral
model with discontinuous measure. We then show that
the optimal filter for the IV systems with discontinuities
in measurements can be specialized for the case of state
space systems. Several well known results were recovered
including Kalman-Bucy and Jazwinski (continuous process
with discrete measurements) filters. A previously unknown
optimal filter for the continuous systems with continuous
and sampled measurements, including the case of multirate
and random sampling, is obtained. The paper is concluded
with a numerical illustration.



II. I TO-VOLTERRA DESCRIPTION OFDYNAMIC

SYSTEMS

Let (Ω, F, P ) be a complete probability space with an
increasing right-continuous family ofσ-algebrasFt, t ≥
0, and let (W (t), Ft, t ≥ 0) and (V (t), Ft, t ≥ 0) be
independent Wiener processes. HereΩ is the sample space,
F is a set of subsets on which the probability measure
(or, simply, probability) is defined, andP is the probability
defined onF . All subsets ofF form a σ-algebra, andFt

denotes a family of subsets (σ-algebra) for eacht such that
for t1 < t2, Ft1 ⊂ Ft2 . The partly observedFt-measurable
random process(x(t), z(t)) can be described using the Ito-
Volterra equations:

x(t)=
∫ t

0
[A(t, s)x(s)+B(t, s)u(s)]ds+

∫ t

0
G(t, s)dW (s) (1)

z(t)=
∫ t

0
C(t, s)x(s)ds +

∫ t

0
H(t, s)dV (s) (2)

where x(t) ∈ Rn is the state vector, andz(t) ∈ Rm is
a vector of measurements integrated over the time interval
[0, t]. The vector-valued functionB(t, s)u(s) describes the
effect of known system inputs. Matrix functionsA(t, s)
and G(t, s) of appropriate dimension and vector-function
B(t, s)u(s) are smooth functions oft uniformly in s.
FunctionsC(t, s), and H(t, s) of appropriate dimensions
are continuous int ands andH(t, s)HT (t, s) > 0. Both t
ands are independent (e.g. time) variables witht ≥ s ≥ 0
and can be used to assign a variable number of time-varying
delays in both states and measurements. All coefficients
in (1) and (2) are deterministic functions. Without loss of
generality, we assume zero initial conditions.

The estimation problem is to find the estimate of the
system statex(t) described by the Ito–Volterra model (1)
based on the observation processZ(t) = {z(s), 0 ≤ s ≤ t},
which minimizes the Euclidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t))] (3)

at each time momentt. In alternative formulation, our
objective is to find conditional expectationm(t) = x̂(t) =
E(x(t) | FZ

t ). As usual, the matrix functionP (t) =
E[(x(t) − m(t))(x(t) − m(t))T | FZ

t ] is the estimation
error covariance.

The above formulation is, in fact, the Kalman filtering
problem for the integral Ito-Volterra system. The standard
state space formulation is recovered by making all func-
tional parameters in (1) and (2) dependent ons only.

It can be shown that the varianceP (t) alone is not suffi-
cient to completely characterize the state estimation process
and obtain closed-form filtering equations for dynamic
systems in the integral form. However, the explicit solution
can be obtained in terms of the integral cross-correlation
function f(t, s), which characterizes the deviation of the
optimal estimatem(t) from an unknown true statex(t),
and defined as:

f(t, s) = E[(xt
s −mt

s)(x(s)−m(s))T | FZ
t,s] (4)

wherext
s can be viewed as a state with independent (time)

variables and parametert, and is equal to

xt
s=

∫ s

0
[A(t, r)x(r)+B(t, r)u(r)]dr+

∫ s

0
G(t, r)dW (r) (5)

The governing equation forxt
s can be differentiated with

respect tos to yield the state space form of equation (5).
FZ

t,s is theσ-algebra generated by the stochastic processzt
s:

zt
s =

∫ s

0
C(t, s)x(s)ds +

∫ s

0
H(t, s)dV (s) (6)

and mt
s = E[xt

s | FZ
t,s], where we treatt as a parameter.

Note that functionf is a generalization of the varianceP
since f t

t = P (t). Furthermore fors = t, xt
s = x(t) and

zt
s=z(t).

III. O PTIMAL FILTERING FOR SYSTEMS WITH

BOUNDED DISCONTINUITIES

Consider a nondecreasing vector-valued function of
bounded variation:µ(t) = (µ1(t), . . . , µm(t)) ∈ Rm. In
essence,µ(t) is an arbitrary function, and it is only required
that it remains bounded on each finite subinterval of its
definition, andµ(t1) ≤ µ(t2) if t1 ≤ t2. Continuity ofµ(t)
is not required. We can express it as

µ(t) = {µc
k(t) +

∑N
i=1 ∆µkiχ(t− tki), k = 1,m} (7)

whereµc
k(t) is a continuous nondecreasing function, and the

second term describes bounded jumps ink-th components
of µ(t) at times tki, where χ is the Heaviside unit step
function and∆µki is the size of the jump. The sampled
measurements are modelled assuming∆µki = 1.

The discontinuous measureµ can be used to describe dis-
continuities in states and measurements. Only discontinuity
in the measurements are considered in this paper, resulting
in the following model for thek-th measurement channel:

zk(t)=
∫ t

0
Ck(t, s)x(s)dµk(s)+

∫ t

0
Hk(t, s)dVk (µk(s)) (8)

whereµk is thek-th component ofµ, k = 1,m.
Theorem 1:[7] The optimal in Kalman sense estimate

m(t) of the states of system (1) based on discontinuous
integral measurements (8) satisfies the filter equation

m(t) =
∫ t

0
(A(t, s)m(s) + B(t, s)u(s))ds

+
∫ t

0
K(t, s)[dzt

s − C(t, s)m(s)dµ(s)] (9)

whereK(t, s) = f(t, s)CT (t, s)(H(t, s)HT (t, s))−1, and
function f(t, s) satisfies the Riccati-like equation

f(t, s) =
∫ s

0
[A(s, r)fT (t, r) + f(s, r)AT (t, r)

+
1
2
(G(t, r)GT (s, r) + G(s, r)GT (t, r))]dr

− ∫ s

0
[KtsssC(s, r)fT (s, r) + KstttC(t, r)fT (t, r)

−1
2
KtttsC(s, r)fT (s, r)− 1

2
KssstC(t, r)fT (t, r)]dµ(r)

where Ktsss(t, s, r) = f(t, r)AT (s, r)[B(s, r)BT (s, r)]−1
,

with similar expressions used to define the gainsK××××



with different subscripts, and the multiplication by anm-
dimensional measureµ(t) is in the componentwise sense,
as in equation (8).

In the next section, the result for the IV systems with
discontinuous measure in the measurement model is spe-
cialized for the case of continuous state space systems
with an arbitrary combination of discrete and continuous
measurements.

IV. OPTIMAL FILTER FOR STATE SPACE SYSTEMS WITH

CONTINUOUS AND DISCRETEMEASUREMENTS

Consider a particular case of the Ito-Volterra system with
A, B,G independent oft. Differentiation of (1) with respect
to t yields the standard state space system

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)w(t) (10)

whereωdt = dW , ω(t) ∼ N(0, Q̃(t)) is the l × 1 white
Gaussian process. Without loss of the generality, assume
Q̃(t) = I. Further assume that the observation process is
also memoryless (C and H are independent oft). Then
the measurement model is given by the following integral
equation with discontinuous measure:

zk(t)=
∫ t

0
Ck(s)x(s)dµk(s) +

∫ t

0
Hk(s)dVk(µk(s)) (11)

Obviously, if µ(t) = t we have a case of the continuous
system with continuous measurements in the integral form.
If µc ≡ 0, the observation model given by equation (11)
describes the case of a continuous process with only sam-
pled measurements. The general case of equation (7) will
describe the dynamic system with an arbitrary combination
of discrete and continuous measurements. Since Theorem
1 gives the optimal filter for the most general case, it
is now only a matter of specializing the main result to
different cases of practical interest. We begin by re-stating
the result of the Theorem 1 for the state space systems (10)
(11). WhenA(t, s), B(t, s), C(t, s), G(t, s), H(t, s) are
independent oft, xt

s = x(s), mt
s = E[x(s)|FY

s ] = m(s),
and f(t, s) = P (s). Then the optimal filter takes the
following form:

m(t)=
∫ t

0
(A(s)m(s) + B(s)u(s))ds +

∫ t

0
P (s−)

×
[
I + CT (s)

(
H(s)HT (s)

)−1
C(s)P (s−)∆µ(s)

]−1

×CT(s)
(
H(s)HT (s)

)−1[dz(s)−C(s)m(s−)dµ(s)] (12)

P (t)=
∫ t

0

[
A(s)P (s)+ P (s)AT (s) + G(s)GT (s)

]
ds

−∫ t

0
P (s−)

[
I+CT (s)

(
H(s)HT (s)

)−1
C(s)P (s−)∆µ(s)

]−1

×CT (s)
(
H(s)HT (s)

)−1
C(s)P (s−)dµ(s) (13)

where∆µ(s)(=1) is a jump of the functionµ(s) at s. At
the point of discontinuitym(t−) = lim m(s) as s → t
from the left. A similar definition is used forP (t−).
Multiplication by anm-dimensional measuredµ(s) is un-
derstood in a component-wise sense. For purely continuous
measurements ink-th channelzd

k ≡ 0, and if only discrete
measurements are available, thenzc

k ≡ 0. The discontinuity

in z leads to discontinuity in estimatem(t) and the co-
variance functionP (t). At the point of discontinuitytki

where a new discrete measurement becomes available in
k-th measurement channel, the optimal value ofm(t) and
P (t) can be explicitly calculated from (12)–(13). Therefore,
the optimal filter has a form of a differential equation
with discontinuities at the time of arrival of discrete mea-
surements. The solution is sought as a vibrosolution [7]
with explicit expressions for the jumps inm and P . The
fusion of the sampled and continuous measurements in
calculations of the optimal state estimates is direct and
explicit. There is no need for multirate filters, because no
matter what the sampling rate is, discrete measurements
are used in the stimulation process immediately as they
become available. The resulting filter is not only optimal,
but is computationally more attractive than filters obtained
following approaches 1 and 2.

The following two simple cases further demonstrate the
application of the general result to the state space systems.

A. Continuous system with discrete measurements

The model of discrete measurements is obtained by
settingµc ≡ 0 in equation (7):

µ(s) =
(∑Ni

i=1 ∆µkiχ(s− tki(t)), k = 1,m
)

(14)

In this case, the differential measuredµ(s) is equal

dµ(s) =
(∑Ni

i=1 ∆µkiδ(s− tki(t)), k = 1,m
)

ds (15)

whereδ is the Dirac-delta function.
For a continuous dynamic system with discrete measure-

ments at different and time-varying sampling rates in dif-
ferent measurement channels, the optimal filter is obtained
from equations (12), and (13). Between the last discrete
measurement att = ti−1 and the next measurementt = ti
in any of the measurement channels, the estimate of the
state and the error covariance matrix are given by:

m(t)=m(t+i−1)+
∫ ti

t+i−1
(A(s)m(s) + B(s)u(s))ds (16)

P (t)=P (t+i−1)+
∫ ti

t+i−1
[A(s)P (s)+P (s)AT (s)+G(s)GT (s)]ds

At ti when a discrete measurement becomes available, the
state estimate and the covariance are equal to

m(t+i ) = m(t−i ) + δm(ti) (17)

P (t+i ) = P (t−i ) + δP (ti) (18)

where δm(ti) and δP (ti) are the jumps caused by the
arrival of a discrete measurement. Toexplicitly calculate
the expression forδm, the equation (12) is integrated with
respect todz(s) anddµ(s). Integration with respect todz(s)
yields:

∫ ti
+

ti−1
P (s−)

[
I+CT(s)

(
H(s)HT(s)

)−1C(s)P (s−)∆µ(s)
]−1

×CT (s)
(
H(s)HT (s)

)−1
dz(s)

= K(ti)(z(t+i )− z(t−i )) = K(ti)δz(ti) (19)



whereδz(ti) is the discrete measurement atti and

K(ti) = P (t−i )

×
{

I+CT (ti)
[
H(ti)HT (ti)

]−1
C(ti)P (t−i )∆µ(ti)

}−1

× CT (ti)
[
H(ti)HT (ti)

]−1
(20)

The integration of (12) with respect todµ(s) gives:
∫ ti

+

ti−1
P (s−)

[
I+CT(s)

(
H(s)HT (s)

)−1C(s)P (s−)∆µ(s)
]−1

×CT (s)
(
H(s)HT (s)

)−1
[C(s)m(s−)dµ(s)]

= K(ti)C(ti)m(t−i ) (21)

We have thus obtained that

δm(ti) = K(ti)
[
δz(ti)− C(ti)m(t−i )

]
(22)

Similarly, by integrating (13) w.r.tdµ(s), obtain

δP (ti) = −K(ti)C(ti)P (t−i ) (23)

Note that the optimal filter derived in this section, equa-
tions (16)–(20), is applicable to all practically important
cases of the continuous processes with discrete measure-
ments, including the case of multirate measurements (sec-
tions VI-A and VI-B), and randomly or non-uniformly
sampled measurements (section VI-C). It can be shown
that the derived filter is identical to the Jazwinski filter [8],
which is the Kalman-Bucy filter for continuous process with
sampled measurements.

B. Continuous system with continuous measurements

This is the case whenµ(t) = t, yielding the following
optimal filter equations:

m(t) =
∫ t

0
(A(s)m(s) + B(s)u(s))ds

+
∫ t

0
P (s)CT (s)

(
H(s)HT (s)

)−1

× [dz(s)− C(s)m(s)ds] (24)

P (t) =
∫ t

0

[
A(s)P (s) + P (s)AT (s) + G(s)GT (s)

]
ds

− ∫ t

0
P (s)CT (s)

(
H(s)HT (s)

)−1
C(s)P (s)ds (25)

which are equivalent to the Kalman-Bucy filter.

C. Continuous system with continuous and sampled mea-
surements

The general case of the differential measure (7) allows us
to formally describe dynamic systems with any combination
of continuous and discrete measurements. In particular, it
allows us to apply Theorem 1 to the case of state space
systems with both discrete and continuous measurements
(Case 4 in the numerical example), the case for which the
optimal filter was previously unknown. Specifically, con-
sider the continuous process described by (10)–(11) where
both discrete and continuous measurements are present
simultaneously. Then the optimal filter is given by equa-
tions (12)–(13), and the jumps in the state estimation and
estimation error covariance are explicitly given by equations
(22)–(23).

Note that the class of continuous systems, for which the
result of Theorem 1 is relevant, is significantly broader than
state space systems, and includes systems with disconti-
nuities in states, systems with memory and the distributed
parameter systems.

V. A LTERNATIVE METHODS OFSTATE ESTIMATION

To obtain the state estimates using the discrete Kalman
filter (Approach 1), the continuous model of the process and
continuous measurements must be discretized. The discrete
process model is equal

x(ti+1) = Φ(ti+1, ti)x(ti) + Λ(ti+1, ti)u(ti)
+ Γ(ti+1, ti)ω(ti) (26)

where the white Gaussian sequenceω(ti) ∼ N(0, Q(ti)),
and

Φ(ti+1, ti) = eA(ti)(ti+1−ti)

Λ(ti+1, ti) = (Φ(ti+1, ti)− I)A(ti)−1B(ti)
Γ(ti+1, ti) = (Φ(ti+1, ti)− I)A(ti)−1G(ti)

The covariance matrixQ(ti) of the discrete system is related
to the covariance of the continuous system̃Q as

Q(ti)=
∫ ti+1

ti

[
Φ(ti+1, τ)G(τ)Q̃(τ)GT (τ)ΦT (ti+1, τ)

]
dτ

indicating the direct dependence ofQ(ti) (and therefore
the Kalman gain of the discrete KF) on the discretization
step. In particular, for small∆t = ti+1 − ti, Q(ti+1) ≈
G(ti)Q̃(ti)GT (ti)∆t. With sufficiently small∆t the filter
gain will be very small, making the discrete KF largely
insensitive to the incoming measurements.

To apply the continuous Kalman filter (Approach 2), the
discrete measurements1 y(ti) must be fitted to a continuous
function. For example, in the subsequent simulations, the
following piecewise continuous approximation

y(t) = C(t)x(t) + Hν(t) (27)

is used, obtained by a linear extrapolation between the
latest two available sampled measurements. Similar ideas
can be found in [9] to get the intersample estimation for
slow measurements. The obtained continuous measurements
{y(t), t ≥ t0} are assumed to be corrupted by the continu-
ous white Gaussian noise processν(t) ∼ N(0, R̃(t)). The
relationship between covariances of the sampled measure-
ments and their continuous approximation is given by

R̃(t) = R(ti)∆t (28)
where ∆t is the time between two consecutive sampled
measurements. Note that for time-varying samplingR̃ is
the function of time even ifR = const. With large∆t,
the described approach leads to a relatively small effect of
measurements on the state estimation, which is clearly not
the right way to utilize infrequent measurements.

1In the standard differential notation, thei-th continuous measurement
yi(t) = żi(t). The relationship betweenj-th discrete measurement in
differential and integral forms is given byzj(tk) =

∑k
l=0 yj(tl), and

yj(tk) = δzj(tk).



VI. EXAMPLES

Consider a stable continuous linear time-invariant system
modelled as:

Ā =



−1 −.02 −.03
−.03 −2 .05
−.05 −6 −3


 B̄ =




10
2.5
1


 C̄ =

[
1 0 0
0 1 0

]

The process itself is described by

A =



−0.9 −.02 −.03
−.03 −1.8 .05
−.05 −6 −2.85


 B =




11
2.75
1.1


 C =

[
C̄

]
(29)

with E[x(0)] = [5 − 6 6]T . The plant-model mismatch
is introduced to illustrate the effect of the approxima-
tion on the performance of the filters derived following
approaches 1 and 2. We assumeω(t) ∼ N(0, Q̃) with
Q̃ = diag(0.25xss

i )2, i = 1, 3, where xss is the steady
state value. In the following cases 1–3, the sampled mea-
surements ofy1 and y2 are assumed to be available; the
covariance of the measurement noise sequenceν(ti) is
known: R = diag(0.1xss

j )2, j = 1, 2.
In the following simulations, mean value of statex(t) is

obtained asṁ(t) = Am(t) + Bu, with m(t0) = E[x(0)].
True states are calculated from

dx(t) = (Ax + Bu)dt + GdW (t) (30)
whereG = I and the Brownian processW (t) is approxi-
mated as a random walk [10].

The numerical experiment is performed following the
Monte Carlo approach. Multiple realizations (N=1000) of
state trajectories are calculated from the stochastic differen-
tial equation (30). Measurementy, used as an input to all
filters, is obtained asy(t) = Cx+Du+Hω(t), whereω(t)
is Gaussian white noise with zero mean and covarianceR.

A. Case 1: Continuous process with single-rate sampled
measurements

Case 1 is the base case:y1 andy2 are sampled with the
same interval∆t. The state estimates are obtained following
all three approaches. The root mean square errors (RMSE)
for each filter are calculated as:

RMSE xi =
√

1
N

∑N
i=1(xi(t)− x̂i(t))2

and plotted in Figure 2. The RMSE of the optimal filter is
the smallest, as expected. Note that

P (t) = E[(x(t)− x̂(t))(x(t)− x̂(t))T ]

≈ 1
N

∑N
i=1[(x(t)− x̂(t))(x(t)− x̂(t))T ] (31)

wherex(t) is the true state from equation (30), andx̂(t)
is the estimate obtained with different filters. Therefore,
diag(P (t)) ≈ RMSE2.

Each filter generatesP (t) during its operation, so it is
instructive to compare the diagonal elements of the filter-
generated error covariance matrix (not shown) with the
actual value, equal toRMSE2, obtained using Monte Carlo
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Fig. 2. Case 1: State estimations with single-rate sampled measurements.

simulations. In the case of the optimal filter, the filter-
generated values give a good approximation (less than 20%
error at steady state forx1) to the result obtained with
ensemble averaging. The two alternative filters overestimate
the quality of the generated state estimations. The discrete
Kalman filter is giving the largest overestimation: Forx1

the steady state RMSE with the discrete KF is≈ 2.7, while
P generated by the filter gives the RMSE of less than 0.25.

Suboptimal filters predict the values ofP smaller than
the least theoretically possible (i.e. optimal) because of the
effect of ∆t-dependent approximation. For example, the
discrete KF (Approach 1) predicts the smallest error covari-
ance, while in reality the RMSE with the discrete KF is the
largest. This behavior is due to the approximation ofQ(ti)
(which makesQ(ti) too small), leading to unjustifiably low
Kalman gain and an excessive reliance of the erroneous
process model in generating state estimations.

Figure 2 (bottom row) showstypical results of the state
estimation with different filters. It is clear that a poor (and
biased) estimate is obtained with the discrete KF. Though
by “tuning” (in this case, substantially increasing) the
covariance matrixQ the discrete KF could yield satisfactory
state estimates, thead hoctuning is not desirable when the
statistics of the process disturbances are known. Further-
more, to correctly “tune” the discrete and Kalman-Bucy
filters, the result of the optimal filtering must be known,
which defeats the purpose of considering the alternatives.

B. Case 2: Continuous process with multirate measure-
ments

In this case,y1 andy2 are sampled with∆t and10×∆t,
respectively. The optimal filter accounts for each available
discrete measurement according to equations (17)–(18) with
properly adjustedC immediately after the measurement
becomes available. A multirate discrete filter is imple-
mented following [2], which required the adjustment of
the Kalman gain matrix at the moment when both fast and
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Fig. 3. Case 2: State estimation with multirate measurements.
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Fig. 4. Case 3: State estimation with randomly sampled measurements.

slow measurements are simultaneously available. To apply
the continuous KF, the linear extrapolation is again used to
approximate bothy1 and y2 as piecewise linear functions.
The continuous approximation of infrequent measurements
y2 will generally introduce significant errors, clearly visible
in Figure 3, especially from thêx2 plot. As in the previous
case, Approach1 leads to a biased estimation because of
the approximation used to obtainQ(ti), and unjustifiably
low values of the estimation error covariance. The optimal
filter shows the best performance with the Kalman-Bucy
filter giving reasonably accurate results.

C. Case 3: Continuous process with randomly sampled
measurements

In this case,y1 is available every2 × ∆t, while y2 is
sampled randomly. Figure 4 illustrates the performance of
the optimal and the discrete KF. Note the effect of the arrival
of a randomly sampledy2 on the estimateŝx2 and x̂3, and
the biased estimate produced by the discrete KF.

D. Case 4: Continuous process with both continuous and
sampled measurements

In all previous cases, the optimal filter is equivalent
to the Jazwinski filter. However, when both sampled and
continuous measurements are present simultaneously, the
developed optimal filter, to our knowledge, was previously
unknown. The simulation results of Figure 5 show the state
estimation with the optimal filter for the case of continuous
measurement ofx1 and infrequently sampledx2. The effect
of infrequent measurements is especially pronounced from
the examination of̂x2 and x̂3.

VII. C ONCLUSIONS

The problem of the state estimation for continuous pro-
cesses with continuous and sampled measurements, includ-
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Fig. 5. Case 4: State estimation with continuous and sampled measure-
ments.

ing multirate and randomly sampled cases, attracted consid-
erable attention because of its practical importance. Most
existing methods implement the ideas of either Approach
1 or 2, and require that the state estimation problem is
approximated as either the state estimation for discrete or
continuous systems. In this paper, we develop an optimal
(in Kalman sense) filter without reverting to an approx-
imation as a first step in the state estimation procedure.
The resulting optimal filter is the continuous system with
discontinuous inputs appearing every time a new sam-
pled measurement becomes available. The developed filter
is both optimal and convenient in practical applications,
since each sampled measurement is processed immediately
and explicitly when it becomes available without need
for multirate filters. Numerical examples indicate that the
developed filter provides the smallest state estimation errors
and an accurate indication of the goodness of the obtained
results by correctly estimating the error covariance. The
alternative methods tend to suggest higher-quality estimates
than actually achieved.
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