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Abstract— This paper presents a synthesis method of non-
stationary robust controller for a time-varying system con-
sidering various uncertainties. For the uncertainties, a scaled
structured uncertainty is regarded as weightings for variations
of parameters and a design function in the time domain.
Meanwhile, an unstructured uncertainty is counted by a filter
enveloping model errors of a control object in the frequency
domain. A wire changing its length is adopted as the controlled
object and then its vibration control is discussed as a practical
problem for solution. The performances of controllers are
demonstrated in the time and the frequency domains through
the numerical calculations for the case that the object is
subjected to disturbance and variation of parameters. The
proposed controller designed by considering both uncertainties
shows the advantages for the robustness.

I. INTRODUCTION

We mention the nonstaionary robust control for a time-
varying system such as a wire changing its length. For the
robust control of time-varying or -invariant system, DGKF
paper [1] is known very well as a proposal to design a robust
controller for a part of time-invariant system in the time-
domain. And also Sanpei et al. [2] proposed to design the
output-feedback robust controller for all the time-invariant
system based onH∞ theory. Furthermore, Limebeer et al.
[3] established to design a time-varying robust controller
for a time-varying system based on the differential game
theory, and then they utilize the constantγ which means
the index of robust stabilizing performance. However, for
the control of time-varying system, its parameters vary in
the time domain, that is, it is certainly that theγ is also
varying with time. Hence, theγ becomes a function of time,
conversely, it is effective for the enhancement of robust
stabilizing ability to utilize theγ(t) as a design function of
nonstationary controller. Moreover, if theγ(t) is assigned
huge value, the designed controller isH2 controller [4].
Resultingly, it is also feasible to implement theH2 andH∞
switching controller using theγ(t).

Meanwhile, for the vibration control of flexible structure,
the spillover due to uncertainties is a serious problem
on the active control. The uncertainties are categorized
into scaled structured and unstructured ones. The scaled
structured uncertainty arises from parameter variation and
error of controlled system in the time domain. And the
unstructured uncertainty is also caused by model errors due
to ignored mode of model in the frequency domain. Hence,
the vibration control of flexible structure is the good subject
matter to verify the robust stabilizing performance. In this
paper, we mention the vibration control of wire changing
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its length which is a time-varying system and a kind of
flexible structure. On the control for its vibrations, Takagi
and Nishimura [5] in 1998 proposed a gain-scheduled
control method based on LMI for a tower crane considering
variation of length of crane-rope. And authors [6], [7]
investigated for the control of transverse vibrations of wire
such as the elevator cable caused by the resonance with
sway of a high-rise building.

In this paper, the main objective is to present a synthesis
method of nonstationary robust controller considering un-
certainties positively. Besides the proposed control method
is verified through numerical calculations simulating the
practical problem which is the vibration control for the wire
changing its length.

II. NONSTATIONARY ROBUST CONTROL
METHOD

A. Construction of generalized plant

In this paper, we mention the vibration control for the
following time-varying system.

ẋn(t) = An(t)xn(t)+Bn(t)u(t)+Dn(t)zd(t) (1)

wherexn(t) is the state values,An(t), Bn(t) and Dn(t) are
the time-varying matrices,u(t) the control input,zd(t) the
system disturbance. In this research, the controller having
the robustness for uncertainties is proposed. Besides, the
control object is a system having flexibility and time-
varying parameters. Therefore, the formulation of its model
is very important for the reason that it needs the exact model
or the model based on complex formulation to obtain the nu-
merical realization of control object completely. Conversely,
the numerical model with lower dimension is reasonable for
the design of controller. Based on the lower model for it, the
model errors due to the ignored high order modes cause the
control and observation spillovers. Moreover, the complete
realization of parameter identification for the control object
is also difficult, especially, a nonparametric identification
of time-varying system is complicated. Consequently, we
considered that the parameter errors and variations of con-
trol object are time-domain uncertainties. From the above
arguments, we frame the model errors of ignored high order
modes as an unstructured uncertainty and the parameter
variation and error as a scaled structured uncertainty. For
designing the robust controller, we construct the augmented
system including both uncertainties in the equation.

ẋz(t) =
[
ẋn(t)
ẋr(t)

]
=

[
An(t)+∆An(t) 0

0 Ar(t)+∆Ar(t)

]
xz(t)

+
[
Bn(t)+∆Bn(t)
Br(t)+∆Br(t)

]
u(t)+

[
Dn(t)

0

]
zd(t) (2)



y(t) =
[
Cn(t)+∆Cn(t) Cr(t)+∆Cr(t)

]
xz(t)

+Dr(t)u(t)+V(t)wo(t) (3)

which are based on the time-varying nominal system ex-
pressed by matricesAn(t), Bn(t), Dn(t) and Cn(t), they
include the scaled structured uncertainty∆ and the un-
structured uncertainty systemxr(t), Ar(t), Br(t), Cr(t) and
Dr(t), wo(t) and V(t) are the observation noise and its
power vector, respectively. The unstructured uncertainty is
expressed by a shaped filter such as a high pass filter. In
addition, the nominal system is given by the system (1).
This augmented system indicates the set of model of control
object, which has a fluctuation band in the time domain
described by the scaled structured uncertainty and the one
in the frequency domain performed by the unstructured
uncertainty.

By the previous augmented system and weighting func-
tions, we synthesize a generalized plant to build a robust
controller. For the scaled structured uncertainty, the closed
loop expression of system substitutes for the open loop one
by using virtual disturbance inputwa(t), wb(t), wc(t) and
weighted performance outputza(t), zb(t), zc(t). And also,
the unstructured uncertainty derived from a shaped filter
is turned from being closed loop expression into being
open loop one with a virtual disturbance inputwg(t) and
a weighted performance outputzg(t). Moreover, the state
values and the control input are open looped from the
system noisezd(t) and the observation noisewo(t) to the
performance outputszQ(t) andzR(t). As an illustration, the
open loop expression of generalized plant is shown in Fig.1
which abbreviates the description of time. In this control
problem, the state space description of generalized plant is
described by the followings.

ẋz(t) = Az(t)xz(t) +B1(t)w(t) +B2(t)u(t) (4)

zh(t) = C1(t)xz(t) +D12(t)u(t) (5)

yz(t) = C2(t)xz(t)+D21(t)w(t) (6)

w(t) =
[
zd(t) wo(t) wa(t) wb(t) wc(t) wg(t)

]T

zh(t) =
[
zQ(t) zR(t) za(t) zb(t) zc(t) zg(t)

]T

Fig. 1. Schematic diagram of structure of generalized plant

Az(t) =
[
An(t) 0

0 Ar(t)

]
,B1(t) =

[[
Dn(t)

0

]
0 I I 0 0

]

B2(t) =
[
Bn(t)
Br(t)

]
,C2(t) =

[
Cn(t) 0

]

C1(t) =




Q1/2(t) 0
0 0

WA(t) 0
0 0

WC(t) 0
0 Cr(t)




,D12(t) =




0
R1/2(t)

0
WB(t)

0
Dr(t)




D21(t) =
[
0 V(t) 0 0 I I

]

where the WA(t), WB(t) and WC(t) are the weight-
ing matrices of scaled structured uncertainties,Q(t) =
Q1/2 T(t)Q1/2(t) and R(t) = R1/2 T(t)R1/2(t). Therefore,
this paper presents the synthesis method of controller to
implement the robust stabilization of the above augmented
system considering the scaled structured and unstructured
uncertainties.

B. Formulation of nonstationary robust control problem

In the priori derived generalized plant, theH∞ norm
of the closed loop transfer functionGzw from the virtual
worst disturbancew(t) to the performance outputzh(t) is
described byL2 induced norm in the time domain as shown
in the following equation.

min
u
‖Gzw‖∞ = min

u
sup

w

‖zh(t)‖2

‖w(t)‖2
=: γ∗ (7)

where‖ ‖∞ gives H∞ norm, ‖ ‖2 gives L2 induced norm
and γ∗ is the minimum value of H∞ norm realized by the
optimal controllerK(y, t)∗. With (4)-(6) and (7) given, the
H∞ optimal control problem is to find a controllerK(y, t)∗.
For theγ > γ∗, the control satisfying

J∞(uo,wo) = min
u

max
w

∫ ∞

0
[zT

h (t)zh(t)− γ2wT(t)w(t)] dt ≤ 0

(8)
is called the quasi optimal control. Here,wo is the worst
disturbance which is the solution of maximization problem

J∞(u,wo) = max
w

J∞(u,w) (9)

and it is described by the equation

wo = γ−2B1(t)Xw(t)xz(t) (10)

whereXw(t) is the positive definite symmetric matrix as a
solution of the Riccati differential equation derived from
(9). Thereupon,uo is the optimal control input which is the
solution of minimization problem

J∞(uo,w) = min
u

J∞(u,w) (11)

and it is given by the equation

uo =−R̃−1(t)(BT
2 (t)Xu(t)+ S̃(t))xz(t) (12)

whereXu(t) is the positive definite symmetric matrix as a
solution of the Riccati differential equation derived from



(11). In this control problem, it is a main objective that
this control converges to theH∞ optimal control by using
iteration of solving a controllerK(y, t) with decreasingγ.
In other words, it is the goal for this control problem to
accomplishγ → γ∗ or J∞ = 0. In this research, we adopt

γ(t) > γ∗([ 0, t∗ ],0 < t∗ < t f ) (13)

for γ, and (8) is transformed into the following problem.

J(uo,wo) =min
u

max
w

∫ t f

0
[zT

h (t)zh(t)− γ(t)2wT(t)w(t)] dt

=min
u

max
w

∫ t f

0
[xT

z (t)Q̃(t)xz(t)+2xT
z (t)S̃(t)u(t)

+uT(t)R̃(t)u(t)− γ(t)2wT(t)w(t)] dt (14)

Q̃(t) = CT
1 (t)C1(t), S̃(t) = CT

1 (t)D12(t), R̃(t) = DT
12(t)D12(t)

In this paper, we will solve the problem to obtain a
controllerK(y, t) which minimizes the criterion function of
(14) by using optimal control inputuo with the existence
of the worst disturbancewo for the case that this control
problem is finished by finite time.

C. Synthesis of controller

We begin by considering a controller which achieves the
robust stabilization for the time-varying generalized plant.
The solution of (14) is a saddle point solution satisfying the
inequality condition:

J(uo,w)≤ J(uo,wo)≤ J(u,wo) (15)

and it is implemented with the following controller in the
state space description [3].

˙̂x(t) = Â(t)x̂(t)+ B̂(t)yz(t) (16)

and the output
u(t) = F(t)x̂(t) (17)

is constructed by

Â(t) =Az(t)+B2(t)F(t)+ γ−2(t)B1(t)BT
1 (t)X(t)

− B̂(t)(C2(t)+ γ−2(t)D21(t)BT
1 (t)X(t))

B̂(t) =(I − γ−2(t)Y(t)X(t))−1(Y(t)CT
2 (t)+B1(t)DT

21(t))

× (D21(t)DT
21(t))

−1

F(t) =− R̃(t)−1(BT
2 (t)X(t)+ S̃T(t))

where X(t) and Y(t) is given by solving the following
Riccati differential equation with an explicit method such
as Runge-Kutta method.

−Ẋ(t) = X(t)Az(t)+AT
z (t)X(t)+X(t)B1(t)BT

1 (t)X(t)/γ2(t)

−(X(t)B2(t)+ S̃(t))R̃−1(t)(BT
2 (t)X(t)+ S̃T(t))+ Q̃(t)(18)

X(t f ) = 0 (19)

Ẏ(t) = Y(t)AT
z (t)+Az(t)Y(t)+Y(t)CT

1 (t)C1(t)Y(t)/γ2(t)

− (Y(t)CT
2 (t)+B1(t)DT

21(t))(D21(t)DT
21(t))

−1

× (C2(t)Y(t)+D21(t)B1(t))+B1(t)BT
1 (t) (20)

Y(0) = 0 (21)

where (19) is the final condition and (21) the initial con-
dition. Therefore, (18) is solved by using Runge-Kutta
method in the inverse direction of time from (19) and then
(20) is performed in the forward direction of time from
(21). Furthermore, we utilize a polynomial function for the
expression of nonstationary robust controller changing with
time. The time-variation of the controller is smooth, hence,
the order of polynomial interpolation is enough5∼ 10 to
give a description of the time-varying controller.

D. Design ofγ(t), the weightings and the shaped filter for
uncertainties

For the nonstationary robust control method, the design
function γ(t) on the worst disturbance is constructed de-
pending on the variation of uncertainty. To performH∞
control, theγ(t) is designed by using discreteγ-iteration
through all the time. If it is assumed that the time-varying
parameters of controlled system is continuous on time, the
γ(t) is based on the combination of discrete minimumγ(ti)∗
given by γ-iteration at the arbitrary timeti . However, the
γ(t) derived by the iteration can be utilized directly to
design a robust controller, because the Riccati differential
equation has no stable solution based on it. Resultingly,
we use a largerγ(t) referring theγ(ti)∗ derived from γ-
iteration. Secondly, we estimate the quantity of the scaled
structured uncertainty considering the parameter variation
by the followings.

∆An(t) = Amax−An(t),∆Bn(t) = Bmax−Bn(t),
∆Cn(t) = Cmax−Cn(t) (22)

In this equation, the subscript ’max’ means the matrix
including the absolute maximum values through all the time,
and all the symbols expresses the matrix. Thus the scaled
structured uncertainties are substituted into the following
equation.

∆An(t) = IAδAWA(t),∆Bn(t) = IBδBWB(t),
∆Cn(t) = ICδCWC(t) (23)

whereIi is an identity matrix,δi I a repeated scalar block and
Wi the weighting matrix expressing the quantitative scale.
Finally, the shaped filter is applied to note the unstructured
uncertainty, and it then is designed to envelop the model
errors due to ignored high order modes.

III. CONTROL OBJECT

In this study, we consider the following system: a flexible
structure contains a wire and mass points as shown in Fig.2
which illustrates a length-varying wire system. This system
has time-varying parameters such as length or moving
velocity, namely, this is classified into time-varying system.
It is assumed in this research that the structure, the wire and
mass points have horizontal deflections and then longitudi-
nal vibrations are ignored, because we focus on the proposal
of control method and it is easy to understand intuitively
the vibration control of transverse deflection of wire caused



by the resonance between the structure and the wire. And
a control force is added directly into one of mass points
to displace at the boundary of wire. First, we construct the
equation of motion of wire. A wave equation of length-
varying wire is expressed by the following equation.

ρA

(
∂
∂ t

+v(t)
∂
∂s

)
u(s, t)− ∂

∂s
T(s)

∂u(s, t)
∂s

+c(s)
(

∂
∂ t

+v(t)
∂
∂s

)
u(s, t) = 0 (24)

where s is the coordinate along the wire,u(s, t) the dis-
tributed parameter of deflection of wire in the transverse
direction,t the arbitrary time,ρA the line density of wire,
T(s) the tension of wire depending on the up-and-down
position,v(t) the velocity of variation of length of wire and
c(s) the damping coefficient per unit length of wire. The
model of wire is constructed by using Galerkin’s method
asu(s, t) = N(s)r(t). From the previous wave equation, the
motion of equation of an element is derived.

[
2α(t) α(t)
α(t) 2α(t)

][
r̈ i(t)

r̈ i+1(t)

]

+
[
2γr(t)−dc(t) γr(t)+dc(t)
γr(t)−dc(t) 2γr(t)+dc(t)

][
ṙ i(t)

ṙ i+1(t)

]

+
[

β (t)−dk(t) −β (t)+dk(t)
−β (t)−dk(t) β (t)+dk(t)

][
r i(t)

r i+1(t)

]
= 0 (25)

α(t) = ρAl(t)/6, l(t) = (l(0)+v(t)t)/n,dc(t) = ρAv(t),

γr(t) = c(s)l(t)/6,β (t) = (T(s)−ρAv2(t))/l(t),
dk(t) = 0.5c(s)v(t)

wheren is the discrete number and it is assumed that the
wire is not interacted directly with an external force. In
addition,dc(t) anddk(t) are the advection terms depending
on the velocity of length variation of wire. For the case
that the variation of its velocity is smaller than the other
parameter’s ones, the advection terms are neglected because
the influence of wave propagation has little effect on the
vibration of wire. Based on the superposition of equation
of motion of an element inn times and the construction of
dynamics equation of structure and mass points, we derive
a time-varying equation of motion of controlled system as
the following.

M(t)ẍd(t)+C(t)ẋd(t)+K(t)xd(t) = F(t) (26)

xd(t) =
[
xb1(t) · · ·xbM(t) xm(t) r1(t) · · · rn−1(t) xe(t)

]T

(27)

whereM(t), C(t), K(t) andF(t) are the inertial, damping,
stiffness and external force matrices, respectively.xbi is the
absolute displacement of each story of structure,M the
discrete number of structure,xm the relative displacement
of mass point at one end from the top of structure,xe the
relative displacement of mass point at the other end,r i the
relative displacement of i-th discrete element, and thenxm

and xe coincide with r0 and rn , respectively. Besides, we
non-dimensionalize the coupled equation of motion based

Fig. 2. Schematic diagram of controlled system

on the normalizing values of length and time. The details of
non-dimensional model are found in reference [7]. Finally,
the state equation (1) is obtained by the coupled and non-
dimensionalized equation.

For the wire and mass points, their state values are
expressed by the relative displacement, velocity and ac-
celeration from the structure, because they are generally
measured by using non-contact or built-in displacement
sensor fixed on the structure. Thus the disturbances into
the wire and mass points are the absolute accelerations of
structure, and then they depend on the position of mass
points of wire. Therefore, we will express their disturbances
by using dynamics of structure under the assumption that
the structure is a cantilever in the numerical calculation.

IV. NUMERICAL CALCULATIONS

A. Conditions of numerical calculations

In this chapter, we examine the reduction and the ro-
bust stabilization performances of the proposed controllers
through the numerical calculations. The control methods for
the examination are six as shown in the left side of Table I.
Basically, we examine the nonstationary robust controllers
designed by various weightings,γ(t) and shaped filter. The
first is the basic nonstationary robust controller based on
the constantγ, the second the one designed byγ(t) derived
from discreteγ-iteration through all the time, the third one
based on the generalized plant including the shaped filter,
the fourth one designed by the generalized plant including
the weightings describing the scaled structured uncertainty,
the sixth the gain-scheduled robust controller (G.S.) based
on the generalized plant considering both uncertainties and
the sixth one the nonstationary robust controller designed on
the generalized plant considering both uncertainties. These
examinations are performed for the case that the structure is
subjected to the basement disturbance, the value of tension
of wire shifts from -50% to +200% in the time domain
while the wire descends. For the synthesis of controller, it is
supposed that the discrete number of wire is 10, the number
of mass points of structure model is 5 and the verification
model of wire has the discrete numbern equal to 40. In
addition, we adopt the signal shown in Figs.3 and 4 as the
disturbance into the controlled system.



TABLE I

THE NOMINAL CONTROL RESULTS(R.R.:REDUCTION RATE)

# shape ofγ Max uR.M.S. uR.R. of Max xR.R. of R.M.S. x
1 Const. 31.5 13.0 0.524 0.580
2 γ-it. 28.6 12.5 0.518 0.566
3 γ-it.+filter 24.9 11.5 0.585 0.419
4 γ-it.+delta 23.9 9.3 0.539 0.498
5G.S.+γ-it.+delta+filter 32.5 11.0 0.538 0.548
6 γ-it.+delta+filter 29.2 10.7 0.517 0.525

Fig. 3. Time history of acceler-
ation of disturbance

Fig. 4. Power spectrum density of
acceleration of disturbance

Fig. 5. The frequency characteristics of model errors fromu to y and
shaped filter enveloping them

The second order high-pass filter is applied to note the
unstructured uncertainty, and it is then designed to envelop
all the model errors in the frequency domain as shown in
Fig.5. The model errors come of the ignored high order
modes of controlled object, besides, they are expressed by
the differences in the frequency responses under control
and non-control which are the responses from the control
input u to all the observed outputsy. In addition, since the
incrementation of order of controller by accompanying the
high-pass filter is only two and it is very small for the entire
order of controller, the controller performs the practical use
without problems.

Finally, for the gain-scheduled robust controller, its syn-
thesis is established by the discreteγ-iteration and the
solutions of the Riccati differential equations (18) and (20)
based on the controlled system which has fixed parameters
at the arbitrary time. In this examination, the eighteen gain-
scheduled robust controllers are prepared at regular intervals
during the control period, hence, the other controllers are
given by their smooth connection using spline interpolation.

B. Consideration about numerical calculations

Table I indicates the nominal performances and the
control inputs by all the controllers which are made al-
most equal quantitatively. For the examination in the time
domain, Figs.6 and 7 show the maximum and root mean

Fig. 6. The maximum values of displacement of wire with controllers
No.1 and 2

Fig. 7. The root mean square values of displacement of wire with
controllers No.1 and 2

square (R.M.S.) values of displacement of wire through
the entire time for the controllers No.1 and 2. From these
results in the time domain, the controller No.2 gets the good
performance when the tension of wire varies. As a result,
it is clarified that the variation ofγ(t) influences the robust
stabilizing performances of controller, and then the optimal
γ(t) exists. Here theγ of No.1 is 90.0 and the minimum
γ(t) of No.2 is 41.8. The reason why theγ of No.1 is larger
than No.2 is that the Riccati differential equation of No.1 is
not able to be solved by using the minimum value ofγ(t) of
No.2. This result to utilize the large value forγ implies that
it is possible to implement the more robust control based
on the optimalγ(t) derived by the other method than the
discreteγ-iteration in this paper.

Additionally, Figs.8 and 9 illustrate the same results of
the controllers No.2 to 6 as Figs.6 and 7. The controllers
No.3 to 6 bring out better robust stabilizing performances
than previous ones. Although No.6 controller obtains the
best regulation of vibrations in the maximum value, No.3
gets the best one in the R.M.S. value. To reduce the
maximum values is more important than to reduce the
R.M.S. ones because the wire gets the fatal damage during
the bouts causing its maximum displacement. Meanwhile, to
suppress the rms value is only related to extend the life span
of wire. Moreover, No.5 gets the same performance as No.6,
however, the more control input is required to get it. Finally,
the results in the time domain imply to select the synthesis
method of controller according to desired performance and
condition of uncertainty.



Fig. 8. The maximum values of displacement of wire with controllers
No.2 to 6

Fig. 9. The root mean square values of displacement of wire with
controllers No.2 to 6

Fig. 10. The digitalized differences of frequency response between non-
control and control att = t f /2 in the case that the tension varies from 0.4
to 5 times (Black∼ white : bad∼ good)

Furthermore, Figs. 10 and 11 illustrate the results in
the frequency domain. As an example of results in the
frequency domain, Fig.10 shows the digitalized values for
differences of frequency responses under control and non-
control which are the responses from the disturbance to the
center displacement of wire att = t f /2 in the case that the
tension varies from 0.4 to 5 times. The result from white to
gray in the figure expresses the suppression performance for
the vibrations of wire, that is, the amplitude of frequency
response is less than non-control one. Thus the black one
illustrates completely bad result. Besides, Fig.11 implies

Fig. 11. The time histories of summation of digitalized values in the
reduced frequency response within the high frequency range

the time histories of summation of digitalized values in
the reduced frequency responses which are limited within
the high frequency range more than 1 Hz. Although No.3
controller shows the best suppression performance shown
in the result of Fig.11 through all the time, from the result
shown in Fig.10 its quantitative reduction is very poor on
the ground that it is designed to get conservative due to
the filter. Meanwhile, No.4 controller derives the satisfied
quantitative suppression of vibrations without the high fre-
quency range. Consequently, No.5 and 6 controllers show
the good regulation for vibrations of wire with avoiding the
worst case, that is, reducing the maximum displacement
of wire. However, since these results in the frequency
domain are evaluated discretely in the time domain, the
gain-scheduled controller indicates the similar performance
to the nonstationary one.

V. CONCLUSIONS

This study presented a synthesis method of nonstationary
robust vibration controller considering uncertainties. The
proposed method permits the design functionγ(t) to be
designed on the worst disturbance and the time-variation
of parameter. The uncertainties were categorized by the
scaled structured and unstructured ones in the time and
frequency domains, and then the controllers considering
both uncertainties obtained the advantages for the vibration
control of wire changing its length for the case that the
controlled system is subjected to the disturbance and the
parameter variation in comparison with the gain-scheduled
and other controllers. In future study, we implement a robust
stabilizing control based on the optimized value ofγ(t) and
the quantitative evaluation of uncertainties.
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