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Abstract— Many practical applications require the design of
fixed order and structure feedback controllers. A broad class
of fixed structure controller synthesis problems can be reduced
to the determination of a real controller parameter vector (or
simply, a controller), K = (k1, k2, . . . , kl), so that a given
set of real or complex polynomials of the form P (s, K) :=
Po(s)+k1P1(s)+ · · ·+klPl(s) is Hurwitz. The stability of the
closed loop system is addressed by requiring a real polynomial
to be Hurwitz, while several performance criteria can be
addressed by requriring a complex polynomial to be Hurwitz.
In this paper, we consider only real polynomials, P (s, K); the
extension to complex polynomials is direct. A novel feature of
this paper is the exploitation of the Interlacing Property (IP) of
Hurwitz polynomials to synthesis, by systematically generating
sets of linear inequalities in K. The union of the feasible sets
of linear inequalities provides an approximation of the set
of all controllers, K, which render these P (s, K) Hurwitz.
We show that this approximation can be made as accurate
as desired. The main tools that are used in the construction
of the sets of linear inequalities are the Hermite-Biehler
theorem, Descartes’ Rule of Signs and its generalization due
to Poincare. We provide examples of the applicability of the
proposed methodology to the synthesis and design of fixed
order stabilizing controllers.

I. INTRODUCTION

The problem of fixed-order stabilization of a Linear-
Time Invariant (LTI) dynamical system is one of the most
important open problems in control theory [7]. It has
attracted significant attention over the last four decades [33],
[3]. This problem may be simply stated as follows: Given
a finite-dimensional LTI dynamical system, is there a stabi-
lizing proper, rational controller of a given order (a causal
controller of a given state-space dimension)? The set of all
the stabilizing controllers of fixed order is the basic set in
which all design must be carried out. Despite many results
concerning this problem, there is no systematic procedure
for synthesizing a fixed-order controller.

A fixed-order stabilization problem arises when simplic-
ity, hardware limitations or reliability in the implementation
of a controller dictates low order of stabilization. For
example, the pointing error controller of a Hubble Telescope
is required to be of order 42 or less [9], [35] owing
to computer hardware limitations. Applications requiring
tuning of control parameters by an operator force a designer

Swaroop Darbha is a Associate Professor at the Department of Me-
chanical Engineering, Texas A&M University, College Station, TX-77840,
USA dswaroop@mengr.tamu.edu

Sudhir Pargaonkar is a Graduate Student in the Department of Mechani-
cal Engineering, Texas A&M University, College Station, TX-77840, USA

S.P. Bhattacharya is a Professor at the Department of Electrical En-
gineering, Texas A&M University, College Station, TX-77840, USA
bhatt@ee.tamu.edu

to minimize the number of controller parameters; some
applications in this directions are in [12], [4].

Structural limitations on the controller can also result
in a fixed-order stabilization problem. Such problems are
encountered naturally in the decentralized control of a large-
scale system. For example, [32] deals with the problem
of decentralized control of a collection of Autonomous
Underwater Vehicles (AUVs), where the dynamics of each
AUV may be modeled as:

ẋi = Aixi + Biui.

In the above equation, xi(t) ∈ <n is the state of the ith

AUV, Ai ∈ <n×n, Bi ∈ <n×m are known system matrices.
Every AUV has the same aggregated information, q, about
the entire collection. This requirement is enforced for lim-
iting the information to be communicated and the authors
of [32] assume the existence of a sensor that can provide
such a measurement without any communication with the
AUVs. The aggregated information evolves according to a
scalar differential equation:

q̇ =

r
∑

j=1

Hjxj ,

where Hj , j = 1, 2, . . . , r are known matrices of ap-
propriate dimension. The problem of stabilization is that
of finding appropriate controller gains, Ki, i = 1, . . . , r,
so that the collection of AUVs is stabilized when each
AUV employs a local control law of the form ui = Kiq.
This problem is clearly one of fixed-order (static output
feedback) stabilization for a multi-input single-output LTI
system.

Only recently, the set of all stabilizing PID controllers
was found [11]. The issue of achievable performance
is still open. In light of the pervasive use of fixed-order
controllers in process control and the emergence of new
applications such as formations of vehicles, it is imperative
to understand whether fixed-order controllers that achieve
a specified performance exist and if so, how one can find
them and compute the set of all such stabilizing controllers
that achieve a specified performance.

In this paper, we focus on the problem of determining the
set of all real controller parameters, K = (k1, k2, . . . kl),
which render a set of real polynomials Hurwitz, where each
member of the set is of the form:

P (s, K) = Po(s) +

N
∑

l=1

klPl(s). (1)



The problem of finding a fixed-order controller can be
posed as that of determining the feasibility of a set of
polynomial inequalities in the controller parameters through
the Routh-Hurwitz criterion. This problem has been shown
to be decidable by Anderson et. al [2] using the Quantifier
Elimination (QE) technique. However, this method is not
computationally tractable. A good survey of the attempts
to solve the fixed order control problem and the related
Static Output Feedback (SOF) problem is given in [33],
[7], [3] and the references therein. For recent work on the
SOF problem using QE technique, see [16]. The associated
problem of pole placement using SOF is presented in [23],
[28], [13].

A necessary condition for a polynomial to be Hurwitz is
that all the coefficients of the polynomial be of the same
sign. In particular, if the coefficients of the closed loop
polynomial are linear functions of the controller parameters,
this necessary condition can be equivalently expressed as
the feasibility of at most two linear programs. In [6],
this approach was taken to arrive at a lower bound on the
minimal order of stabilization.

The set of all fixed order/structure stabilizing controllers
is non-convex and in general, disconnected in the space of
controller parameters [1], [5]. This is a major source of
difficulty in its computation. In [11], the Hermite-Biehler
theorem is used in getting an approximation of the set of all
stabilizing PID controllers for SISO plants. The basic idea
is to make the Mikhailov plot [29], [5] of the characteristic
polynomial, evaluated along the imaginary axis, go through
an appropriate number of quadrants.

In [20], another interesting route to approximating the
set of stabilizing controllers is presented. This approach
combines ideas from Strict Positive Realness(SPRness),
positive polynomials written as sum of squares (SOS) and
LMIs. This approach also considers characterstic polyno-
mials that are linear in the parameters of the controller.
This approximation is an inner approximation of the set of
stabilizing controllers.

The LMI approach for synthesizing a Static Output
Feedback (SOF) controller is also explored in [17], [22],
[18]. Other approaches to this problem can be found in
[19], [34], [21], [31]

Gradient based techniques for the synthesis of stabilizing
SOF controllers is presented in [26]. A gradient update
scheme for the controller parameters is proposed based on
the minimization of the spectral radius of the characteristic
polynomial. Since the spectral radius is not necessarily a
convex function of the controller parameters, the gradient
scheme may yield local optima.

In the doctoral dissertation of [10], two approaches
for synthesizing a low order controller are considered: an
optimization technique based on D-decomposition and a
recursive method for reducing the order. The problem of
approximating the set of stabilizing controllers of a fixed
order using linear programming techniques is also initiated
in [10].

This paper differs from the contributions in the litera-
ture on this problem in its exploitation of the Interlacing
Property of Hurwitz polynomials for synthesis through the
construction of linear programs in controller parameters.

The results of this paper are similar in spirit to those in
[14], where the interior of the monotone increasing (convex)
non-negative cone of n frequencies is bijectively mapped
into the set of all Hurwitz polynomials of degree n. The
parametrization in [14] is a convex parametrization. How-
ever, in the present case, the underlying set is, in general,
neither convex nor connected. Nevertheless, by working in
the space of frequencies, we produce approximations to the
stabilizing set which are unions of convex sets.

This paper is organized as follows: In Section II, we deal
with the real stabilization problem. Using the interlacing
property of Hurwitz polynomials, we provide an inner
approximation Si and an outer approximation, So of the set,
S of all stabilizing controllers of the given structure, where
Si ⊂ S ⊂ So. We provide relevant examples to illustrate
the techniques developed in this section. In section III, we
provide concluding remarks.

II. SYNTHESIS OF SETS OF STABILIZING CONTROLLERS

In this section, we seek to exploit the Interlacing Property
(IP) of Hurwitz polynomials to systematically generate sets
of controllers contained in S. This approach leads to sets
of Linear Programs(LPs). The procedure proposed here for
generating the set of all fixed order controllers using the
feasible sets of LPs can be applied to discrete-time LTI
plants also; in the interest of saving space, we shall not
describe them here.

We will present our proposed approach to find the set, S
of all fixed order stabilizing controllers in this section.

A. On characterizing the set of all stabilizing controllers
using a Linear Programming Approach

Let P (s, K) be a real closed loop characteristic polyno-
mial whose coefficients are affinely dependent on the design
parameters K; one can define the even and odd parts of
P (s, K) through Pe(w

2, K)+jwPo(w
2, K) := P (jw, K).

The degrees of polynomials Pe and Po are ne and no

respectively in w2; specifically, if n is odd, ne = no = n−1
2

and if n is even, ne = n
2 and no = ne − 1. Let we,i, wo,i

denote the ith positive real roots of Pe and Po respectively.
The Hermite-Biehler theorem for real polynomials may

be stated as follows; for the sake of clarity, and for the
general case, the dependence on K is suppressed.

Hermite-Biehler Theorem for real polynomials: A real
polynomial P (s) is Hurwitz iff

1) The constant coefficients of Pe(w
2) and Po(w

2) are
of the same sign,

2) All roots of Pe(w
2) and Po(w

2) are real and distinct;
the positive roots interlace according to the following:

• if n is even:

0 < we,1 < wo,1 < · · · < wo,ne−1 < we,ne
;



• if n is odd:

0 < we,1 < wo,1 < · · · < we,ne
< wo,ne

.

Proof: A proof of the Hermite-Biehler theorem is
found in [5].

Therefore, P (s, K) is Hurwitz iff:

1) the constant coefficients of Pe(w
2, K) and Po(w

2, K)
are of the same sign,

2) All roots of Pe(w
2, K) and Po(w

2, K) are real and
distinct; furthermore, the positive roots of Pe(w

2, K)
and Po(w

2, K) interlace.

The set S is, therefore, the set of all controllers, K, that
simultaneously satisfy conditions (1) and (2) of the Hermite-
Biehler theorem. The following version of the Hermite-
Biehler theorem poses the problem of rendering P (s, K)
Hurwitz through a search for n− 1 frequencies. By way of
notation, we represent the polynomials Pe and Po compactly
in the following form:

Pe(w
2, K) =

[

1 w2 · · · w2ne

]

∆r

[

1
K

]

,(2)

Po(w
2, K) =

[

1 w2 · · · w2no

]

∆i

[

1
K

]

.(3)

In (2) and (3), ∆r and ∆i are real constant matrices that
depend on the plant data and the structure of the controller
sought; they are respectively of dimensions (ne+1)×(l+1)
and (no+1)×(l+1), where, for n odd, we have ne = no =
n−1

2 , and for even n, we have ne = n
2 , no = ne−1; l is the

size of the controller parameter vector. For i = 1, 2, 3, 4, let
Ci and Si be diagonal matrices of size n; for an integer m,
the (m+1)st diagonal entry of Ci is cos( (2i−1)π

4 + mπ
2 ) and

the corresponding entry for Si is sin( (2i−1)π
4 + mπ

2 ). For any
given set of n distinct frequencies, w0 < w1 < · · · < wn−1,
and for any integer m define a Vandermonde-like matrix,
V (w0, w1, . . . , wn−1, m), as:

V (w0, w1, . . . , wn−1, m) :=











1 w2
0 . . . w2m

0

1 w2
1 . . . w2m

1
...

...
...

...
1 w2

n−1 . . . w2m
n−1











.

We are now ready to characterize the set of stabilizing
controllers K in terms of (n − 1) frequencies:

Theorem 1 There exists a real control parameter vector
K = (k1, k2, · · · , kl) so that the real polynomial

P (s, K) := P0(s) + k1P1(s) + . . . + klPl(s)

= pn(K)sn + pn−1(K)sn−1 + · · · + p0(K),

is Hurwitz iff there exists a set of n − 1 frequencies,
0 = w0 < w1 < w2 < w3 < · · · < wn−1, so that one of
the following two Linear Programs (LPs) is feasible:

LP 1:

C1V (w0, w1, . . . , wn−1, ne)∆r

[

1
K

]

> 0,

S1V (w0, w1, . . . , wn−1, no)∆i

[

1
K

]

> 0. (4)

LP 2:

C3V (w0, w1, . . . , wn−1, ne)∆r

[

1
K

]

> 0, (5)

S3V (w0, w1, . . . , wn−1, no)∆i

[

1
K

]

> . (6)

Moreover, the union of the feasible sets of the above LPs
corresponding to all such sets of frequencies (0 < w1 <

w2 < . . . < wn−1) is the set of all stabilizing controllers.

Proof: We provide a sketch of the proof. If a K renders
the polynomial P (s, K) Hurwitz, its Mikhailov plot will go
through n quadrants in the counterclockwise direction. In
such a case, if the Mikhailov starts on the positive real
axis, then for some 0 < w1 < w2 < . . . < wn−1, the
complex numbers P (jwi) will lie in the (i + 1)th quadrant
and this is equivalent to the LP1 described above. If the
Mikhailov plot starts on the negative real axis, one gets the
LP2. The sufficiency part may be inferred from the fact
that any controller K which lies in the union of feasible
sets of LPs 1 and 2 is such that Pe(0, K) and P (0, K) are
of the same sign and the positive roots of Pe(w

2, K) and
Po(w

2, K) lie alternately in the intervals

(0, w1), (w1, w2), . . . , (wn−2, wn−1), (wn−1,∞).

This implies that all conditions of the Hermite-Biehler the-
orem for P (s, K) are met and hence, P (s, K) is Hurwitz.

Remark 1 With the above result, the problem of deter-
mining the set of all stabilizing controllers can therefore be
posed as the search for all possible n tuples ((n−1) tuples
of frequencies and the binary number indicating the sign of
the coefficients), whose corresponding LP is feasible.

As can be seen from the LPs given by (4) and (6),
one can associate with every linear program an n− 1 tuple
of frequencies and a binary number which indicates the
sign of the coefficients of the characteristic polynomial.
The frequency information is used in reconstructing the
Vandermonde matrix V and the sign information is used in
the choice of C1, S1 or C3, S3. Hence, storing the n−1 tuple
of frequencies and the sign of the coefficients corresponding
to feasible LPs is sufficient to reconstruct the entire set.

Remark 2 If the characteristic polynomial is monic, then
only the first LP needs to be considered for checking the
feasibility since the coefficients Pe(0, K) and Po(0, K)
must also be positive.

Remark 3 Recent solutions to the PID controller design
[11] problem requires the even and odd parts of a polyno-
mial to have certain patterns of root separation. In [11], the



authors carry out a search for the separating frequencies
by exploiting the structure of the PID control problem,
wherein the only proportional gain, Kp, appears in the even
or the odd part of a related polynomial. For a fixed value
of Kp, one can find the roots of the even (odd) part of the
polynomial. Then, one can find linear inequality constraints
on the integral and derivative gains, Ki and Kd, so that
desired patterns of root separation are feasible.

To aid the systematic search for these n − 1 tuples of
frequencies and to construct an outer approximation of the
set of stabilizing controllers, we propose to use Descartes’
rule of signs and its generalization due to Poincare. We state
them without proofs below:
Descartes’ Rule of Signs: Let

P (s) = p0 + p1s + . . . + pnsn,

be a nth degree real polynomial, pn 6= 0. Then:
1) The number of positive, real roots of P (s) is at most

equal to the number of the variations in sign of the
sequence of its coefficients p0, p1, . . . , pn; moreover,
if the number of positive roots is less than the number
of variations, the difference is an even number.

2) If P (s) has all real roots, then the number of vari-
ations in sign of the sequence of coefficients equals
the number of real, positive roots of P (s).

Poincare’s Generalization:The number of sign changes
in the coefficients of Qk(s) := (s + 1)kP (s) is a non-
increasing function of k; for a sufficiently large k, the
number of sign changes in the coefficients exactly equals
the number of real, positive roots of Q(s).

The proof of the generalization due to Poincare is given
in [27]. The essential idea of the proof provided in [27] is
that, for a sufficiently large k, the number of sign changes
of the coefficients of P (s) is the same as the number of sign
changes of the sequence of values an associated polynomial
R(u) takes at u = l

k
, l = 1, 2, . . . , k − 1; the associated

polynomial R(u) is defined as follows:

R(u) = (1 − u)nP (
u

1 − u
).

In other words, Poincare’s scheme samples the polynomial
R(u) uniformly with a grid width of 1

k
and examines the

variations in the value of the polynomial at these points.
Clearly, for a sufficiently fine grid, the number of sign
variations in the sampled values of R(u) exactly equals the
number of roots of R(u) in (0, 1), and this is equal to the
number of real, positive roots of P (s).

This idea will be exploited in finding the sets of fixed
structure stabilizing controllers and the bounds for the set
of all fixed structure stabilizing controllers.

B. Constructing the set of stabilizing controllers

Motivated by Poincare’s generalization of the rule of
signs, we define the polynomials, Re(u, K) = (1 −

u)nePe(
u

1−u
, K) and Ro(u, K) = (1 − u)noPo(

u
1−u

, K).
Let De and Do be diagonal matrices whose ith diagonal

entries are (1− ui)
ne and (1− ui)

no respectively. We now
state Theorem 1 in an alternate useful manner omitting the
proof:

Theorem 2 There exists a stabilizing K iff there exists a
n − 1 tuple, 0(= u0) < u1 < u2 < . . . < un−1 < 1, such
that at least one of the following two LPs is feasible:

LP 1:

C1DeV (
u0

1 − u0
, . . . ,

un−1

1− un−1
, ne)∆r

[

1
K

]

> 0,

S1DoV (
u0

1 − u0
, . . . ,

un−1

1 − un−1
, no)∆i

[

1
K

]

> 0.

LP 2:

C3DeV (
u0

1 − u0
, . . . ,

un−1

1− un−1
, ne)∆r

[

1
K

]

> 0,

S3DoV (
u0

1 − u0
, . . . ,

un−1

1 − un−1
, no)∆i

[

1
K

]

> 0.

Moreover, the union of feasible sets of the above LPs
corresponding to all possible (n−1) tuples, 0 < u1 < u2 <

· · · < un−1 < 1, is the set of all stabilizing controllers, S.

C. Outer Approximation

In the previous subsection, we outlined a procedure to
construct LPs whose feasible set is contained in S. Their
union Si is an inner approximation to S. For computation, it
is useful to develop an outer approximation, So that contains
S. In this subsection, we will present how to construct an
arbitrarily tight outer approximation So as a union of the
feasible sets of LPs.

As an example of an outer approximation, consider the
scheme presented in [6]. One may ask the following ques-
tion: Exactly how does the requirement, that the coefficients
of the characteristic polynomial be of the same sign, relate
to the conditions of Hermite-Biehler theorem? An answer
to this question can provide the gap between the set of
the stabilizing controllers, S and

⋃2
i=1 Souter,i. It can also

provide directions to tightening the outer approximation.
For the sake of a discussion on outer approximation, we

will treat the polynomials, Pe(w
2, K) and Po(w

2, K), as
polynomials in w2. Let λ = w2 and let the ith roots of
Pe(λ, K) and Po(λ, K) be represented as λe,i and λo,i

respectively. Since the polynomials Pe and Po must have
respectively ne and no real, positive roots, an application of
Poincare’s result to the polynomials Pe and Po yields the
following:

Lemma 1 If K is a stabilizing control vector, then (λ +
1)k−1Pe(λ, K) and (λ + 1)k−1Po(λ, K) have exactly ne

and no sign changes in their coefficients respectively for
every k ≥ 1.

The procedure in [6] corresponds to k = 1 of the above
lemma.



The following lemma takes care of the interlacing of the
roots of two polynomials.:

Lemma 2 Let K render an odd degree polynomial
P (s, K) Hurwitz. Then the polynomial Q̃(λ, K, η) =
λPo(λ, K) − ηPe(λ, K) has exactly no + 1 real positive
roots for η > 0 and no real positive roots for η < 0.

Proof: In the interest of saving space, we only provide
a sketch of the proof. To prove sufficiency, we consider the
graph of the rational function y := λPo(λ)

Pe(λ) and consider the
intersections with y = η. To prove necessity, we argue, via
a root locus, that if the interlacing or real roots condition is
violated, for some value of η ∈ <, polynomial Q̃(λ, K, η)
will have atleast a pair of complex conjugate roots.

Lemmas 1 and 2 can be put together to show that an
arbitarily tight outer approximation can be constructed.

Proposition 1 Let P (s, K) be of odd degree and K be
such that P (s, K) is not Hurwitz. Then, one of the following
must hold:

1) All coefficients of P (s, K) are not of the same sign.
2) For some l > 1, the number of sign changes in the

coefficients of (λ + 1)l−1Pe(λ, K) is fewer than ne.
3) For some l > 1, the number of sign changes in the

coefficients of (λ + 1)l−1Po(λ, K) is fewer than no.
4) For some l > 1 and for some η > 0, the num-

ber of sign changes in the coefficients of (λ +
1)l−1(λPo(λ, K)− ηPe(λ, K)) is fewer than no + 1.

5) For some l > 1 and for some η < 0, the num-
ber of sign changes in the coefficients of (λ +
1)l−1(λPo(λ, K) − ηPe(λ, K)) is fewer than no.

One can get an outer approximation of the set of stabi-
lizing controllers as follows:

• Step 1: Construct and check the feasibility of the two
LPs corresponding to the cases when all coefficients
of P (s, K) are positive and when they are negative.

• Step 2: Choose l > 1. Construct and check the
feasibility of LPs corresponding to the case that the
coefficients of the polynomial (λ + 1)l−1Pe(λ, K)
have exactly ne sign changes. Suppose pe of them are
feasible.

• Step 3: Similarly, construct and check the feasibility
of LPs corresponding to the case that the coefficients
of the polynomial (λ+1)l−1Po(λ, K) have exactly no

sign changes. Suppose po of them are feasible.
• Step 4: By picking an LP each from the steps 1, 2

and 3, check the simultaneous feasibility. There will
be atmost 2pepo of such augmented LPs; of these, let
peo be feasible.

• Step 5: For this step, consider the degree of P (s, K).
If it is even, consider (s + 1)P (s, K) and construct
its odd and even parts, Pe(λ, K) and Po(λ, K). Pick
some values of η ∈ <. For each η ∈ <, construct
and check the feasibility of LPs corresponding to the
case that the number of sign changes in the coefficients
of (λ + 1)l−1(λPo(λ, K, η) − ηPe(λ, K)) is equal to

no + 1 if η > 0 and to no if η < 0. Let p∗ of them be
feasible.

• Step 6: Check the simultaneous feasibility of LPs
constructed by taking one LP from Step 4 and one
from Step 5. There will be atmost p∗peo LPs to be
checked.

• Step 7: Update l to any number greater than l for
refinement and go to Step 2.

1) Search for the n − 1 tuple of frequencies and the
computation of an inner approximation: Using Theorem
2, the problem of finding stabilizing controllers may be
posed as the problem of searching for all such sets of
n − 1 points, u1, . . . , un−1 ∈ (0, 1). We propose the
following scheme: First, we partition (0, 1) using more
than (n − 1) points. For example, a uniform partition may
be employed or a partition using the positive roots of an
appropriate Chebychev polynomial may be used. Then, we
systematically pick each of the n− 1 tuples in the partition
from all possible n−1 tuples. Corresponding to each choice
of (n − 1) tuples, 0 < u1 < u2 < . . . < un−1, we can
construct two LPs as described in Theorem 2; if any of the
LPs is feasible, it yields a set of stabilizing controllers. The
union of the feasible sets (each of which is polyhedral) cor-
responding to all possible (n−1) tuples, therefore, provides
an approximation of the set of stabilizing controllers. It is an
inner approximation - every element of the approximate set
is a stabilizing controller. The approximation may be made
more accurate by refining the partition of (0, 1), because
if K is a stabilizing controller, a partition fine enough to
separate the roots of Re(u, K) and Ro(u, K) will always
capture K.

The general procedure for the inner approximation of
the set of stabilizing controllers can be used to construct a
computer program, whose inputs are: (i) the desired number
of feasible LPs, (ii) minimum allowed width of the partition,
and (iii) plant data and the controller order from which
LPs are generated. By the width of a partition, we mean
the maximum difference between successive points of a
partition. The program starts with a crude partition of the
interval (0, 1). A counter in the program keeps track of the
number of feasible LPs obtained thus far. The partition is
refined further if the number of feasible LPs obtained is
less than the desired number of feasible LPs. The program
stops if the number of feasible LPs obtained is equal to
the desired number of feasible LPs or if the width of the
generated partition falls below a prespecified threshold.

The minimum separation between the roots of even and
odd polynomials of P (s, K) is a measure of the coprime-
ness of the the two polynomials, and hence, a measure of
the distance of the polynomial P (s, K) to a polynomial
with imaginary axis roots. For this reason, a lower bound
on the minimum width of the partition is reasonable, from
both a computational as well as a robust stability point of
view.

To illustrate the proposed approach, consider the follow-
ing examples:



Example 1 This example is from [2]. Consider a LTI
plant described by the following equation:

ẋ =





0 1 0
0 0 1
0 13 0



 x +





0
0
1



 u,

y =

[

0 5 −1
−1 −1 0

]

x.

We will illustrate how to find the set of all static stabi-
lizing controllers, i.e., u = Ky where K = [K1 K2], for
this system using the method proposed here.

The characteristic polynomial of the closed loop system
is

P (s, K) =
[

1 s s2 s3
]









0 0 1
−13 −5 1
0 1 0
1 0 0













1
K1

K2





For this example, ne = 1 and no = 1. The real
and imaginary parts of the characteristic polynomial, when
evaluated at jw are given by:

Pe(w
2, K) =

[

1 w2
]

[

0 0 1
0 −1 0

]





1
K1

K2





Po(w
2, K) =

[

1 w2
]

[

−13 −5 1
−1 0 0

]





1
K1

K2





After using the transformation w2 = u
1−u

,

Re(u, K) =
[

1 − u u
]

[

0 0 1
0 −1 0

]





1
K1

K2





Ro(u, K) =
[

1 − u u
]

[

−13 −5 1
−1 0 0

]





1
K1

K2





Construction of the sets of fixed order stabilizing con-
trollers for this example problem: For the closed loop
system to be stable, there must exist a set of frequencies
0 = u0 < u1 < u2 < 1 such that:





1 0 0
0 −1 0
0 0 −1



 Uo

[

0 0 1
0 −1 0

]





1
K1

K2



 > 0,





1 0 0
0 1 0
0 0 −1



 Uo

[

−13 −5 1
−1 0 0

]





1
K1

K2



 > 0.

where,

Uo =





1 − u0 u0

1 − u1 u1

1 − u2 u2





Figures 1 and 2 show the results of inner approximation.
In figure 1, the number of LPs is chosen to be 5, and
the number of LPs chosen is 74 in figure 2. The red and
blue sets (in the PDF file) indicate that they are from
different LPs. It can be noticed that, as we increase the

number of LPs considered, the approximation is better. In
these figures, the black curve indicates the boundary of the
actual stabilizing set of controllers obtained using the Routh
Criterion, and the boundary of the outer approximation of
the stabilizing controllers is shown with a dot-dash line.
The outer approximation was obtained by requiring the
coefficients of the characteristic polynomial to be of the
same sign.
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Fig. 1. Inner and Outer Approximation of the set of stabilizing controllers
for Example 1 with 5 LPs.
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Fig. 2. Inner and Outer Approximation of the set of stabilizing controllers
for Example 1 with 75 LPs.

Example 2 The following example is from [30]. The
example is that of a Saturn V booster and its model can
be described by a single input, two output seventh order
model:

A =











0 1 0 0 0 0 0
0 0 0.2 −0.65 −0.002 2.6 0

−0.014 1 −0.041 0.0002 −0.015 −0.033 0
0 0 0 0 1 0 0
0 0 0 −45 −0.13 255 0
0 0 0 0 0 0 1
0 0 0 0 0 −50 −10











,



B =
[

0 0 0 0 0 0 1
]

′

ẋ = Ax + Bu,

y =

[

1 0 0 0 0 0 0
0 1 0 0 0 0 0

]

x.

Figure 3 illustrates the inner and outer approximations of
the set of static output feedback stabilizing controllers.
Requiring all coefficients of the characteristic polynomial
to be of the same sign yields an outer approximation (set
in blue in the PDF file). Tightening the set using Lemmas
1 and 2 yields the improved outer approximation (sets in
yellow and red). The set in yellow corresponds to a lower
value of l in Lemma 2 than the set in the red. The exact
set of stabilizing controllers found by parameter sweeping
techniques of [11] yields the approximately oval shaped
(green) region. The inner approximation with a Chebychev
partitioning is shown in white and is the union of the
feasible sets of 150 LPs.
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Fig. 3. Approximation of the set of static stabilizing controllers for the
seventh order system described in Example 2

An example of approximating a disconnected set of
stabilizing controllers is the following [11]:

Example 3 The plant to be controlled by a PID controller
has the transfer function:

H(s) =
s3 + 3s2 + 9

s4 + 2s3 + 3s2 + 7s + 14
.

An inner approximation of the set of PID gains is shown
below:

III. CONCLUSIONS

In this paper, we consider the problem of the synthesis of
fixed order and structure controllers, where the coefficients
of the closed loop polynomial are linear in the parameters of
the controller. A novel feature of this paper is the systematic
exploitation of the interlacing property of Hurwitz polyno-
mials and the use of Descartes’ rule of signs to generate
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Set of stabilizing PID controllers

Fig. 4. Set of stabilizing PID controllers - An inner approximation

LPs in the parameters of a fixed order controller. For real
stabilization, the feasible set of any LP generated for an
inner approximation of the set of all stabilizing controllers,
can be indexed by a set of n − 1 increasing frequencies,
0 = w0 < w1 < w2 < · · · < wn; in particular, any
controller in the feasible set of LPs places the roots of
the even and odd polynomials of P (s, K) alternately in
the intervals (wi, wi+1), i = 0, . . . , n − 1. The problem of
inner approximation of the set of stabilizing controllers is
then posed as the search for all sets of ordered n−1-tuples
of frequencies for which the associated LP is feasible; the
union of all feasible LPs is an inner approximation for the
set of all stabilizing controllers. A necessary condition for a
polynomial to be Hurwitz is that the roots of even and odd
parts of the polynomial have all real, positive and interlacing
roots; the Descartes’ rule of signs and its generalization
due to Poincare is used to generate the LPs. The proposed
methodology naturally extends to the computation of the
set of simultaneously stabilizing controllers. We provide
examples to illustrate some of the results derived in this
paper.

The method proposed here is promising although prelimi-
nary. A significant advantage of the presented method is that
robust stability and performance specifications such as gain
and phase margins, and specifications of simultaneous stabi-
lization can be naturally accommodated by imposing further
linear inequality constraints. Further research is needed to
deal with the existence, performance and robustness of
stabilizing controllers of fixed order. It is worth pointing
out that the method proposed here directly controls the
separation of roots of even and odd parts and therefore has
built-in robustness properties.
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