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Abstract— We investigate some particular classes of hybrid
systems subject to a class of time delays; the time delays can
be constant or time varying. For such systems, we present
the corresponding classes of piecewise continuous Lyapunov
functions.

Index Terms— Lyapunov functions, hybrid systems, stability

I. I NTRODUCTION

Construction of Lyapunov functions is a fundamental
problem in system theory — its importance stems from the
fact that the internal stability of a system is concluded if an
associated Lyapunov function is shown to exist. This paper
concerns such a construction for a class of systems that
arehybrid in the sense that the state trajectory evolution is
governed by different dynamical equations over different
polyhedral partitionsXi of the state-spaceX; i.e., the
system is modelled by an ensemble of subsystems, each
of which is a valid representation of the system over a set
of such partitions. A motivating application for the study of
such systems is described in [6].

Conceptually, perhaps the simplest solution is acom-
mon quadraticLyapunov function, i.e. a quadratic function
which is a global Lyapunov function for the subsystems
comprising the hybrid system [3]. However, the construction
of such a Lyapunov function is anNP-hard problem even
when the subsystems are linear time invariant [1]. Further-
more, the existence of such a function is, in principle, an
overly restrictive requirement to deduce the stability [4,
Section IV].

Conservatism introduced by aglobal Lyapunov function
V can be reduced by searching for a set{Vi} of local
Lyapunov functions and by ensuring that the Lyapunov
functionsmatch in the sense that the values of Lyapunov
functions Vi and Vj are equal when the state trajectory
leaves a cellXi and enters a cellXj , whereVi is a local
Lyapunov function in the cellXi andVj is a local Lyapunov
function in the cellXj (see [2] and [7]). In this context, an
elegant result has been recently derived by [4] to construct
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Lyapunov functions when the subsystem dynamics are
known to be affine time invariant; an independent inter-
pretation of this result is given in [3]. For some practical
applications, however, the piecewise affine structure must be
modified to address modelling uncertainties and time delays
[6]. For such systems, consequently, the stability conditions
laid down by [4] get modified as we will demonstrate.

The paper is organized as follows. The notation and the
key relevant concepts are introduced in Section II. The
problems are formulated in Section III and the relevant
prior art is described in Section IV. Our main results
are presented in Section V and discussed in Section VI.
The paper is concluded in Section VII. Formal proofs are
presented in the Appendix.

II. PRELIMINARIES

The notation is introduced as and when necessary. Capital
letter symbols, such asF andG, denote operators whereas
small letter symbols, such asx and y, denote real signals
which may possibly be vector valued or matrix valued. The
set of all real (complex) numbers is denotedR (C) and the
set of all integers is denotedZ. The notation

.= stands for

‘defined as’. The inner product〈x, y〉 .=
∫ ∞

−∞
y(t)T

x(t) dt.

The Euclidean norm‖x‖ .=
√
〈x, x〉. The vector space of

signals for which the Euclidean norm exists is denotedLn
2 .

The vector spaceLn
2 is generally referred to asL2. Fourier

transform ofx is denoted̂x. Conjugate transpose of a vector
or matrix (·) is denoted(·)∗; its transpose is denoted(·)T

and
(
(·)2)T

is denoted(·)2T . Given z ∈ Rn×n, z º 0
implies that every element ofz is nonnegative. The(i, j)-th
element of a matrix(·) is denoted as either(·)i,j or (·)ij ,
depending on the ease of reading. Time derivative of the
signalx is denotedẋ.

Definition 1 (Piecewise Affine Systems, [4]):The class
SH of hybrid systems is defined by a family of ordinary
differential equations as:

ẋ(t) = Aix(t) + ai, ∀ x(t) ∈ Xi

where Ai ∈ Rn×n, ai ∈ Rn, and {Xi}i∈I ⊂ Rn is a
partition of the state-space into a finite number of closed,
and possibly unbounded, polyhedral cells with pairwise
disjoint interior. The set of cells that include the origin is
denotedI0, i.e. ai = 0, ∀ i ∈ I0; its compliment is denoted
I1. ¤

Definition 2 (Piecewise Affine Time-Delay SystemsSτc):
The classSτc of hybrid systems is defined by a family of



retarded ordinary differential equations as:

ẋ(t) = Aix(t) + Adix(t− τ) + ai, ∀ x(t) ∈ Xi

where Ai, Adi ∈ Rn×n, ai ∈ Rn, 0 < τ ∈ R and
{Xi}i∈I ⊂ Rn is a partition of the state-space as inS.
The set of cells that include the origin is denotedI0, i.e.
ai = 0, ∀ i ∈ I0; its compliment is denotedI1. ¤

Definition 3 (Piecewise Affine Time-Delay SystemsSτcL):
The classSτcL is obtained from theSτc by replacing the

term Adix(t − τ) with the term
L∑

`=1

Adi`x(t − τ`) where

Adi` ∈ Rn×n, 0 < τ` ∈ R, and0 < L ∈ Z. ¤
Definition 4 (Piecewise Affine Time-Delay SystemsSτv):

The classSτv of hybrid systems is defined by a family of
retarded ordinary differential equations as:

ẋ(t) = Aix(t) + Adix(t− τ(t)) + ai, ∀ x(t) ∈ Xi

where the time varying time delay is constrained as

0 ≤ τ(t) ≤ h, τ̇(t) ≤ d < 1 ∀t ∈ R,

for some h, d ∈ R, Ai, Adi ∈ Rn×n, ai ∈ Rn, and
{Xi}i∈I ⊂ Rn is a partition of the state-space as inS.
The set of cells that include the origin is denotedI0, i.e.
ai = 0, ∀ i ∈ I0; its compliment is denotedI1. ¤

Definition 5 (Piecewise Affine Time-Delay SystemsSτvL):
The classSτvL is obtained from theSτv by replacing the

term Adix(t − τ(t)) with the term
L∑

`=1

Adi`x(t − τ`(t))

where the time varying time delay is constrained as

0 ≤ τ`(t) ≤ h`, τ̇`(t) ≤ d` < 1 ∀t ∈ R,

Adi` ∈ Rn×n, 0 < τ`(t) ∈ R, and0 < L ∈ Z. ¤
III. PROBLEM FORMULATION

Problem 1: Determine a set of computationally tractable
analytical conditions under whichSτc is stable. ¤

Problem 2: Determine a set of computationally tractable
analytical conditions under whichSτcL is stable. ¤

Problem 3: Determine a set of computationally tractable
analytical conditions under whichSτv is stable. ¤

Problem 4: Determine a set of computationally tractable
analytical conditions under whichSτvL is stable. ¤

IV. PRIOR ART

An elegant result on the stability analysis ofSH is given
by [4]. Briefly speaking, the development is as follows.
Denote

Āi =
[

Ai ai

0 0

]
.

Let Ēi =
[
Ei

ei

]
, F̄i =

[
Fi

fi

]
, where

[
ei

fi

]
=

[
0
0

]
, ∀ i ∈ I0,

such that

Ēi

[
x
1

]
º 0, ∀ x ∈ Xi, i ∈ I;

F̄i

[
x
1

]
= F̄j

[
x
1

]
, ∀ x ∈ Xi ∩Xj , i, j ∈ I.(1)

Lemma 1 (Theorem 1, [4]):Consider symmetric matri-
cesT, Ui, andWi such thatUi andWi have non negative
entries whilePi

.= FT
i TFi, for all i ∈ I0, and P̄j

.=
F̄T

j T F̄j , for all j ∈ I1, satisfy

AT
i Pi + PiAi + ET

i UiEi < 0 (2)

Pi − ET
i WiEi > 0 (3)

ĀT
j P̄j + P̄jĀj + ĒT

j UjĒj < 0 (4)

P̄j − ĒT
j WjĒj > 0 (5)

for all i ∈ I0 and for all j ∈ I1. Then, every piecewise
continuous trajectory ofSH tends to zero exponentially.¤

Remark 1:An independent interpretation, and a slight
improvement, of this result is given in [3]. ¤

Remark 2:To ensure that the local Lyapunov functions
match on the cell boundaries, [4] takes the predetermined
matrices F̄i and F̄j as the given variables, the predeter-
mination being as given by (1), and uses the elements
of the matrixT as the free variables. Now, the condition
(1) allows for a number of choices of̄Fi and F̄j which
might violate the matching condition, thereby incurring an
unnecessarily high cost of computation. This can be avoided
by working directly with the local Lyapunov functionsPi

and Pj as the unknown variables and by stipulating that
Pi − Pj = 2 herm (FijKij), ∀ i, j where the elementsKij

are known variables. ¤

V. M AIN RESULTS

It is not possible to consider an aggregate stateζ(t) .=
[x(t) x(t − τ)]T and apply the arguments of [4] in a
straightforward manner to the system of dynamical equa-
tions described in terms ofζ. This is so because, in general,
it is difficult to deduce the cell containingx(t−τ) given that
a particular cell containsx(t) and, hence, it is difficult to
state the correct matching conditions for the local Lyapunov
functions. We now present solutions to Problem 1 and
Problem 2. Denote

Ādj
.=

[
Adj 0
0 0

]
.

Lemma 2 (Solution to Problem 1):Consider symmetric
matricesT , Ui and Wi such thatUi and Wi have non-
negative entries whilePi

.= FT
i TFi, for all i ∈ I0,

and P̄j
.= F̄T

j T F̄j , for all j ∈ I1, satisfy the following
inequalities:








Hi τPi τAT
i AT

diRA2
di

τPi −τR 0
τA2T

di RAdiAi 0 τA2T
di RA2

di −Q


 < 0

Pi − ET
i WiEi > 0, Q > 0, R > 0

(6)








H̄j τP̄j τĀT
j ĀT

djR̄Ā2
dj

τP̄j −τR̄ 0
τĀ2T

dj R̄ĀdjĀj 0 τĀ2T
dj R̄Ā2

dj − Q̄


 < 0

P̄j − ĒT
j WjĒj > 0, Q̄ > 0, R̄ > 0

(7)



for all i ∈ I0 and all j ∈ I1 where

Ãi
.= Ai + Adi, Âj

.= Āj + Ādj ,

Hi
.= ÃT

i Pi + PiÃi + Q + τAT
i AT

diRAdiAi + ET
i UiEi,

H̄j
.= ÂT

j P̄j + P̄jÂj + Q̄ + τĀT
j ĀT

djR̄ĀdjĀj + ĒT
j UjĒj .

Then, every piecewise continuous trajectory ofSτc tends to
zero exponentially. ¤

Proof: See the proof in the Appendix section.
Remark 3:Lemma 1 may be derived as a special case

of our Theorem 1 by settingτ = 0, Adi = 0, Q = 0.
This is so because the Lyapunov function used by [4] can
be derived as a special of our Lyapunov function, given by
(A.1), by setting theV2(·) andV3(·) terms to zero. ¤

Remark 4:A conservative delay-independent condition
is formulated as follows:





[
AT

i Pi + PiAi + Q + ET
i UiEi PiAdi

AT
diPi −Q

]
< 0

Pi − ET
i WiEi > 0, Q > 0

(8)





[
ĀT

j P̄j + P̄jĀj + Q̄ + ĒT
j UjĒj P̄jĀdj

ĀT
djP̄j −Q̄

]
< 0

P̄j − ĒT
j WjĒj > 0, Q̄ > 0

(9)

for all i ∈ I0 and j ∈ I1. ¤
Remark 5:A further conservative condition, stated by

the small gain theorem, is obtained by settingQ = I. ¤
Remark 6:A lower bound on the maximum delayτ∗ for

which the systemSτ is stable can be obtained by checking
whether the conditions laid down by Theorem 1 are satisfied
as τ increases, starting withτ = 0: the least valueτ∗

for which the conditions laid down by Theorem 1 are not
satisfied, is a conservative estimate of the maximum delay
τ under which the systemSτ is stable. ¤

Example 1:Consider the following piecewise linear
time-delay systeṁx(t) = Aix(t) + Adix(t − τ) with the
cell decomposition expressed byEix º 0,

E1 = −E3 =
[−1 1
−1 −1

]
, E2 = −E4 =

[−1 1
1 1

]
.

The system matrices are given by

A1 = A3 =
[−0.1 0

0 −0.1

]
, A2 = A4 =

[−0.1 0
0 −0.1

]
,

Ad1 = Ad3 =
[

0 5
−1 0

]
, Ad2 = Ad4 =

[
0 1
−5 0

]
.

The system is reduced to Example 1 in [4] whenτ = 0. It
can be verified from Eq. (8) that the system is not stable
regardless of delay. By applying Lemma 2, the estimated
delay margin isτ∗ = 0.0142. We can observe from sim-
ulations that the system becomes unstable with time-delay
between0.020 and0.021 with initial valuex0 =

[−2 0
]T

.
See Figure 1. ¤

Remark 7:By applying the delay-dependent condition
in [5] and [8], the same procedure as in Lemma 2 yields

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

τ = 0.020

(a)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
τ = 0.021

x 2

x
1

(b)

Fig. 1. State trajectories of the system in Example 1 with (a)τ = 0.020,
and (b)τ = 0.021.

the condition


Hi τPiAdiAi τPiA
2
di

τAT
i AT

diPi −τQ 0
τA2T

di Pi 0 −τR


 < 0 (10)

whereHi = ÃT
i Pi+PiÃi+τQ+τR+ET

i UiEi. Application
of the condition to the above example shows the estimated
delay margin isτ∗ = 0.0136, which is more conservative
than the conditions in Lemma 2. ¤

Theorem 1 (Solution to Problem 2):Consider symmet-
ric matrices T , Ui and Wi such thatUi and Wi have
nonnegative entries whilePi

.= FT
i TFi satisfy the condition

(11) for all i ∈ I0 where

X`
.= AT

di`R`Adi`, Ãi
.= Ai +

L∑

`=1

Adi`,

Hi
.= ÃT

i Pi + PiÃi +
L∑

`=1

Q +
L∑

`=1

τ`A
T
i X`Ai + ET

i UiEi.

The conditions forj ∈ I1 is formulated similarly. Then,
every piecewise continuous trajectory ofSτcL tends to zero
exponentially. ¤

Proof: See the proof in the Appendix section.
Lemma 3 (Solution to Problem 3):Consider symmetric

matricesT , Ui and Wi such thatUi and Wi have non-
negative entries whilePi

.= FT
i TFi, for all i ∈ I0,










Hi τ1Pi · · · τLPi

L∑

`=1

τ`A
T
i X`Adi1 · · ·

L∑

`=1

τ`A
T
i X`AdiL

τ1Pi −τ1R1 0 0 · · · 0
...

. . .
...

...
...

τLPi 0 −τLRL 0 · · · 0
L∑

`=1

τ`A
T
di1X`Ai 0 · · · 0

L∑

`=1

τ`A
T
di1X`Adi1 −Q1 · · ·

L∑

`=1

τ`A
T
di1X`AdiL

...
...

...
...

...
...

...
L∑

`=1

τ`A
T
diLX`Ai 0 · · · 0

L∑

`=1

τ`A
T
diLX`Adi1 · · ·

L∑

`=1

τ`A
T
diLX`AdiL −QL




< 0

Pi − ET
i WiEi > 0, Q` > 0, R` > 0, ` = 1, · · · , L

(11)

and P̄j
.= F̄T

j T F̄j , for all j ∈ I1, satisfy the following
inequalities:







Hi hPi hAT
i AT

diRA2
di

hPi −hR 0
hA2T

di RAdiAi 0 hA2T
di RA2

di + (d− 1)Q


 < 0

Pi − ET
i WiEi > 0, Q > 0, R > 0








H̄j hP̄j hĀT
j ĀT

djR̄Ā2
dj

hP̄j −hR̄ 0
hĀ2T

dj R̄ĀdjĀj 0 hĀ2T
dj R̄Ā2

dj + (d− 1)Q̄


 < 0

P̄j − ĒT
j WiĒj > 0, Q̄ > 0, R̄ > 0

for all i ∈ I0 and all j ∈ I1 where

Ãi
.= Ai + Adi, Âj

.= Āj + Ādj ,

Hi
.= ÃT

i Pi + PiÃi + Q + hAT
i AT

diRAdiAi + ET
i UiEi,

H̄j
.= ÂT

j P̄j + P̄jÂj + Q̄ + hĀT
j ĀT

djR̄ĀdjĀj + ĒT
j UjĒj .

Then, every piecewise continuous trajectory ofSτv tends to
zero exponentially. ¤

Proof: The proof follows on the lines of the proof of
Lemma 2 by replacingτ by τ(t) in Eq. (A.1) and applying
Leibniz rule.

Theorem 2 (Solution to Problem 3):Consider symmet-
ric matrices T , Ui and Wi such thatUi and Wi have
nonnegative entries whilePi

.= FT
i TFi satisfy the condition

(13) for all i ∈ I0. The conditions forj ∈ I1 is formulated
similarly. Then, every piecewise continuous trajectory of
SτvL tends to zero exponentially. ¤

Proof: The proof follows on the lines of the proof of
Lemma 3 and Theorem 1.

VI. D ISCUSSION

An application of this theory is the design of an advanced
hazard warning system for highway transportation safety.
The problem of designing a decentralized advance hazard
warning system for highway transportation systems entails

the development of efficient switching controllers. It so
turns out that the vehicle dynamics can be represented by a
finite number of modes, each of which is represented by a
low order transfer function and a constant time delay. The
problem of highway safety analysis then gets translated into
that of the stability analysis of a time delay hybrid system.
Effectively, the mode changes partition the state space into
cells that share, at most, only each other’s boundaries, and
the hybrid system has a piecewise affine form in each of
the cells. A detailed case study is given in [6].

VII. C ONCLUSION

We have derived classes of piecewise continuous Lya-
punov functions for classes of time-delay hybrid systems
inspired by a highway safety application described in [6].
Our Theorem 1 and Theorem 2 extend the well known [4,
Theorem 1].
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...

. ..
...

...
...

hLPi 0 −hLRL 0 · · · 0
L∑

`=1

h`A
T
di1X`Ai 0 · · · 0

L∑

`=1

h`A
T
di1X`Adi1 + (d1 − 1)Q1 · · ·

L∑

`=1

h`A
T
di1X`AdiL

...
...

...
...

...
...

...
L∑

`=1

h`A
T
diLX`Ai 0 · · · 0

L∑

`=1

h`A
T
diLX`Adi1 · · ·

L∑

`=1

h`A
T
diLX`AdiL + (dL − 1)QL




< 0

Pi − ET
i WiEi > 0, Q` > 0, R` > 0, ` = 1, · · · , L

(13)

[6] V. Kulkarni. Optimal mode changes for highway transportation safety.
In MILCOM, Boston, MA, Oct 2003 (accepted).

[7] P. Peleties and R. DeCarlo. Asymptotic stability ofm-switched
systems using Lyapunov like functions. InProc. of American Control
Conference, pages 1679–1684, June 1991.

[8] J. Richard. Time-delay systems: an overview of some recent advances
and open problems.Automatica, 39:1667–1694, 2003.

APPENDIX. FORMAL PROOFS

A. Proof of Lemma 2

Consider the Lyapunov function

V (x, t, τ) = V1(x, t) + V2(x, t, τ) + V3(x, t, τ) (A.1)

where

V1(x, t) .= x(t)T Pix(t),

V2(x, t, τ) .=
∫ t

t−τ

x(ξ)T Qx(ξ)dξ,

V3(x, t, τ) .=
∫ 0

−τ

∫ t

t+ζ

Ψ(ξ)T AT
diRAdiΨ(ξ)dξ dζ,

Ψ(ξ) .= Ai x(ξ) + Adi x(ξ − τ).

The termV3 is to account for the delay dependency. Let

Π .=
[
Hi + τPiR

−1Pi − ET
i UiEi τAT

i AT
diRA2

di

τA2T
di RAdiAi −Q + τA2T

di RA2
di

]
.

It can be easily verified thatV (x, t, τ) is continuous inx
and t, piecewise continuously differentiable int, and

α‖x(t)‖ ≤ V (x, t, τ) ≤ β‖x(t)‖, ∀ t ≥ 0

for someα > 0 andβ > 0. Now, note that

0 < x(t)T ET
i UiEi x(t), ∀ x(t) ∈ Xi, (A.2)

−2aT b ≤ inf
X>0

(
aT Xa + bT X−1b

)
,

ẋ(t) = Ãix(t)−Adi

∫ t

t−τ

(
Aix(ξ) + Adix(ξ − τ)

)
dξ.

Hence, it may be verified, by using(6), (A.2) and Schur
complement, that

∂V

∂t
= 2x(t)T PiÃix(t)− 2x(t)T PiAdi

∫ t

t−τ

Ψ(ξ) dξ

+ x(t)T Qx(t)− x(t− τ)T Qx(t− τ)

+ τΨ(t)T AT
diRAdiΨ(t)−

∫ t

t−τ

Ψ(ξ)T AT
diRAdiΨ(ξ)dξ

≤ x(t)T
(
ÃT

i Pi + PiÃi + Q + τPiR
−1Pi

)
x(t)

− x(t− τ)T Qx(t− τ) + τΨ(t)T AT
diRAdiΨ(t)

=
[

x(t)
x(t− τ)

]T

Π
[

x(t)
x(t− τ)

]

< 0.

Hence the proof.

B. Proof of Theorem 1

Proof: Choosing the Lyapunov function

V (x, t, τ) = V1(x, t) + V2(x, t, τ) + V3(x, t, τ) (A.3)

with V1(x, t) .= x(t)T Pix(t),

V2(x, t, τ) .=
L∑

`=1

∫ t

t−τ`

x(ξ)T Q`x(ξ)dξ,

V3(x, t, τ) .=
L∑

`=1

∫ 0

−τ`

∫ t

t+ζ

Ψ(ξ)T AT
di`R`Adi`Ψ(ξ)dξ dζ,

Ψ(ξ) .= Ai x(ξ) +
L∑

`=1

Adi` x(ξ − τ`), (A.4)

the proof follows on the lines of the proof of Lemma 2.
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