
An Ant System Approach to Markov Decision Processes

Hyeong Soo Chang, Walter J. Gutjahr, Jihoon Yang, and Sungyong Park

Abstract— In this paper, we develop an ant-system based
algorithm for approximately solving large Markov Decision
Process (MDP) problems for infinite horizon discounted cost
criterion, extending the applicability of the ant-system meta-
heuristic into stochastic sequential decision making problems.
The algorithm inherits the spirit of the well-known policy
iteration algorithm with an adaptation of the ant system into
MDP settings with some modifications and extensions, while
preserving the probabilistic convergence property of the ant
system.

I. INTRODUCTION

A novel “general purpose” or metaheuristic algorithm
based on the foraging behavior of ant colonies has been
applied, with suitable modifications, to various deterministic
combinatorial optimization problems to break the curse of
dimensionality in solving them and it has been reported
that the results are successful in many problems (see,
e.g., [10] [11] for surveys). Recently, it has been shown
in [16] that the solutions generated at each iteration of an
ant-system based algorithm converge to the unique optimal
solution of a given combinatorial optimization problem,
under certain conditions, with a probability that can be made
arbitrarily close to 1.

In this paper, we develop an ant-system based algo-
rithm for approximately solving Markov Decision Processes
(MDPs) [21] for infinite horizon discounted cost criterion
based on the ant-system framework of [16], extending the
applicability of the ant system metaheuristic into stochastic
optimization problems. Many stochastic control optimiza-
tion problems formulated by MDPs experience the curse
of dimensionality, making it very impractical to apply the
well-known exact algorithms, e.g., Value Iteration (VI) and
Policy Iteration (PI) [21], to solve the MDPs. There are nu-
merous approximation-based schemes to get away with the
dimensionality problem via various techniques, e.g., struc-
tural analysis, aggregation, sampling, feature extraction, etc.
See, e.g., [3], [21], [22]. However, to the best of the authors’
knowledge, there is few algorithm that incorporates the
success of “evolutionary computation” into solving MDPs
except the recent works of Chang et al. [5] [4] based on
genetic algorithm (GA) [15] and simulated annealing [17].

Ant System was developed by Dorigo and other authors
(see [12]) and has been generalized later on to the Ant
Colony Optimization (ACO) metaheuristic approach [10]

H. S. Chang, J. Yang, and S. Park are with Depart-
ment of Computer Science and Engineering at Sogang
University, Seoul, Korea and can be reached by e-mail at
{hschang,jhyang,parksy}@sogang.ac.kr.

W. J. Gutjahr is with Department of Statistics and Decision Support
Systems, University of Vienna, Vienna, Austria and can be reached by
email at walter.gutjahr@univie.ac.at.

which has found numerous applications in diverse fields in
the meantime. It is a constructive and repetitive heuristic
technique where the constructive part is similar to greedy
heuristics, and the repetitive part draws from concepts in
Reinforcement Learning [22]. The best way of explaining
the basic ideas of ACO is by reference to a biological
metaphor which also gave the approach its name: the search
behavior of biological ant colonies. In nature, ants move
around in their environment in a rather random way, but they
have a certain tendency to follow the walk of other ants.
They can recognize these walks because, while moving,
each ant leaves a chemical substance called pheromone on
the ground. Sensing pheromone on a path increases the
probability of an ant to follow it, which further reinforces
this path. This mechanism has the effect that short paths
between a starting point and a goal point are favored,
leading to a kind of heuristic optimization behavior.

In ACO, the described principle is exploited for opti-
mizing an arbitrary objective function of a combinatorial
problem by simulating the walks of conceptual ants and by
doing the reinforcement of good walks based on a post-
hoc evaluation of the objective. In the ant system [16]
that we consider in this paper, a directed graph (called
“Construction Graph”) is used as the basic structure on
which the walks take place. The feasible solutions of the
combinatorial optimization problem are encoded as paths on
this graph. In each iteration, several ants are first positioned
at the same node of the graph. Then, in successive steps,
each ant chooses randomly a successor node of the node
where it is currently located. The probabilities for the
successor nodes are computed from “pheromone values”
assigned to the arcs of the graph (and additionally from so-
called “visibility values”, which are pre-evaluations of the
suitability of possible continuations). After all ants have
finished their walks, the walks are decoded as problem
solutions and evaluated. The arcs on “good” walks are
then reinforced by pheromone increments. This process is
iterated. We will express the procedure in more formal terms
further below (see, Section III).

The ANT-PI algorithm proposed in this paper inherits
the spirit of the PI algorithm for solving MDPs exactly.
Loosely speaking, the basic algorithmic procedure is as
follows: each ant generates its candidate policy (traversing a
directed graph) and evaluates its policy (“policy evaluation”
step in PI). The (estimate) quality of each ant’s candidate
policy is merged to deposit a new pheromone, which in turn
is used for each ant to generate a new candidate policy.
During the merge step of the new pheromone generation,
an elite policy is generated via a method called “policy
switching” [6], where the elite policy is a policy that

improves the performances of all of the candidate policies
generated so far by ants, based on an idea similar to the
“elitist strategy” concepts [12], and the quality of the elite
policy is used for the new pheromone generation.

Contrary to PI, by directly manipulating the policies,
ANT-PI eliminates the operation of minimization over the
entire action space in the “policy improvement” step of PI
and a certain monotonicity property is preserved over the
elite policies. Therefore, the proposed algorithms would be
effective in the domains where the action state space is finite
but extremely large (see, Section IV). If a local search is
used, it cannot guarantee that a global minimum has been
found. The main contribution of the present paper is the use
of a (random) evolutionary search algorithm in the context
of MDPs with a probabilistic convergence guarantee. ANT-
PI preserves a certain monotonicity property via elite poli-
cies and converges to an optimal policy with a probability
that can be made arbitrarily close to 1.

This paper is organized as follows. We start with some
necessary background on MDPs in Section II. In Section III,
we formally describe ANT-PI with detailed discussion. In
Section IV, we discuss some complexity issue of ANT-PI
compared with PI. We then conclude the present paper with
some remarks in Section V.

II. MARKOV DECISION PROCESS

We briefly provide the formal model of Markov decision
processes. For a substantial discussion, see, e.g., [21].

An MDP M is 4-tuple (X,A,P,C), where X is a finite
set of states in the system and A is a set of actions. At state
x, not all actions in A can be taken. We let A(x) denote
the finite set of admissible actions in A at state x ∈ X . P
is a state transition function. We denote the probability that
a state x ∈ X makes a transition to another state y ∈ X
by taking an action a ∈ A(x) as P (y|x, a). C is a bounded
cost function that maps X ×A(X) to a real number in R.

We define a policy π as a mapping from X to A(X) and
let Π be the set of all possible policies and we define the
value of following a policy π ∈ Π with initial state x ∈ X
as

V π(x) = E

[∞∑
t=0

γtC(Xt, π(Xt))
∣∣∣∣X0 = x

]

where Xt is a random variable that denotes the state at time
t and γ ∈ (0, 1) is a fixed discount factor.

Given a fixed initial state probability distribution δ de-
fined over X , we define the average value of π for δ:

Jπ
δ =

∑
x∈X

V π(x)δ(x)

and the average optimal value with δ:

J∗
δ = min

π∈Π
Jπ

δ .

The goal is to find an optimal policy π ∈ Π that achieves
J∗

δ .

The following result, Bellman’s optimality principle, is
well-known in the literature [21].

Theorem 1: Let V ∗(x) = minπ∈Π V π(x), x ∈ X . For
all x ∈ X ,

V ∗(x) = min
a∈A(x)

{
C(x, a) + γ

∑
y∈X

P (y|x, a)V ∗(y)
}

and V ∗(x), x ∈ X is unique and a policy π∗ defined as

π∗(x) ∈ arg min
a∈A(x)

{
C(x, a) + γ

∑
y∈X

P (y|x, a)V ∗(y)
}

for x ∈ X satisfies that V π∗
(x) = V ∗(x), x ∈ X , achieving

J∗
δ for any δ.

There exist two well-known algorithms to compute π∗ or
the optimal value function V ∗. VI starts with an arbitrarily
chosen (bounded) function defined over X and updates the
function into a new function defined over X . PI starts with
arbitrarily chosen initial policy and generates a new policy
which improves the old policy. PI computes π∗ in a finite
number of steps because there are a finite number of policies
in Π and PI preserves the monotonicity in terms of the
policy performance. The running time-complexity of VI is
polynomial in |X|, |A|, and 1/(1 − γ) and in particular
one iteration takes O(|X|2|A|) time. For PI, performing the
policy improvement step takes O(|X|2|A|) time. See [18]
for a detailed discussion, including the state and action
space dependent time-complexity of the linear programming
approach for solving MDPs. Therefore, applying the exact
methods for solving MDPs is very difficult if the state
and/or the action space are large, which is true for many
interesting problems. We will discuss complexity issues
further in Section IV after we present our algorithm.

III. ANT-PI ALGORITHM

A. Algorithm description

A high-level description of ANT-PI is shown below,
where some steps are described at a conceptual level, with
details provided in the following subsections.

Ant System Policy Iteration (ANT-PI)
• Initialization:

Select the number of ants n. Set k = 1.
Select µ ∈ (0, 1] and a positive function ϕ and an
arbitrary πe

0 ∈ Π and set J
πe
0

δ = ∞.
Initialize the pheromone for each ant: set τ0(x, a) =
1/|A(x)| for all x ∈ X and a ∈ A(x). Initialize the
policy generation function: set ρ0(x, a) = 1/|A(x)| for
all x ∈ X and a ∈ A(x).

• Repeat:
– Policy Generation (Walks of Ants):

∗ Generate Λk = {πi
k, i = 1, ..., n}, where πk

i is
generated using ρk−1.

∗ Obtain J
πi

k

δ for each π ∈ Λk.

– Pheromone Update:
∗ For each i = 1, ..., n, for each x ∈ X and

a ∈ A(x),

τ i
k(x, a) =

{
ϕ(Jπi

k

δ) if πi
k(x) = a

0 otherwise.

∗ For each x ∈ X and a ∈ A(x),

τk(x, a) ← f(τk−1(x, a), τk(x, a), µ) (1)

– Policy Generation Function Update:
∗ For each x ∈ X and a ∈ A(x),

ρk(x, a) =
τk(x, a)∑

a′∈A(x) τk(x, a′)
.

– Elite Policy Generation (Policy Switching):
∗ Generate the elite policy of Λk defined as

πe
k(x) ∈

{
arg min

π∈Λk∪{πe
k−1}

(V π(x)) (x)
}

, x ∈ X.

(2)
– k ← k + 1

B. Policy generation

We can view the set Π of all possible stationary policies
as a “construction graph” in the ant system [16]. The
construction graph is a pair (G,Ω), where G = (V,E) is
a directed graph such that there is a unique starting vertex
or node from which each ant begins traversing the graph.
Each directed walk of an ant in G contains each node of G
at most once and the last node on the walk has no successor
node in G, that is not already contained in the walk. The
function Ω maps the set of ants’ feasible walks to the set of
feasible solutions of a given optimization problem. That is,
the construction graph specifies a particular encoding of the
feasible solutions as walks of ants. The objective function
value of the walk is set equal to the objective function
value of the corresponding feasible solution of the original
problem.

In our contexts, we arrange the states in X in an arbitrary
order O. Each state x ∈ X is a node v ∈ V in the
construction graph and each arc e corresponds to a pair
(x, a) of a state x ∈ X and an admissible action a ∈ A(x) at
the state and the direction of the arc reaches from the current
state x to the next state in the order O. A particular ant
traverses all the states in the construction graph following
the order O from the first state of O. When it moves
from a state x to another state y, it traverses randomly the
arc e = (x, a) with the transition probability specified by
ρk−1(x, a), a ∈ A(x), where k is the particular iteration
step of ANT-PI and it is initialized with uniform distribution
such that ρ0(x, a) = 1/|A(x)| for all x ∈ X and a ∈ A(x).
It can be directly seen that once an ant finishes the tour, it
has generated a stationary policy π ∈ Π at random.

After random stationary policies π1
k, ..., πn

k are generated
from the walks of the ants, each policy is evaluated ob-
taining the value of following the policy. For each policy

π ∈ Λk = {π1
k, ..., πn

k }, the following set of linear equations
are solved for V π(x), x ∈ X:

V π(x) = C(x, a) + γ
∑
y∈X

P (y|x, a)V π(y), x ∈ X,

obtaining Jπ
δ by averaging V π(x) over δ.

Once this “forward” phase (walking from the starting
state to the ending state in O) is finished, the next phase
is “backward”. Each ant traverses back along the path it
travelled and deposits its pheromone on the path. Depositing
its pheromone along the path is like expressing its opinion
on the policy he generated to the other ants. In the next
subsection, we study how this pheromone is generated.

C. Pheromone and policy generation function update

While each ant backtracks the path he traversed over
the construction graph at iteration k, each ant i = 1, ..., n
modifies the pheromone τ i

k. The pheromone is initialized
with uniform distribution such that τ0(x, a) = 1

|A(x)| for all
x ∈ X and a ∈ A(x). At iteration k, for each i = 1, ..., n,
for each x ∈ X and a ∈ A(x),

τ i
k(x, a) =

{
ϕ(Jπi

k

δ) if πi
k(x) = a

0 otherwise,
(3)

where ϕ is a non-increasing function which may depend on
the walks of the ants at the iterations 1, ..., k−1. (We defer
the discussion on the function ϕ and the condition for the
use of ϕ to the next subsection.) We then merge each ant’s
pheromone by the function f in Equation (1) in Section III-
A given as follows: for each x ∈ X and a ∈ A(x), if

∑
x′∈X,a′∈A(x′)

n∑
i=1

τ i
k(x′, a′) = 0

then, f(τk−1(x, a), τk(x, a), µ) = τk−1(x, a). Otherwise,

f(τk−1(x, a), τk(x, a), µ) = (1 − µ)τk−1(x, a)

+µ ·
∑n

i=1 τ i
k(x, a)∑

x′∈X,a′∈A(x′)
∑n

i=1 τ i
k(x′, a′)

.

The constant µ ∈ (0, 1] is called the evapora-
tion factor (see, e.g., [12]). If no walk is rewarded
(
∑

x′∈X,a′∈A(x′)
∑n

i=1 τ i
k(x′, a′) = 0), the pheromones for

all pairs of (x, a), x ∈ X, a ∈ A(x) do not change.
Otherwise, only an amount of 1−µ of pheromone remains
on the graph after iteration k. The remaining amount of
µ is the “budget” for rewarding the walks traversed at
iteration k according to their respective average value of
following their (randomly generated) policies. Each ant i
can be thought as depositing the amount of τ i

k(x, a) to
express the degree of “goodness” on its walk at iteration
k. Then, proportionally to the reported values τ i

k(x, a), the
actual pheromone is updated within the budget of µ.

By the update rule, the pheromone on “promising” arcs
of the construction graph is increased, such that those arcs
are traversed more often by the ants in the future. At the

extreme case of µ = 0, the system ignores the impact of the
value function on the walks of the ants, which is excluded
in our setting.

By the merged pheromone value, the policy generation
function is updated yielding a new probability distribution
over the arcs: for each x ∈ X and a ∈ A(x),

ρk(x, a) =
τk(x, a)∑

a′∈A(x) τk(x, a′)
.

For improving the performance of the algorithm, visibil-
ity values ηk(x, a) can be introduced into the probability
computation: Arcs that seem promising in some a priori
consideration can be favored. If this option is chosen, one
has to replace the last formula above by

ρk(x, a) =
τk(x, a) · ηk(x, a)∑

a′∈A(x) τk(x, a′) · ηk(x, a′)
,

where ηk(x, a) > 0 is a pre-evaluation value of action a in
state x. The simplest way to define ηk(x, a) is

ηk(x, a) =
1

[C(x, a) + c]α

for each k, with real numbers c > 0, α > 0. It is advisable
to choose α rather small (say: α = 0.1 to 0.5) in order not to
bias the learning process governed by the pheromone values
τk(x, a) too much towards the “greedy” pre-evaluations
ηk(x, a). Note that the values ηk(x, a) as defined above
are always positive.

D. Elite policy generation

The function ϕ determines how the objective function
value of a walk of an ant (i.e., the average value of following
a policy) is rewarded into its pheromone. The convergence
of Gutjahr’s ant system is based on elitist strategy [12] [13]
similar to the “elitism” concepts introduced by De Jong [9]
for GA. In this elitist strategy, the walks that are dominated
by another walk that was already traversed do not get
pheromone increments anymore. Only the best walks are
rewarded.

From the update rule of the pheromone in Section III-A,
in order to guarantee the convergence of the algorithm, one
has to choose ϕ such that ϕ satisfies that for π ∈ Λk, k =
1, 2, ...,

ϕ(Jπ
δ) > 0 for Jπ

δ ≤ J
πe

k−1
δ

ϕ(Jπ
δ) = 0 otherwise.

We can see that only walks that are at least as good as the
performance of the policy πe

k−1 get a positive increment for
the pheromone. If πe

k−1 is equal to the policy that achieves

min
π∈∪k−1

i=1 Λi

Jπ
δ ,

then we have the elitist strategy used in Gutjahr’s ant
system. In particular, if a cost function C is positive, we
can set ϕ(Jπ

δ) = 1/Jπ
δ if Jπ

δ ≤ J
πe

k−1
δ and 0 otherwise.

It turns out that we can extend the elitist strategy further.
The recent work of policy switching by Chang et al. [6]
provides a formal way of combining a finite number of
policies in a set to generate an improved policy of all the
policies in the set, which we call elite policy for the set.
It is in general difficult to have a formal rule like policy
switching for plain combinatorial optimization problems.
Via policy switching, we can change the controlling condi-
tion of the elitist strategy so that a walk generated at kth
iteration gets rewarded in the pheromone update only if the
objective function value of the walk is no worse than the
performance of the elite policy of the set ∪k−1

i=1 Λi. This
would make a policy or a walk get rewarded only if the
quality of the policy is no worse than any policy generated
up to now by ants. By recursively defining the elite policy
of kth iteration over the set Λk ∪ {πe

k−1}, the controlling
condition of the pheromone update can also include all of
the elite policies generated up to now, so that any policy
generated by ants so far is included.

Given a nonempty subset ∆ of Π, we define a policy π̄
generated by policy switching with respect to ∆ as

π̄(x) ∈ {arg min
π∈∆

(V π(x))(x)}, x ∈ X. (4)

We have the following result (see, [7] for a proof):

Theorem 2: Consider a nonempty subset ∆ of Π and the
policy π̄ generated by policy switching with respect to ∆
given in Equation (4). Then, for all x ∈ X ,

V π̄(x) ≤ min
π∈∆

V π(x).

The above theorem immediately implies the following re-
sult:

Corollary 1: Consider a nonempty subset ∆ of Π and the
policy π̄ generated by policy switching with respect to ∆
given in Equation (4). Then, for any initial state distribution
δ,

J π̄
δ ≤ min

π∈∆
Jπ

δ .

We generate a policy πe
k, the elite policy with respect to

the set Λk ∪{πe
k−1}, which improves any policy in Λk and

πe
k−1 via policy switching. Note that this is different from

the elitist concept of De Jong [9], where the elitist is the best
policy in a “population” of Λk∪{πe

k−1}. That is, the elitist is
a policy that achieves minπ∈Λk∪{πe

k−1} Jπ
δ . Therefore, this

immediately implies that the following monotonicity holds:

Corollary 2: For any δ and for all k ≥ 0,

J
πe

k

δ ≤ J
πe

k−1
δ .

The policy switching step is one of the key parts in ANT-PI
to speed up the convergence of ANT-PI. It can be seen [7]
that by one application of policy switching, we eliminate
at least |Ψ| number of non-optimal policies but at most
|X| number of non-optimal policies in the search process.

Note that policy switching directly manipulates policies to
generate an improved policy relative to all policies it was
applied to, eliminating the operation of minimization over
the entire action space, which is the main computational
advantage that replaces the policy improvement step in the
original PI.

E. Convergence

Even if the average value of following the two consec-
utive elite policies are identical, this does not necessarily
mean that the elite policy is an optimal policy as in PI. Still,
we have a probabilistic convergence guarantee for ANT-PI.

In [16], the following convergence result has been proved.
We cite it here within the context of the special situation of
the present paper.

Theorem 3: Assume that the following conditions are
satisfied:

(1) There is only one optimal walk through the construc-
tion graph.

(2) Along the optimal walk, the visibility values satisfy
ηk(x, a) > 0.

(3) Let J∗(k) be the lowest cost value observed in
the iterations 1, . . . , k − 1, i.e., the lowest objective

function value J
πi

k

δ corresponding to a walk of an ant
in these k−1 iterations. (In the case of iteration k = 1,
let J∗(k) = ∞.) Then the reward function ϕ = ϕk

satisfies

(i) ϕk(Jπi
k

δ) > 0 for J
πi

k

δ ≤ J∗(k),
(ii) ϕk(Jπi

k

δ) = 0 for J
πi

k

δ > J∗(k)
for each k.

Moreover, let Pk denote the probability that a fixed ant
traverses the optimal walk in iteration k. Then the following
two assertions are valid:

1) For each ε > 0 and for fixed parameter µ, it can be
achieved by the choice of a sufficiently large number
n of ants that Pk ≥ 1 − ε holds for all k ≥ k0 (with
an integer k0 depending on ε).

2) For each ε > 0 and for fixed parameter n, it can
be achieved by the choice of an evaporation factor µ
sufficiently close to zero that Pk ≥ 1− ε holds for all
k ≥ k0 (with an integer k0 depending on ε).

In [16], this result is proved with the help of four lemmas.
Here, we need a slightly stronger version of this theorem
(see, [7] for a proof):

Theorem 4: The assertion of Theorem 3 is also valid if
condition (i) is replaced by the weaker condition

(i’) ϕk(J∗
δ) > 0 for the cost value J∗

δ of the optimal
solution.

We are now able to use this general result to obtain a
convergence result on ANT-PI (see, [7] for a proof):

Theorem 5: For the algorithm ANT-PI, the following is
true: Assume that there is only one optimal policy and that
all chosen visibility values are strictly positive, and let Pk

denote the probability that ANT-PI produces the optimal
policy in iteration k. Then the following two assertions are
valid:

1) For each ε > 0 and for fixed parameter µ, it can be
achieved by the choice of a sufficiently large number
n of ants that Pk ≥ 1 − ε holds for all k ≥ k0 (with
an integer k0 depending on ε).

2) For each ε > 0 and for fixed parameter n, it can
be achieved by the choice of an evaporation factor µ
sufficiently close to zero that Pk ≥ 1− ε holds for all
k ≥ k0 (with an integer k0 depending on ε).

Note that the condition of the uniqueness of the optimal
policy can always be achieved by a very slight change of
the cost function that does not make any suboptimal policy
appear as optimal: Let χ(π) denote the index of policy π
in the chosen fixed order. Add ε · χ(π) to the cost value of
each policy π, where ε is small enough. Then uniqueness
of the optimal solution is obtained.

IV. COMPLEXITY ISSUE

It is known that PI converges faster to the optimal
value than VI if both algorithms begin with the same
value [21] and that VI is usually outperformed by PI in
practical applications. For this reason, we discuss here only
complexity issues between ANT-PI and PI.

ANT-PI replaces the single policy evaluation step of
PI with multiple policy evaluations, where each policy is
generated randomly by an ant, and replaces the single
policy improvement step of PI with a combination of
a standard ant system framework with policy switching.
Doing the single policy evaluation requires solving a system
of |X| equations, which takes O(|X|3) time by Gaussian
elimination and O(|X|2.8) by the fastest known algorithms.
ANT-PI does not add any overhead for this step compared
with PI because multiple policy evaluations can be done in
parallel independently. At the worst case, it increases the
time complexity of policy evaluation by the factor of the
number of ants.

As we mentioned before, the policy improvement step
takes O(|X|2|A|) time. If |A| is large, e.g., O(|X|2), policy
improvement takes too much time. If we use an approxima-
tion to alleviate this problem, that is, replacing minimization
by, e.g., a randomized search, we cannot guarantee the
convergence to an optimal policy. On the other hand, policy
switching takes O(n|X|) time by directly manipulating
policies, where n is the number of ants. Therefore, the main
advantage of ANT-PI over PI is for the problems whose
action space is large (assuming that the pheromone update
is done relatively fast).

The other factor for complexity is the number of iter-
ations required. To the authors’ best knowledge, there is
no known formal result on this issue for PI except that a

finite number of iterations for the convergence is sufficient
(under our finite state and action spaces model). PI may
need a very large number of iterations, whereas by the
ant system, a good approximative solution may already be
reached after a comparatively smaller number of iterations.
Note also that the sequence of generated elite policies has
a monotonicity property as in the sequence of generated
policies in PI. Therefore, if both PI and ANT-PI start with
a “good” policy and if PI converges to an optimal policy
relatively fast, we expect that ANT-PI also converges to an
optimal policy relatively fast.

Suppose that the action space A is not that large, making
the direct manipulation of policies by policy switching not
helpful. Then, we can replace Elite Policy Generation
step with a method called “parallel rollout” [6], which is
a generalization of PI with multiple policy improvement.
We simply replace Equation (2) in ANT-PI with

πe
k(x) ∈ arg min

a∈A(x)

{
C(x, a) + γ

∑
y∈X

P (y|x, a)

× min
π∈Λk∪{πe

k−1}
V π(y)

}
.

Then, every property we discussed before still holds and
it is guaranteed that the resulting ANT-PI is faster than
PI in terms of the number of iterations (with the same
initialization for both algorithms). Also in sequential im-
plementations, it increases the time complexity of policy
evaluation only by the factor of the number of ants.

V. CONCLUDING REMARKS

ANT-PI is naturally parallelizable. By doing so, we can
improve the runtime. Basically, we partition the policy
space Π into subsets of {Πi} such that

⋃
i Πi = Π and

Πi∩Πj = ∅ for all i
= j. Note that there is a corresponding
construction graph to each Πi. We then apply ANT-PI into
each Πi in parallel and then once each part terminates,
the best policy π∗

i from each part is taken. We apply then
policy switching to the set of best policies {π∗

i }. For a
general result regarding parallelization of an algorithm in
this respect, see [5].

To obtain a “good” probability bound on the performance
of the ant system algorithm in [16], the number of ants
and/or evaporation factor needs to be large for applying
the algorithm in practice. However, as noted in [16],
the analysis is based on a very coarse estimation of the
probability that an ant finds the optimal solution so that
convergence to the optimum with high probability may be
achieved with a moderate number of agents. Following the
argument in [16], the purpose of this paper is to demonstrate
the capability of the ant-system based approach, in the
theoretical perspective, for solving stochastic optimization
problems. Certainly, the future works must be implementing
and evaluating the proposed algorithms for difficult MDP
problems.

REFERENCES

[1] E. Altman, “Applications of Markov decision processes in com-
munication networks: a survey,” Markov Decision Processes, Mod-
els, Methods, Directions, and Open Problems, E. Feinberg and A.
Shwartz (Eds.) Kluwer, pp. 488–536, 2001.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control,
Volumes 1 and 2. Athena Scientific, 1995.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Neuro Dynamic Programming.
Athena Scientific, 1996.

[4] H. S. Chang, M. Fu, and S. I. Marcus, “An asymptotically effi-
cient algorithm for finite horizon stochastic dynamic programming
problems,” in Proc. of the 42nd IEEE Conf. Decision and Control,
2003.

[5] H. S. Chang, H-G. Lee, M. Fu, and S. I. Marcus, “Evolutionary
policy iteration for solving Markov decision processes,” IEEE Trans.
on Automatic Control, revised, 2003.

[6] H. S. Chang, R. Givan, and E. K. P. Chong, “Parallel rollout for
on-line solution of partially observable Markov decision processes,”
Discrete Event Dynamic Systems: Theory and Application, revised,
2003.

[7] H. S. Chang, W. J. Gutjahr, J. Yang, and S. Park, “An ant system
approach to Markov decision processes,” Tech. Rep. 2003-10,
Dept. of Statistics and Decision Support Systems, Univ. of Vienna,
Vienna, Austria, 2003.

[8] P. Cichosz, “Truncating temporal differences: on the efficient
implementation of TD(λ) for reinforcement learning,” Journal of
Artificial Intelligence Research, vol. 2, pp. 287–318, 1995.

[9] K. A. De Jong, An Analysis of the Behavior of a Class of Genetic
Adaptive Systems, Ph.D. Thesis, Univ. of Michigan, Ann Arbor, MI,
1975.

[10] M. Dorigo and G. Di Caro, “The ant colony optimization meta-
heuristic,” New Ideas in Optimization, D. Corne, M. Dorigo (eds.),
pp. 11-32, McGraw-Hill, NY, USA, 1999.

[11] M. Dorigo, G. Di Caro, and T. Stützle, Special Issue on “Ant
Algorithms,” Future Generation Computer Systems, vol. 16, no. 8,
2000.

[12] M. Dorigo, V. Maniezzo, A. Colorni, “The Ant System: optimization
by a colony of cooperating agents,” IEEE Trans. Systems Man
Cybernet., vol. 25, pp. 29–41, 1996.

[13] L. M. Gambardella and M. Dorigo, “Ant-Q: a reinforcement learning
approach to the traveling salesman problem,” Proc. of the 12th Int.
Conf. on Machine Learning, 1995, pp. 252–260.

[14] F. Garcia and F. Serre, “Efficient asymptotic approximation in
temporal difference learning,” Proc. of the 14th European Conf.
on Artificial Intelligence, 2000, pp. 296–300.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning,, Addison-Wesley, 1989.

[16] W. J. Gutjahr, “A graph-based ant system and its convergence,”
Future Generation Computer Systems, vol. 16, pp. 873–888, 2000.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, pp. 45–54, 1983.

[18] M. Littman, T. Dean, and L. Kaelbling, “On the complexity of
solving Markov decision problems,” in Proc. 11th Annual Conf.
on Uncertainty in Artificial Intelligence, 1995, pp. 394–402.

[19] Y. Mansour and S. Singh, “On the complexity of policy iteration,”
in Proc. UAI, 1999, pp. 401–408.

[20] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, NJ,
1982.

[21] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley, New York, 1994.

[22] R. Sutton and A. Barto, Reinforcement Learning. MIT Press, 2000.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP17.5
	Page0: 3820
	Page1: 3821
	Page2: 3822
	Page3: 3823
	Page4: 3824
	Page5: 3825

