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Abstract— This paper studies recursive identification of
hysteresis in smart materials. A Preisach operator with a piece-
wise uniform density function is used to model the hysteresis.
Persistent excitation conditions for parameter convergence are
discussed in terms of the input to the Preisach operator. Two
classes of recursive identification schemes are explored, one
based on the hysteresis output, the other based on the time
difference of the output. Experimental results based on a
magnetostrictive actuator are presented.

I. I NTRODUCTION

Smart materials, e.g., magnetostrictives, piezoelectrics,
and shape memory alloys (SMA), exploit strong coupling
between applied electromagnetic/thermal fields and strains
for actuation and sensing. The ubiquitous presence of hys-
teresis in smart materials, however, poses a significant chal-
lenge for the effective use of these materials in sensors and
actuators. To address this problem, a proper mathematical
model for the hysteresis is necessary.

Hysteresis models can be roughly classified into physics-
based models and phenomenological models. Physics-based
models are built based on first principles of physics, an ex-
ample of which is the Jiles-Atherton model of ferromagnetic
hysteresis [1]. Phenomenological models, on the other hand,
are used to produce behaviors similar to those of physical
systems without necessarily providing physical insight into
the problems. The most popular hysteresis model used for
smart materials has been the Preisach operator [2], [3], [4],
[5], [6], [7], [8], which is of the phenomenological type.
A similar type of operator called Krasnosel’skii-Pokrovskii
(KP) operator has also been used [9], [10].

Hysteretic behaviors of smart materials often vary with
time, temperature and some other ambient conditions.
Therefore, online identification of the hysteresis model is
of practical interest. The idea of adaptive inverse control
was studied for a class of hysteresis models with piece-
wise linear characteristics in [11], where the hysteresis
parameters (and the inverse hysteresis model) are updated
recursively. More recently, similar ideas were applied to
control of hysteresis in smart materials [12], [13], where
the KP operator and the Prandtl-Ishlinskii operator were
used as the hysteresis model, respectively.
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This paper deals with recursive identification of the
Preisach operator. Two classes of identification schemes are
explored, one based on the hysteresis output, the other based
on the time difference of the output. Persistent excitation
(P.E.) conditions for parameter convergence are studied
in terms of the input to the hysteresis operator. Practical
issues in implementation are also discussed. Experimental
results based on a magnetostrictive actuator, together with
simulation results, are presented.

The remainder of the paper is organized as follows. The
Preisach operator is briefly reviewed in Section II, where
a discretization scheme is also included. Recursive identi-
fication algorithms are presented in Section III. Persistent
excitation conditions are discussed in Section IV. Simu-
lation and experimental results are reported in Section V.
Finally some conclusions are provided in Section VI.

II. T HE PREISACH OPERATOR

The Preisach operator is briefly reviewed in this section.
A more detailed treatment can be found in [14], [15]. A
basic element of the Preisach operator is a delayed relay
with a pair of switching thresholds(β, α), as illustrated
in Fig. 1. Such an element is called ahysteron, and is
denoted here bŷγβ,α. Let C([0, T ]) denote the space of
continuous functions on[0, T ]. For u ∈ C([0, T ]) and an
initial configurationζ ∈ {−1, 1}, the output of the hysteron
is denoted asω(t) = γ̂β,α[u, ζ](t), ∀t ∈ [0, T ].
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Fig. 1. An elementary hysteron̂γβ,α[·, ·].

The Preisach operator is a weighted superposition of all

possible hysterons. DefineP0
�
= {(β, α) ∈ R

2 : β ≤ α}.
P0 is called thePreisach plane, and each(β, α) ∈ P0 is
identified with the hysteron̂γβ,α. Foru ∈ C([0, T ]) and an
initial configurationζ0 of all hysterons,ζ0 : P0 → {−1, 1},
the output of the Preisach operatorΓ is defined as:

y(t) = Γ[u, ζ0](t) =
∫
P0

µ(β, α)γ̂β,α[u, ζ0(β, α)](t)dβdα,

(1)
where the weighting functionµ(·, ·) is called the Preisach
density function. It is assumed thatµ ≥ 0. Furthermore,
to simplify the discussion, assume thatµ has a compact
support, i.e.,µ(β, α) = 0 if β < β0 or α > α0 for some



β0, α0. In this case it suffices to consider a finite triangular

areaP �
= {(β, α) ∈ P0|β ≥ β0, α ≤ α0}, andP will also

be called the Preisach plane when no confusion arises.
At any time t, P can be divided into two regions:

P+(t)
�
= {(β, α) ∈ P| output of γ̂β,α at t is + 1},

P−(t)
�
= {(β, α) ∈ P| output of γ̂β,α at t is − 1}.

Under mild conditions, each ofP+(t) and P−(t) is a
connected set, and the boundary between them, calledthe
memory curve, characterizes the memory of the Preisach
operator.

In identification of the Preisach density a discretization
step is involved in one way or another (see [16] for a review
of identification methods). One discretization scheme is to
divide the input range intoL intervals uniformly (called
discretization of level L), which results in a discretization
grid on the Preisach plane. Denote the discrete input levels
by ui, 1 ≤ i ≤ L+ 1, i.e.,

ui = umin + (i− 1)∆u,

where∆u = umax−umin

L . The cells in the discretization grid
are labeled, as illustrated in Fig 2(a) for the case ofL = 4.
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Fig. 2. Illustration of the discretization scheme (L = 4): (a) Labeling of
the disretization cells; (b) Weighting masses sitting at the centers of cells.

A natural way to approximate a Preisach operator is to
assume that inside each cell of the discretized Preisach
plane, the Preisach density function is constant. Note that
such an operator is still an infinite-dimensional operator.
If one assumes that the Preisach weighting function inside
each cell is concentrated at the center as a weighting mass
(Fig. 2(b)), the corresponding Preisach operator becomes
a weighted combination of a finite number of hysterons.
Equivalently the input takes values in the finite set{u i}L+1

i=1 .

III. R ECURSIVE IDENTIFICATION SCHEMES

The discrete-time setting is considered in this paper. A
Preisach operator with discrete weighting masses is easier to
analyze than a Preisach operator with a piecewise uniform
weighting density; however, these two types of operators
bear much similarity and essential results for one can be
easily translated into those for the other. Hence recursive
identification of Preisach weighting masses is first studied,
and then the extension needed for identifying the density
directly is briefly discussed.

In this paper two classes of identification algorithms are
examined, one based on the hysteresis output, and the other
based on the time difference of the output (calleddifference-
based hereafter).

Output-based identification: The outputy[n] of the dis-
cretized Preisach operator (corresponding to the case illus-
trated in Fig. 2(b)) at time instantn can be expressed as

y[n] =
L∑

i=1

i∑
j=1

W̄ij [n]ν̄∗ij , (2)

whereW̄ij [n] denotes the state (1 or−1) of the hysteron in
cell (i, j) at timen, andν̄∗ij denotes the hysteron’s Preisach
weighting mass. StackinḡWi,j [n] andν̄∗i,j into two vectors,
W [n] = [W1[n] · · ·WK [n]]T andν∗ = [ν∗1 · · · ν∗K ]T , where
K = L(L+1)

2 is the number of cells, one rewrites (2) as

y[n] =
K∑

k=1

Wk[n]ν∗k = W [n]T ν∗. (3)

Let ν̂[n] = [ν̂1[n] · · · ν̂K [n]]T be the estimate ofν∗ at
time n, and let

ŷ[n] =
K∑

k=1

Wk[n]ν̂k[n] = W [n]T ν̂[n] (4)

be the predicted output based on the parameter estimate at
time n. The gradient algorithm [17] to update the estimate
is

ν̂[n+ 1] = ν̂[n] − γ
(ŷ[n] − y[n])W [n]
W [n]TW [n]

, (5)

where0 < γ < 2 is the adaptation constant. To ensure that
the weighting masses are nonnegative, letν̂k[n+ 1] = 0 if
thek-th component of the right hand side of (5) is negative.

Difference-based identification: An alternate way to
identify ν∗ is using the time differencez[n] of the output
y[n], where

z[n]
�
= y[n] − y[n− 1] = (W [n] −W [n− 1])T ν∗. (6)

Let ŷ[n−] and ŷ[n− 1] be the output predictions at timen
andn− 1 based on̂ν[n− 1], respectively, i.e.,

ŷ[n−]
�
= W [n]T ν̂[n− 1], ŷ[n− 1]

�
= W [n− 1]T ν̂[n− 1].

Define

ẑ[n]
�
= ŷ[n−]−ŷ[n−1] = (W [n]−W [n−1])T ν̂[n−1]. (7)

Let V [n] be the time difference of hysteron states,V [n]
�
=

W [n] − W [n − 1]. Then one can obtain the following
identification scheme based onz[n]:

ν̂[n+ 1] =

{
ν̂[n] − γ (ẑ[n]−z[n])V [n]

V [n]T V [n] , if V [n] �= 0
ν̂[n] if V [n] = 0

. (8)

As in the output-based scheme, an parameter projection
step will be applied if any component ofν̂[n+1] is negative.

Having discussed the methods for recursive identification
of weighting masses for a Preisach operator, we now point



out how to change the previous algorithms for identification
of the (piecewise uniform) Preisach density. In this case,
the outputy[n] can still be expressed as (2) or (3), but
with different interpretations forW̄i,j [n] and ν̄∗i,j . Each
componentW̄i,j [n] of W [n] no longer represents the state
(1 or −1) of the hysteron at the center of the cell(i, j);
instead it represents thesigned area of the cell:

W̄i,j [n] = area ofC+
i,j [n] − area ofC−

i,j [n],

whereC+
i,j (Ci, j

−, resp.) denotes the portion of cell(i, j)
occupied by positive (negative, resp.) hysterons. Each com-
ponentν̄∗i,j of ν∗ now represents the true density value on
the cell (i, j). Similarly, ν̂[n] is now the vector of density

values estimated at timen. DefineV [n]
�
= W [n]−W [n−1].

Define ŷ[n], z[n], and ẑ[n] as in (4), (6), (7), respectively.
Based on these definitions, the output-based algorithm (5)
and the difference-based algorithm (8) can be applied with-
out modification to identifyν ∗.

IV. PERSISTENTEXCITATION CONDITIONS

Define the parameter error̃ν[n]
�
= ν̂[n] − ν∗. Then for

the output-based algorithm (5) (lettingγ = 1 without loss
of generality),

ν̃[n+ 1] = F [n]ν̃[n], (9)

where F [n] = IK − W [n]W [n]T

W [n]T W [n] , and IK represents the
identity matrix of dimensionK. It is well-known [17]
that the convergence of the algorithm (5) depends on the
persistent excitation (P.E.) condition of the sequenceW [n].
The sequenceW [n] is persistently exciting if, there exist
an integerN > 0 andc′1 > 0, c′2 > 0, such that for anyn0,

c′1IK ≤
n0+N−1∑

n=n0

W [n]W [n]T

W [n]TW [n]
≤ c′2IK . (10)

Due to the equivalence of uniform complete observability
under feedback [17], [18], from (10), there existc 1 >
0, c2 > 0 such that for anyn0,

c1IK ≤ GN (n0) ≤ c2IK , (11)

whereGN (n0) is the observability grammian of the system
(9) defined as

GN (n0) =
n0+N−1∑

n=n0

Φ[n, n0]TW [n]W [n]T Φ[n, n0]
W [n]TW [n]

,

and Φ[n, n0] is the state transition matrix,Φ[n, n0] =∏n−1
k=n0

F [k]. It can be shown [17] that when (11) is
satisfied,

‖ν̃[n+N ]‖ ≤ √
1 − c1‖ν̃[n]‖, (12)

from which exponential convergence toν ∗ can be con-
cluded. Similarly one can write down the error dynamics
equation, the P.E. condition onV [n], and the convergence
rate estimate for the difference-based scheme (8).

The sequencesV [n] andW [n] are almost equivalent in
the sense that, for anyN > 0, {V [n]}N

n=1 can be con-
structed from{W [n]}N

n=0, and conversely,{W [n]}N
n=1 can

be constructed fromW [0] and{V [n]}N
n=1. However, there

are motivations to introduce the difference-based scheme
(8). For ease of discussion, consider the case of identifying
Preisach weighting masses (corresponding to Fig. 2(b)). In
this case whileW [n] has components±1, the components
of V [n] are±2 or 0. Often times most components ofV [n]
are 0 sinceVk[n] �= 0 only if the k-th hysteron changed
its state at timen. This has two consequences: (1) The P.E.
condition ofV [n] is easier to analyze than that ofW [n]; (2)
The convergence of the difference-based scheme (assuming
that P.E. is satisfied) is expected to be faster than that of
the output-based scheme sincez[n] carries more specific
information aboutν∗.

It is of practical interest to express the P.E. conditions in
terms of the inputu[n] to the hysteresis operator. The P.E.
condition for the difference-based algorithm is equivalent
to that{V [n]}n0+N−1

n=n0
spansRK sinceV [n] can take only

a finite number of possible values. Recall thatu[n] takes
values in a finite set{ui, 1 ≤ i ≤ L + 1}. In the analysis
below it is assumed that the input does not change more
than one level during one sampling time. The assumption
is not restrictive considering the rate-independence [15] of
the Preisach operator, but it helps to ease the presentation.

Theorem 4.1 (Necessary condition for P.E.): If {V [n]}
is P.E., then there existsN > 0, such that for anyn0,
for any i ∈ {1, 2, · · · , L}, u[n] achieves a local maximum
at ui+1 or a local minimum atui during the time period
[n0, n0 +N − 1].
Proof. Let us call a hysteronactive at timen if it changes
state at timen. Since the input changes at most one level
each time, ifu[n] > u[n − 1], the set of active hysterons

must have the formS+
i,j

�
= {(i, j), (i, j+ 1), · · · , (i, i)} for

some i, j with 1 ≤ i ≤ L and 1 ≤ j ≤ i (refer to the
labeling scheme in Fig. 2(a)), and the components ofV [n]
corresponding to elements ofS+

i,j are 2 and other compo-
nents equal 0. Similarly, ifu[n] < u[n−1], the set of active

hysterons has the formS−
i,j

�
= {(j, j), (j+1, j), · · · , (i, j)}

for somei, j, and the components ofV [n] corresponding
to elements ofS−

i,j are−2 and other components equal 0.
If, for somei′, ui′+1 is not a local maximum andu′

i is not
a local minimum,S+

i′,i′ or S−
i′,i′ will not become the set of

active hysterons during[n0, n0+N−1]. In particular, when
the hysteron(i′, i′) changes state from−1 to 1, so does the
hysteron(i′ − 1, i′); and when the hysteron(i′, i′) changes
state from1 to −1, so does the hysteron(i ′, i′ + 1). This
implies that the contribution to the output from the hysteron
(i′, i′) cannot be isolated, and hence{Vn}n0+N−1

n=n0+1 does not
spanR

K . �
Remark 4.1: From Theorem 4.1, for a Preisach operator

with discretization levelL, it is necessary that the input
u[n] hasL reversals at different input levels for parameter
convergence. This is in analogy to (but remarkably different



from) the result for linear systems, where the input is
required to have at leastn frequency components for
identification ofn parameters [17], [18].

Theorem 4.1 implies that the input levelsu1 and uL+1

must be visited for P.E. to hold. When the input hitsu1,
all hysterons have output−1 and the Preisach operator is
in negative saturation; similarly, when the input hitsuL+1,
the Preisach operator is in positive saturation. For either
case all the previous memory is “erased” and the operator
is “reset”. Starting from these reset points, one can keep
track of the memory curveψ[n] (the state of the Preisach
operator) according to the inputu[·].

Consider an input sequence{u[n]}nb
n=na

, na < nb. If
there existn1, n2, n3 and n4 with na ≤ n1 < n2 ≤
n3 < n4 ≤ nb such that the memory curveψ[n1] =
ψ[n3] and ψ[n2] = ψ[n4], one can obtain another input
sequence{u′[n]}nb

n=na
by swapping the section{u[n]}n2

n=n1

with the section{u[n]}n4
n=n3

. We write {u[n]}nb
n=na

P.E.≡
{u′[n]}nb

n=na
(called equivalent in terms of P.E.) since

the two sequences carry same excitation information for
the purpose of parameter identification. The set of all
input sequences obtained from{u[n]}nb

n=na
as explained

above (with possibly zero or more than one swappings)
form the P.E. equivalence class of {u[n]}nb

n=na
, denoted

as {u[n]}nb
n=na

. Note that in particular,{u[n]}nb
n=na

∈
{u[n]}nb

n=na
. We are now ready to present a sufficient

condition for P.E. in terms of the inputu[n].
Theorem 4.2 (Sufficient condition for P.E.): If there ex-

ists N > 0, such that for anyn0, one can find
{u′[n]}n0+N−1

n=n0
∈ {u[n]}n0+N−1

n=n0
satisfying the following:

there exist time indicesn0 ≤ na ≤ n−
1 < n+

1 < n−
2 <

n+
2 < · · · < n−

i < n+
i < · · · ≤ nb ≤ n0 + N − 1 or

n0 ≤ na ≤ n+
1 < n−

1 < n+
2 < n−

2 < · · · < n+
i < n−

i <
· · · ≤ nb ≤ n0+N−1, such thatu′[n+

i ] is a local maximum
andu′[n−

i ] is a local minimum of{u′[n]}nb
n=na

for eachi,
these local maxima and minima include all input levelsu i,
1 ≤ i ≤ L+ 1, and either
(a) {u′[n+

i ]} is non-increasing,u′[n+
i ] ≥ u′[n] for n+

i <
n ≤ nb, u′[n+

i ] differs fromu′[n+
i+1] by no more than∆u,

and{u′[n−
i ]} is non-decreasing,u′[n−

i ] ≤ u′[n] for n−
i <

n ≤ nb, u′[n−
i ] differs fromu′[n−

i+1] by no more than∆u;
or
(b) {u′[n+

i ]} is non-decreasing,u′[n+
i ] ≤ u′[n] for n+

i <
n ≤ nb, u′[n+

i ] differs fromu′[n+
i+1] by no more than∆u,

and {u′[n−
i ]} is non-increasing,u′[n−

i ] ≥ u′[n] for n−
i <

n ≤ nb, u′[n−
i ] differs fromu′[n−

i+1] by no more than∆u,
thenV [n] corresponding tou[n] is P.E..
Proof. Construct a new input sequence{ū[n]} n̄

n=1 (for some
n̄ > 1) which achieves the local maxima{u ′[n+

i ]} and the
local minima {u′[n−

i ]} with the same order as inu′[n],
but ū[n] varies monotonically from a maximum to the next
minimum or from a minimum to the next maximum. For
such an input, it can be seen through memory curve analysis
on the Preisach plane that the corresponding{ V̄ [n]}n̄

n=1

spans R
K . From the way ū[n] is constructed and the

conditions given in the theorem, any vector in{ V̄ [n]}n̄
n=1

must also be present in{V ′[n]}n0+N−1
n=n0

corresponding to
u′[n]. Hence{V ′[n]} is P.E.. Finally P.E. of{V [n]} follows
since{u′[n]}n0+N−1

n=n0
belongs to the P.E. equivalence class

of {u[n]}n0+N−1
n=n0

. �
Theorem 4.2 is not conservative, and it covers a wide

class of P.E. inputs. For example, it can be easily ver-
ified that a (periodic) first order reversal input [14](see
Fig. 3(a) for caseL = 4), which has been widely used for
identification of Preisach density function, and a (periodic)
oscillating input with decreasing amplitude (Fig. 3(b) for
caseL = 4) both satisfy the conditions in Theorem 4.2,
and are thus P.E.. In these two cases,u[n] itself satisfies the
conditions imposed foru′[n] in the theorem. Fig. 4 shows
an example where one can conclude the P.E. of a periodic
u[n] by inspecting a P.E. equivalent inputu ′[n]. Note that
Theorem 4.2 does not requireu[n] to be periodic, although
periodic examples are chosen here for easy illustration.

The P.E. conditions (Theorems 4.1 and 4.2) can be
extended in a straightforward manner (with minor modi-
fications) to the case where a piecewise uniform density
function is to be identified.

u[n]

u1

u3

u4

u2

u5

(a)
n u1

u2

u3

u4

u5

u[n]

(b)
n

Fig. 3. Examples of P.E. inputs (L = 4, showing one period): (a) The
first order reversal input; (b) An oscillating input with decaying amplitude.
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u [n]
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Fig. 4. An example of P.E. input (L = 4, showing one period). The
input u′[n], P.E. equivalent tou[n], is obtained by swapping two sections
A − B andA′ − B′ of u[n].

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Comparison of the output-based scheme with the
difference-based scheme

In this subsection the output-based scheme is compared
with the difference-based one through simulation. As shown
in (12), the minimum eigenvalue of the observability gram-
mian (i.e.,c1 in (11)) is directly related to the convergence
rate of the output-based scheme. The same statement holds
for the difference-based scheme provided thatW [n] is
replaced withV [n] in the related equations. In Table I we
list the corresponding

√
1 − c1 (the bound on the norm

of parameter error drop over one period) under the two



gradient schemes (withγ = 1) for different discretization
levels L with the (periodic) first order reversal input.
From Table I, the difference-based scheme converges faster
as expected. Simulation has been conducted for the case
L = 10. Fig. 5(a) compares the decrease of the norm of
parameter error over periods when there is no measurement
noise, and the conclusion is consistent with Table I.

TABLE I

COMPARISON OF CONVERGENCE RATES FOR THE OUTPUT-BASED

ALGORITHM AND THE DIFFERENCE-BASED ALGORITHM.

L
√

1 − c1
√

1 − c1
(Output-based) (Difference-based)

5 0.9631 0.9399
10 0.9908 0.9784
15 0.9958 0.9874
20 0.9976 0.9912
25 0.9985 0.9933
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Fig. 5. Comparison of parameter convergence for the output based
algorithm and the difference-based algorithm. (a) Case I: noiseless mea-
surement; (b) Case II: noisy measurement.

Despite the apparent advantage of faster convergence, the
difference-based scheme is more sensitive to the measure-
ment noise: the noise gets magnified when one takes the
output difference (analogous to taking the derivative of a
noisy continuous-time signal), and the disturbance is shared

only among the active hysterons. Simulation in Fig. 5(a) is
re-conducted where a noise is added to the output, the noise
magnitude being4% of the saturation output of the Preisach
operator. From Fig. 5(b), in this case, the parameter error
will not converge to zero under either algorithm. However,
the ultimate error of the output-based algorithm is much
lower than that of the difference-based scheme.

B. Experimental results

Experiments have been conducted on a magnetostrictive
actuator to examine the identification schemes. The hys-
teretic relationship between the displacement output of the
actuator and its current input can be modeled by a Preisach
operator when the current input is quasi-static [7].

A periodic first order reversal current input is used for
recursive identification of the Preisach density function. A
practically important issue is the choice of the discretization
level L. Although it is expected that the higher discretiza-
tion level L, the higher model accuracy, there are two
factors supporting a moderate value ofL in practice: the
computational complexity and the sensor accuracy level.
Since the number of cells on a discretization grid scales
asL2, so is the computational complexity of the recursive
identification algorithm. It should also be noted that, from
Table I, the convergence rate

√
1 − c1 decreases asL in-

creases. Furthermore, in the presence of the sensor noise and
unmodeled dynamics, higher discretization level may not
necessarily lead to improved performance. Fig. 6 compares
the measured hysteresis loops against the predicted loops
based on the identified parameters for differentL. Although
the scheme withL = 10 achieves much better match than
the scheme withL = 5, there is little improvement when
L is increased to 15. Hence for the particular actuator
(and the sensor used), it is determined thatL = 10 is an
appropriate discretization level. Fig. 7 shows the identified
density distribution forL = 10 after eight periods. The
output-based gradient algorithm is used withγ = 1.

VI. CONCLUSIONS

This paper has been focused on recursive identification
of hysteresis in smart materials. A Preisach operator with
piecewise uniform density function was used to approx-
imate smart material hysteresis. On the theoretical side,
a necessary condition and a sufficient condition for the
parameter convergence were presented in terms of the input
to the Preisach operator. In contrast to the results for
linear systems, the conditions here center around the local
maxima/minima of the input.

Practical implementation issues were studied through
both simulation and experiments. Two types of adaptive gra-
dient identification algorithms were compared. It was found
that the difference-based method has a higher convergence
rate, but it is more sensitive to the measurement noise. The
choice of the level of discretization was also discussed.

Recently an adaptive inverse control algorithm has been
developed using the output-based recursive identification,
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Fig. 6. Comparison of measured hysteresis loops with predicted loops
based on the identified density. (a)L = 5; (b) L = 10; (c) L = 15.
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Fig. 7. Identified Preisach density function (L = 10).

which will be reported in another paper. For future work,
it will be of interest to extend the results here to the cases
where the hysteresis output is not directly measurable. Such
cases happen if, e.g., the high-frequency dynamics of the
smart material actuator is not negligible, or the actuator is
used to control some other plant.
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