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Abstract— This paper is about controller design for switched
linear systems with input signals. The synthesis problem
how to design the individual feedback gains and how to
switch among the individual closed-loop feedback systems
such that the switched system becomes (exponentially) stable,
is constructively formulated as a bilinear matrix inequality
problem. By using multiple quadratic Lyapunov functions, one
for each closed-loop linear vector field, a stabilizing controller
is synthesized for a broader class of switched systems than
earlier proposed in the literature. One example is given to
illustrate the synthesis procedure.

I. INTRODUCTION

A large class of systems is reasonable modelled by a
family of continuous-time subsystems and logic rules that
govern the switchings between them. Such switched systems
have gained much attention the last decade, mostly due to
the growing use of computers in the control of physical
plants (making it easy to switch between controllers) but
also as a result of the switched nature of many physical
processes, see for instance [1], [2] for examples.

Specifically in this paper, we are focused on switched
linear systems with input signals u

ẋ = Aix + Biu, i ∈ Im = {1, . . . , m}, (1)

where x ∈ �n, u ∈ �p and the index function i : [0 ∞) →
Im decides which one of the linear vector fields that is
active at a certain time instant. The problem treated in this
paper is how to design the feedback gains

u = Kix, KiK
T
i ≤ κ2I, i ∈ Im, (2)

(I is the p×p identity matrix) and the index function i such
that (the origin of) the closed-loop switched linear system

ẋ = (Ai + BiKi)x ≡ Acl
i x, i ∈ Im, (3)

becomes (exponentially) stable. Since both the gains Ki and
the index function i is crucial for the stability of (1), the
design of both has to be performed simultaneously.

The constraints KiK
T
i ≤ κ2I , where κ is a design

parameter, are introduced to restrict the control signal from
being too large. Without constraints, the eigenvalues of each
of the individual closed-loop linear system in (3) can be
placed arbitrarily far away on the negative real axis in the
complex plane, if controllable, leading to arbitrarily fast
(exponential) convergence of the switched linear system.

Except designing an exponentially stable controller, the
goal of this paper is to find the gains Ki and the index

function i that bests estimate the exponential convergence
rate. This means that even if the constraints on the gains
Ki is about so generous that at least one of the closed-loop
subsystems become individual stable, the trivial solution to
switch to that subsystem is not necessarily the best one.

The result in this paper relies on the existence of multiple
Lyapunov functions. There are approaches in the literature
suggesting conditions guaranteeing stability of closed-loop
switched and hybrid systems using multiple Lyapunov func-
tions, see [3], [4], [5], [6], [7]. In general, however, these
results are not constructive in the sense that they explicitly
determine the switching rule but merely give conditions that
possible stabilizing switching rules have to satisfy.

There are several constructive propositions in the liter-
ature how to stabilize classes of switched system without
input signals, see for instance [8]. The methods suggested
in [3], [9], [10] are restricted to switched closed-loop linear
systems consisting of (unstable) linear vector fields for
which there exists a stable convex combination of the cor-
responding A-matrices. These methods guarantee stability
by using a common quadratic Lyapunov function. The work
in [11] is a first attempt to propose constructive synthesis
results for switched systems consisting of two linear vector
fields by using multiple Lyapunov functions.

Recently, in an earlier paper [12], a constructive synthesis
method has been suggested that is applicable to a broader
class of closed-loop switched linear systems than earlier
proposed in the literature. In this paper, the method is
applied to switched linear systems with input signals. The
method utilizes multiple Lyapunov functions, and it is
shown how the synthesize problem can be formulated as
a Bilinear Matrix Inequality (BMI) problem [13], a bilinear
optimization problem, consisting of unknown scalars and
gains multiplied by unknown matrices. By gridding the
unknown scalars and gains, the verification of the stability
conditions becomes a Linear Matrix Inequality (LMI) prob-
lem [14]; a convex optimization problem for which there
exists efficient numerical software.

The outline of this paper is: we start by giving the
synthesis result for switched linear systems with input
signals. It is explained how the number of unknowns in the
obtained bilinear matrix inequality problem can be reduced,
in order to reduce the complexity of the optimization
problem. Section III relates the proposed method by other
ones found in the literature. Finally, the method is applied
to an example.



II. SWITCHING SYNTHESIS

The intention of this section is to present the synthesis
method for switched linear systems with input signals.
The method is an application of the synthesis method
originally proposed in [12] for closed-loop switched linear
systems. The section begins with some preliminaries needed
to understand the method.

A. Preliminaries

The origin of the closed-loop switched linear system (3)
is exponentially stable if all trajectories satisfy

||x(t)|| ≤ k1e
−k2t||x0||, (4)

for some k1 > 0 and k2 > 0. The goal of this paper is to
design the feedback gains Ki in (2) and the index function i
such that the closed-loop switched linear system (3) fulfills
this definition.

B. Potential activation of local subsystems

The specific closed-loop linear subsystem ẋ = Acl
i x in

(3) may potentially be activated in parts of the state space,
specified by a region Ωi. Switches of the closed-loop linear
subsystem ẋ = Acl

i x to ẋ = Acl
j x potentially occur in parts

of the state space, specified by a switch region Ωi,j .
Whether a specific linear subsystem is activated or not

inside an associated region is decided by the switch strategy
in the next subsection, which indirectly also specify the
switch regions.

Specifically in this paper, we assume that the regions Ωi

and Ωi,j have the structure of quadratic forms

Ωi = {x ∈ �n | xT Qix ≥ 0}, i ∈ Im,
Ωi,j = {x ∈ �n | xT (Qj − Qi)x = 0}, (i, j) ∈ Im × Im,

(5)
where Qi ∈ �n×n, i ∈ Im, are symmetric matrices that will
be determined by the synthesis method given later on.

C. Largest region function strategy

We define the index function in this paper according to:

i(x) = arg
(
max
i∈Im

xT Qix
)
, (6)

which is denoted the largest region function strategy due
to the selection of closed-loop linear subsystem (at state x)
corresponding to the largest value of the region functions
xT Qix.

D. Multiple Lyapunov functions

The synthesis method for closed-loop switched linear
systems proposed in [12] is based on the use of multiple
quadratic Lyapunov functions. For every region Ωi, there
is a local quadratic Lyapunov function associated, which
means that the overall energy of the closed-loop switched
linear system (3) is measured by xT Pix when the specific
linear subsystem ẋ = Acl

i x is activated. The synthesis
method in [12], which is given later on in subsection II-F,
is essentially conditions that mean that the overall abstract
energy, measured by the different local Lyapunov functions,
must decrease for all times.

E. Equal energy when switching

By restricting the different local quadratic Lyapunov
functions according to

Pi = Pj + ηi,j(Qj − Qi), i ∈ Im, j ∈ Im, (7)

where ηi,j = ηj,i, i ∈ Im, j ∈ Im, are arbitrary scalars,
it means that xT Pix = xT Pjx for all states satisfying
xT Qix = xT Qjx, which are the potential switching states
according to (5).

The requirement that the local energy functions have to
be equal for all potential switchings is introduced since it,
in general, is impossible to a priory know which switchings
that actually will occur in the controlled system, since this
is a result of the synthesis method.

F. Synthesis conditions closed-loop switched linear system

The following synthesis method (in form of a theorem)
for switched linear systems with input signals, recently
suggested in [12] for closed-loop switched linear systems
(in which a formal proof is given), guarantees (exponential)
stability using the largest region function strategy.

Theorem 1 (Closed-loop synthesis) If there exist symmet-
ric matrices Pi and Qi, gains Ki, and scalars α, µi, νi, ϑi,
θi and ηi,j , solving the constrained optimization problem:

min β subject to

0. α > 0, µi ≥ 0, νi ≥ 0, ϑi ≥ 0, θi ≥ 0, i ∈ Im

1. αI + µiQi ≤ Pi ≤ βI − νiQi, i ∈ Im

2. (Acl
i )T Pi + PiA

cl
i + ϑiQi ≤ −I , i ∈ Im

3. Pi = Pj + ηi,j(Qj − Qi), i ∈ Im, j ∈ Im

4. θ1Q1 + . . . + θmQm ≥ 0
5. KiK

T
i ≤ κ2I , i ∈ Im

then the largest region function strategy implies that the
origin of the closed-loop switched linear system (3) is
exponentially stable according to (4), where

k1 =

√
β

α
, k2 =

1
2β

,

if no sliding motion occurs.

The largest region function strategy is one of the key
ingredients in the proposed synthesis result (together with
the equal energy requirement (7) when switching). Proposed
strategies in the literature are based on switchings due to the
smallest or largest local Lyapunov function, see for instance
[11], [15]. There are examples that cannot be stabilized
based on switchings due to the smallest local Lyapunov
function and vice versa (see for instance Example IV in
which case a strategy to activate the subsystem correspond-
ing to the smallest local Lyapunov function would not lead
to any solution satisfying the stability conditions due to
the vector field direction of the two subsystems). However,
this problem is avoided applying the largest region function
strategy, since this method indirectly is coupled to the local
Lyapunov functions through the local regions.



The conditions in the theorem are essentially require-
ments that the energy, measured by Vi(x) = xT Pix in
region Ωi, has to be positive (Condition 1 together with α >
0), and decrease, i.e. V̇i = xT (AT

i Pi+PiAi)x ≤ −I (where
I is the identity matrix of dimension n × n) when inside
the region (Condition 2), and equal Vj(x) = xT Pjx =
xT Pix = Vi(x) when changing region (Condition 3), which
occurs for the set of states fulfilling xT qix = xT Qjx.
These conditions are all constrained to be valid in specific
regions (Ωi and Ωi,j respectively) but can be replaced
by the unconstrained conditions in the theorem by using
the so called S-procedure, see [14], which introduces the
additional variables µi, νi, ϑi and ηi,j , satisfying Condition
0. Condition 4 is introduced to guarantee that for all states
x ∈ �n, at least one subsystem can be activated fulfilling
the energy decrease conditions, which together with the
largest region function strategy means that only subsystems
fulfilling the energy decrease conditions are activated.

G. Parameters in the bilinear matrix inequality problem

Defining Pm = P and ηi = ηi,m, i ∈ Im−1, it follows
from Condition 3 in Theorem 1 that

Pi = P + ηi(Qm − Qi), i ∈ Im−1.

This means that Conditions 1 and 2 become:

1. αI+µiQi ≤ P +ηi(Qm−Qi) ≤ βI−νiQi, i ∈ Im−1

αI + µmQm ≤ P ≤ βI − νmQm

2. (Acl
i )T (P +ηi(Qm −Qi))+(P +ηi(Qm −Qi))Acl

i +
ϑiQi ≤ −I, i ∈ Im−1

(Acl
m)T P + PAcl

m + ϑmQm ≤ −I

Hence, the number of unknown variables in Theorem 1 is
(m + 1)n(n+1)

2 + mnp + 5m (P and Qi, i ∈ Im, all with
n(n+1)

2 unknown elements, the m gains with np elements,
the positive scalars µi, νi, ϑi and θi, i ∈ Im, and the
arbitrary scalars ηi, i ∈ Im−1 and α), β not included.

The problem verifying the existence of the unknown vari-
ables satisfying the conditions in Theorem 1 is a Bilinear
Matrix Inequality (BMI) problem, due to unknown scalars
and gains multiplied by matrices. BMI problems are NP-
hard, which means that its solution cannot be computed in
polynomial time in the worst case [13]. However, this does
not imply that practical algorithms are not possible; prac-
tical algorithms for NP-hard problems exist and typically
involve approximations, heuristics, branch-and-bound, or
local search. Algorithms for solving optimization problems
over BMIs are currently limited to problems of modest size.

One way to compute the BMI problem in Theorem 1 is to
grid up the gains and the unknown scalars. For fixed values
of these parameters, the verification of the remaining un-
known variables becomes a Linear Matrix Inequality (LMI)
problem [14], which is a convex optimization problem that
can be solved efficiently by existing numerical software, for
instance [16] which is the one used in this paper.

Since any β satisfying the conditions in Theorem 1 is
a solution guaranteeing (exponential) stability using the

largest region function strategy, it is not crucial to find the
optimal value of β. Hence, the gridding of the unknown
scalars can be made quite sparsely. If the constraints on the
gains Ki is about so generous that at least one of the closed-
loop subsystems become individual stable, this solution may
serve as a valid starting point in the search for the optimal
solution. The number of unknown variables in Theorem 1
can be reduced, which simplifies the search for the optimal
solution, which is described next.

If there is a solution to Theorem 1, the same solution is
valid also in the case when the scalars νi, i ∈ Im, are put to
zero, with the difference that the optimal value of β might
be higher, leading to a worse estimate of the exponential
convergence rate k2 = 1/(2β) in (4). This is true since the
optimal value value satisfies λmax(Pi) = β − νiλmin(Qi),
i ∈ Im, where λmax(Pi) is the largest eigenvalue of Pi

and λmin(Qi) is the smallest eigenvalue of Qi. In the case
when an eigenvalue of Qi is strictly negative and νi strictly
positive (leading to a positive value of −νiλmin(Qi)), the
optimal value of β would be increased to β − νiλmin(Qi)
if νi instead was put to zero. Note that all Qi’s with only
positive eigenvalues (which means that the corresponding
matrices are positive definite) leads to an optimal solution
where the corresponding νi = 0; otherwise β could be
decreased further by decreasing νi, which means that it
is not optimal. Hence, it is advantageous to first put the
unknown scalars νi, i ∈ Im, to zero, reducing the number
of unknown scalars by m, find a solution and then either
accept this worse estimate of the exponential convergence
k2 or improve it by afterwards find the smallest β satisfying
Pi ≤ βI − νiQi, i ∈ Im, where now Pi and Qi are known
matrices and the νi ≥ 0, i ∈ Im, are unknown. This search
for the smallest β is an LMI problem.

In a similar way, the left hand side of Condition 1 in
Theorem 1 can be changed to the condition 0 < Pi,
reducing the number of unknowns by m + 1 (the scalars
µi, i ∈ Im and α), with a worse estimate k1 =

√
β/α in

(4). The estimate of k1 can then be accepted or improved
by finding the largest α satisfying α + µiQi ≤ Pi, i ∈ Im,
where Pi and Qi are known matrices and the µi ≥ 0,
i ∈ Im, are unknown. As above, this is an LMI problem.

One of the θi’s in Condition 4 of Theorem 1 can be scaled
to 1 without loss of generality, reducing the unknowns
by one. Furthermore, the optimum value of Theorem 1
means that Condition 4 and Condition 5 are satisfied with
equality implying that the number of unknowns can be
further reduced by one parameter.

To conclude, the number of unknown scalars can be
reduced by 2(m + 1) + 1 parameters resulting in less
BMI conditions. However, BMI conditions will still remain,
and needs to be solved by some method, for instance by
gridding.

H. Check for sliding motions

Stability of Theorem 1 is only guaranteed if no sliding
motions occur applying the largest region function strategy.



Sliding motions may occur at the surface of states satisfy-
ing maxi∈Im

xT Qix = maxj∈Im
xT Qjx (i �= j), which

are states where the subsystem changes occur. If sliding
motions occur, the trajectory moves along the surface (with
dynamics defined for instance according to Filippov’s con-
vex combination [17]), which may lead to either a stable
or an unstable equilibrium point. Therefore, it must be
verified that no sliding motion occurs in the application of
Theorem 1.

Assume that a solution to Theorem 1 is obtained with two
neighboring regions xT Qix ≥ 0 and xT Qjx ≥ 0, that both
are the largest region functions among all region functions.
Let the boundary between these regions be defined by
xT Qx = xT Qix − xT Qjx = 0. This means that the
gradient ∂xT Qx

∂x = 2xT Q points into the region xT Qix ≥ 0,
since xT Qix − xT Qjx ≥ 0 in region xT Qix ≥ 0 and
xT Qix − xT Qjx ≤ 0 in region xT Qjx ≥ 0.

Sliding motions do not occur at the surface xT Qx = 0
either if the two vector fields Acl

i x and Acl
j x both points into

region xT Qix ≥ 0 or xT Qjx ≥ 0, or if vector field Acl
i x

points into region xT Qix ≥ 0 and vector field Acl
j x points

into region xT Qjx ≥ 0, see [17]. By using the gradient
∂xT Qx

∂x = 2xT Q of the surface xT Qx = 0, this implies that
no sliding motion occurs if either the condition

xT (Acl
i )T Qx + xT QAcl

i x · xT (Acl
j )T Qx + xT QAcl

j x ≥ 0,

or the condition

xT (Acl
i )T Qx+xT QAcl

i x ≥ 0 and xT (Acl
j )T Qx+xT QAcl

j x ≤ 0,

is satisfied for all points fulfilling xT Qx = 0.
On the other hand, if vector field Acl

i x points into region
xT Qjx ≥ 0 and vector field Acl

i x points into region
xT Qjx ≥ 0, sliding motion occurs along the surface
xT Qx = 0, see [17]. This implies that sliding motion occurs
if the condition

xT (Acl
i )T Qx+xT QAcl

i x ≤ 0 and xT (Acl
j )T Qx+xT QAcl

j x ≥ 0,

is satisfied for some state x ∈ �n satisfying xT Qx = 0.
Since Q is symmetric, it can be factorized into Q =

SΛST , with the orthonormal eigenvectors in S and the
eigenvalues (on the diagonal) in Λ [18] (ST = S−1). By
coordinate transformation y = ST x (x = Sy), and the note
that neither xT Qx = xT SΛST x = yT Λy = 0 nor the
inequalities are affected by a scaling, we have the following
lemma:

Lemma 1 No sliding motion occurs if and only if either

yT (ST (Acl
i )T SΛ+ΛST Acl

i S)y·yT (ST (Acl
j )T SΛ+ΛST Acl

j S)y ≥ 0

or
yT (ST (Acl

i )T SΛ + ΛST Acl
i S)y ≥ 0

and yT (ST (Acl
j )T SΛ + ΛST Acl

j S)y ≤ 0

is satisfied for all y ∈ �n fulfilling yT Λy = 0 and yT y = 1.

In the case when y ∈ �2, the verification of either of these
lemma is easily performed since yT Λy = 0 is equal to y2 =
±

√
−λ1

λ2
y1 (i.e. a linear relation), where λ1 and λ2 are the

two eigenvalues and y = [y1 y2]T . Hence, since yT Λy = 0
is equal to y2

1 + y2
2 = 1, the solution is y1 = ±

√
− λ2

λ1−λ2

and y2 = ±
√

λ1
λ1−λ2

. Therefore, the verification of the
inequality in the lemma has to be performed only for the

two different points y = [
√

− λ2
λ1−λ2

±
√

λ1
λ1−λ2

]T (−y

gives the same result as y).
In higher dimensions than two, the inequality in Lemma 1

has to be verified for a continuum of points satisfying
yT Λy = 0 and yT y = 1.

I. Special case: two linear closed-loop subsystems

In case of switching between only two linear subsystems,
we can set Q1 = Q and Q2 = −Q (without loss of
generality, we can scale θ1 = θ2 = 1) implying that
Condition 4 in Theorem 1 is satisfied. Using the variables
P1 and P2, Theorem 1 becomes:

Corollary 1 (Closed-loop synthesis two subsystems) If
there exist symmetric matrices Pi, gains Ki, and scalars
α, µi, νi, ϑi and η solving the constrained optimization
problem:

min β subject to

0. α > 0, µi ≥ 0, νi ≥ 0, ϑi ≥ 0, i ∈ I2

1. αI + µ1
2η (P2 − P1) ≤ P1 ≤ βI − ν1

2η (P2 − P1)
αI − µ2

2η (P2 − P1) ≤ P2 ≤ βI + ν2
2η (P2 − P1)

2. (Acl
1 )T P1 + P1A

cl
1 + ϑ1

2η (P2 − P1) ≤ −I

(Acl
2 )T P2 + P2A

cl
2 − ϑ2

2η (P2 − P1) ≤ −I

3. KiK
T
i ≤ κ2I , i ∈ I2

then the largest region function strategy implies that the
origin of the closed-loop switched linear system (3) is
exponentially stable according to (4), where

k1 =

√
β

α
, k2 =

1
2β

,

if no sliding motion occurs.

III. RELATION EXISTING METHODS

In Theorem 1, if all ηi = 0, i ∈ Im−1, it means that a
common P matrix has to satisfy the conditions (in this case,
a solution to Theorem 1 (for designed Ki’s) implies that
sliding motions also are allowed to occur, if they are defined
according to Filippov’s convex combination definition [17]).
Multiplying Condition 2 by θi/ϑi and summing up gives
m∑

i=1

θi

ϑi
((Acl

i )T P + P (Acl
i )) + θ1Q1 + . . . + θmQm ≤ −I,

which implies that
m∑

i=1

θi

ϑi
((Acl

i )T P + PAcl
i ) ≤ −I,

due to Condition 4. This condition together with Condi-
tion 1 where µi = νi = 0, are the synthesis conditions
proposed in [10] applying the min-projection strategy, and



a solution exists only if there exists a stable convex combi-
nation of the A-matrices. Hence, this BMI problem can be
solved by first searching for a stable convex combination,
and then solving an LMI to find the P -matrix.

In the min-switch strategy proposed in [15] it is assumed
that each closed-loop subsystem has an associated Lya-
punov function, decided a priori, for which the energy
decreases in a certain region, and these regions together
cover the state space. A min-switch strategy is proposed
meaning that the subsystem corresponding to the smallest
Lyapunov function is selected. The problem is, however,
that there is no guarantee that a trajectory cannot move
outside a region for where it is valid, since the states where
the closed-loop subsystem are switched are not necessarily
inside the regions where the energy for two consecutive
activated subsystems are decreasing. Hence, the approach
is not constructive. In the approach suggested in this paper
(and originally in [12]), it is guaranteed that the closed-
loop subsystems are switched at states at the boundary of
the regions where the energy for two consecutive activated
subsystems are decreasing, due to the restriction (7) and the
application of the Largest region function strategy in (6).

Switching between two closed-loop linear subsystems
and defining µ1 = µ2 = ν1 = ν2 = 0, Corollary 1 becomes
(β neglected)

0. ϑi ≥ 0, i ∈ I2

1. αI ≤ Pi ≤ βI , i ∈ I2

2. (Acl
1 )T P1 + P1A

cl
1 + ϑ1

2η (P2 − P1) ≤ −I

(Acl
2 )T P2 + P2A

cl
2 − ϑ2

2η (P2 − P1) ≤ −I

which in case of η = −1/2 (η = 1/2), are essentially
the same conditions as the one proposed in [11], in which
the strategy is to select the closed-loop linear subsys-
tem corresponding to the largest (smallest) local quadratic
Lyapunov function. A negative value of η means that
the subsystem corresponding to the largest local quadratic
Lyapunov function is activated and a positive value of η
means that the subsystem corresponding to the smallest
local quadratic Lyapunov function is activated. Hence, when
a specific strategy is decided a priori, it means that the sign
of η implicitly is decided. The specific choice of strategy
is crucial, since a wrong strategy may lead to the non-
existence of a solution satisfying the stability conditions
(see for instance Example IV in which case a strategy to
activate the subsystem corresponding to the smallest local
Lyapunov function would not lead to any solution satisfying
the stability conditions due to the vector field direction of
the two subsystems).

IV. EXAMPLE

We will now illustrate the synthesis procedure in this
paper in the case of two unstable subsystems given by

A1 =
[

1 −5
0 3

]
, B1 =

[
0
1

]
,

A2 =
[

3 0
5 1

]
, B2 =

[
1
0

]
.

for different values of κ. Due to symmetry in this example,
it can be seen that the optimal value of ϑ1 is equal to
ϑ2, and the gains K1 = [k11 k12] and K2 = [k21 k22]
are related according to k21 = k12 and k22 = −k11,
reducing the number of unknowns by two. Furthermore,
the optimal gains are obtained with equalities, reducing the
unknowns by one more. By scaling η = −1 (implying
that the switched linear subsystem corresponding to the
largest local Lyapunov function is chosen, according to the
discussion in the previous section), only ϑ = ϑ1 = ϑ2 and
one gain parameter remain to be gridded.

a) κ = 0: In this case, it is not possible to stabilize
the system by any switching at all, so there is of course no
solution to Corollary 1.

b) κ = 2: Gridding up the unknown parameters, and
solving the corresponding LMI problem in Corollary 1,
results in a solution

β = 3.3993 (ν1 = ν2 = 0), α = 2.0077 (µ1 = µ2 = 1),

and
K1 =

[
0 −2

]
, K2 =

[ −2 0
]
,

P1 = =
[

1.0432 1.0031
1.0031 2.9722

]
,

P2 =
[

2.9722 −1.0031
−1.0031 1.0432

]
,

Q1 = −Q2 = 1
2η (P2 − P1) =

[ −0.9645 1.0031
1.0031 0.9645

]
.

Since the conditions in Lemma 1 are fulfilled, no sliding
motions occur. Hence, applying the largest region function
strategy results in an exponentially stable switched system,
where the estimate of the exponential convergence becomes

||x(t)|| ≤ 1.3012e−0.1471t||x0||.
Fig. 1 shows a trajectory simulation and the contour
curves of the two quadratic Lyapunov functions xT P1x
and xT P2x. The shaded region corresponds to the region
xT Q1x ≥ 0 where the closed-loop subsystem 1 is active
and the energy is measured by xT P1x, and the non-shaded
region corresponds to xT Q2x ≥ 0 where the closed-
loop subsystem 2 is active and the energy is measured by
xT P2x. The lines between the two regions indicate where
the subsystem changes occur, and are given by the solution
to xT Qx = xT (Q1 − Q2)x = 0.

c) κ = 4: The solution now becomes

β = 0.5910 (ν1 = ν2 = 0), α = 0.3554 (µ1 = µ2 = 1),

and
K1 =

[
0 −4

]
, K2 =

[ −4 0
]
,

Q1 = −Q2 = Q =
[ −0.2037 0.1185

0.1185 0.2037

]
,

which implies that the largest region function strategy
results in the estimate

||x(t)|| ≤ 1.2896e−0.8460t||x0||.
A trajectory simulation and the contour curves of the two
quadratic Lyapunov functions can be seen in Fig. 2.
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Fig. 1. In the case when κ = 2, the application of the synthesis method
in this paper results in a switched system that is exponentially stable,
indicated by the trajectory simulation. The dashed lines are the contour
curves of the two quadratic Lyapunov functions xT P1x and xT P2x, that
measure the switched system’s (abstract) energy in the regions xT Q1x ≥
0 (shaded region) and xT Q2x ≥ 0 respectively.
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Fig. 2. In the case when κ = 4, the application of the synthesis
method in this paper results in a switched system that is exponentially
stable, with faster convergence than in the case κ = 2, indicated by
the trajectory simulation. The dashed lines are the contour curves of the
two quadratic Lyapunov functions xT P1x and xT P2x, that measure the
switched system’s (abstract) energy in the regions xT Q1x ≥ 0 (shaded
region) and xT Q2x ≥ 0 respectively.

V. CONCLUSIONS

A constructive synthesis method, applicable to a broader
class of switched linear systems with input signals than
earlier proposed in the literature, has been presented in this
paper. The method is based on the use of multiple quadratic
Lyapunov functions, one for each linear subsystem, and
conditions are introduced guaranteeing the energy to de-
crease at all time. The synthesis problem is formulated as a
bilinear matrix inequality (BMI) problem, where unknown
scalars are multiplied by unknown matrices. A solution to
the problem gives regions where the different subsystems

are activated, resulting in a switched linear system that is
exponentially stable. An example is given to illustrate the
success of the method.

By exploiting the specific structure of the resulting BMI
problem, more efficient algorithms (than gridding the un-
known scalars) might be developed. Furthermore, in case
of third-order systems or higher, there is a need of efficient
methods to verify the non-existence of sliding motions.
However, finding efficient methods for solving these type
of problems is beyond the scope of this paper but are
interesting future research problems. Up to this point, the
main attention has been given to the synthesis problem
formulation, since there have been a lack of constructively
design results in the literature.
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