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Abstract— In this paper, a swing-up control scheme for
a serial double inverted pendulum is proposed. The control
scheme is to swing up the pendulum in three steps, Step 1: to
swing up the first pendulum, Step 2: to swing up the second
pendulum while stabilizing the first pendulum at the upright
position, and Step 3: to stabilize the two pendulums around
the unstable equilibrium state.

In each step a control scheme and a switching rule from a
step to next step are given. The rule bases on the states of the
system. For the controller of Step 1, the energy control method
is applied to swing up the first pendulum. For the controller
of Step 2, a new method is given. The method combines a
stabilization control method of the first pendulum using sliding
mode control method and a swing-up control method of the
second pendulum using energy control method. And for a
controller in Step 3, the sliding mode controller stabilizing
both of the pendulums is used. A numerical simulation is
given to show the effectiveness of the proposed scheme.

I. INTORODUCTION

Inverted pendulums are typical examples of nonlinear
and underactuated mechanical systems and well known in
control engineering for verification and practice of var-
ious kinds of control theories. Inverted pendulum sys-
tems have several types, e.g., a single pendulum, a par-
allel double pendulum, a serial double pendulum and a
two dimensional pendulum, etc. And many control meth-
ods have been proposed to control the inverted pendu-
lum systems, such as feedback stabilization[1][4], energy
based control[1][4], bang-bang control[3], sliding mode
control[6], robust control[2], hybrid control[4][5], partial
linearization[7][8] (see [1] for more details). In spite of
these existing methods, to control the inverted pendulums is
still an open research topic. In particular, the serial double
inverted pendulum is strongly nonlinear and highly under-
actuated than a single inverted pendulum and the control
of the serial double pendulum is a difficult problem. And a
solution of this problem is applicable to other nonlinear and
underactuated control problems. Hence, this paper considers
the swing-up control problem for the serial double inverted
pendulum.

For swing-up control of the serial double inverted pen-
dulum, various methods are already proposed, e.g., the
method in [3] is a combination of feedforward controller

that swings up pendulums and feedback controller that
stabilizes the pendulum at the upright position. In [2],
a control scheme which transfers the state of pendulum
from an arbitrary equilibrium point to another arbitrary
equilibrium point among four equilibrium points; (first
pendulum) Down- (second pendulum) Down position, Up-
Down position, Down-Up position, and Up-Up position
was proposed, and this method was applied to the swing-
up control, i.e., to transfer the state from Down-Down
position to Up-Up position. However, those methods were
the controllers for a rotation type pendulum and they do not
consider the restriction to the movement of a carriage. The
controller proposed in this paper swings up and stabilizes
the cart type serial double inverted pendulum and includes
control scheme to restrict traveling position of the cart.

The proposed controller consists of three steps, Step 1: to
swing up the first pendulum, Step 2: to swing up the second
pendulum while stabilizing the first pendulum at the upright
position, and Step 3: to stabilize the two pendulums around
the unstable equilibrium state.

In each step, a control scheme and a switching rule from
a step to the next one are given. Although the control law in
Step1 corresponds to the control problem transferring the
state from Down-Down position to Up-Down position in
[2], and Step2 corresponds to transferring the state from
Up-Down position to Up-Up position, the control laws in
these steps are different from those in [2] in including
a control law to restrict traveling position of the cart.
Another difference is, in designing the control law to swing
up the second pendulum that the controller of [2] does
not consider the stabilization of the first pendulum, while
the controller given in this paper swings up the second
pendulum and also stabilizes the first pendulum. That is,
the proposed controller is given by a stabilization control
law for the first pendulum added by a swing-up control
law for a second pendulum. For the stabilizing controller
of the first pendulum at the unstable equilibrium point, a
state feedback stabilization controller is derived by using
a sliding mode control method[6]. And for swinging up
the second pendulum, a modified energy control method
given by [1] is used. Since the sliding mode controller has



strong robustness to disturbance and the swing-up input is
considered as disturbance, the added swing-up control input
does not affect the stabilization in the stabilizing the first
pendulum.

In Section II, the dynamics equation is derived for the
serial double inverted pendulum system as depicted in Fig.1.

Section III is for a controller of Step 1. A control scheme
which swings up the first pendulum is given. For swinging
up the second pendulum, an energy control method de-
scribed in [1] is applied. To prevent the cart from exceeding
the rail, in swinging up the pendulum, a control law which
suppresses the movement of the cart is considered.

In Section IV, a control law to swing up the second
pendulum while stabilizing the first pendulum is given.

In Section V, for a controller in Step 3, a sliding mode
controller is used in stabilizing both of the pendulums by
linearizing the system around the unstable equilibrium state.

In Section VI, a numerical simulation is given to show
the effectiveness of the proposed scheme in this paper.

II. DYNAMICS

The dynamics of the serial double inverted pendulum
system as depicted in Fig.1 is given

Iθ θ̈ +M1 cos (θ − φ)φ̈+M1φ̇
2 sin (θ − φ)

+(c1 + c2)θ̇ − c2φ̇−M2g sin θ +M2 cos θz̈ = 0(1)

M1 cos (θ − φ)θ̈ + Iφφ̈−M1θ̇
2 sin (θ − φ)

− c2(θ̇ − φ̇) −M3g sinφ+M3 cosφz̈ = 0(2)

where Iθ ,Iφ,M1,M2,M3 are expressed as

Iθ = I1 +m2L
2 + n2L

2

Iφ = I2 + Jn1 + Jn2

M1 = m2l2L

M2 = m1l1 +m2L+ n2L

M3 = m2l2

and the parameters of the pendulums are defined in Table
I.

The control input u as

u = z̈ (3)

The control objective in this paper is to swing up both
pendulums from the downward position to the upward
position and to stabilize the pendulums at the upward
position.

III. SWING UP THE FIRST PENDULUM (STEP1)

In this section, a control method to swing up the first
pendulum is proposed as a controller of Step 1. The energy
control method using Lyapunov method developed in [1] is
applied.
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Fig. 1. The serial double inverted pendulum

TABLE I

DEFINITIONS OF PARAMETERS

z position of the cart

θ angular position of the first pendulum from
the vertical line

φ angular position of the second pendulum from
the vertical line

mi (i = 1, 2) mass of the i th pendulum

ni (i = 1, 2) mass of the i th joint of pendulums

li (i = 1, 2) length from the i th joint to the center of mass of
the i th pendulum

Jni (i = 1, 2) inertia of mass of the i th joint around the center
of gravity

Ii (i = 1, 2) inertia of the i th pendulum around the joint

ci (i = 1, 2) viscosity of each joint

L length of the first pendulum

g gravity acceleration

From (1) and (3), by neglecting second pendulum and
viscosity friction, the dynamics of θ is

θ̈ =
M2

Iθ
(g sin θ − u cos θ)

=
m1l1
I1

(g sin θ − uθ cos θ) (4)

where uθ := u is defined as a control input to swing
up the first pendulum. This equation is equivalent to the
dynamics of a single inverted pendulum. Therefore, as a
control method which swings up the first pendulum, the
control method presented in [1] and [4] which swings up
the single pendulum is applied.

For the swing-up control, a control strategy is presented
in [1] and [4] by using Lyapunov method.



Define a Lyapunov function as

V1 =
1
2
E2

1 (5)

where E1 is the energy of the first pendulum given as

E1 =
1
2
I1θ̇

2 +m1gl1(cos θ − 1) (6)

When the pendulum is at the upright position, i.e., φ = 0
and φ̇ = 0, then E1 = 0 and when the pendulum is at
the pendant position, i.e., φ = π and φ̇ = 0, then E1 =
−2m1l1g.

Calculating the derivative of V1 along the trajectory of
(4) yields

V̇1 = −m1l1(E1θ̇ cos θ)uθ (7)

From (7), to make V̇ < 0, the control input is given as

uθ = ua1sign(E1θ̇ cos θ) (ua1 > 0) (8)

From (7) and (8), the derivative of V1 is

V̇1 = −m1l1(E1θ̇ cos θ)(ua1sign(E1θ̇ cos θ)) ≤ 0 (9)

It follows that V1(t) is a non-increasing function and V̇1 →
0 as t → ∞. When V̇1 = 0, there are three cases, a) cos θ =
0, b) θ̇ = 0) or c) E1 = 0. Since the horizontal position of
the pendulum is not an equilibrium point, case a) can not
be maintained. Also, if case b) can be kept without control
input, then θ = 0 must hold simultaneously, which follows
E1 = 0. Otherwise, the pendulum will fall again. Therefore,
the necessary and sufficient condition for V̇1 ≡ 0 is E1 = 0.
Thus,

lim
t→∞E1(t) = 0, lim

t→∞ V1(t) = 0 (10)

are obtained. Therefore, using the input of (8), the energy of
the first pendulum increases to zero, and the first pendulum
is swung up.

So far, the swing-up of the first pendulum by using the
control input uθ of (8) is shown. But moving distance of the
cart is not considered in the control input uθ of (8) and it
may exceed the width of the rail. Hence, a new control input
to suppress the moving distance of a cart is introduced.

Now, the feedback control input uz to control the cart
into the center of a rail,

uz = −K1 · x1 (K1 > 0) (11)

is considered, where, x1 = [z, ż]T and K1 is feedback gain
matrix which control x1 to 0.

To ensure V̇ < 0, uz has the same sign as that of (8).
Therefore, a control input is proposed by combining (8) and
uz as

u =




ua1sign(E1θ̇ cos θ) + uz (sign(uθ) = sign(uz)
or |uθ| > |uz|)

ua1sign(E1θ̇ cos θ) (sign(uθ) �= sign(uz)
and |uθ| ≤ |uz|)

(12)

(12) is the control input which swings up the first
pendulum and controls the moving distance of a cart.

In this section, in designing the control law which swings
up the first pendulum, influences of the second pendulum
and viscosity friction are ignored. However, these influences
exist in fact, and it is predicted that the energy of the first
pendulum decreases by these influences. In case of single
inverted pendulum, previous method presented in [1],[4] is
also designed ignoring the influence of viscosity friction.
This influence is avoided by setting up a large input gain
and giving energy to a system larger than the energy loss
of the system by the influence of viscosity friction.

Considering the case of the serial double inverted pen-
dulum, influence of viscosity friction makes always loss of
the energy of the first pendulum. However, there are two
cases that the influence of the second pendulum may lose
the energy of the first pendulum, and it may give energy
to the first pendulum. Therefore, we assume that we can
also ignore the influence of second pendulum by making
the input gain ua1 large.

When the first pendulum swung up in the neighborhood
θ = 0 by controller (12), the controller will be switched to
the controller of Step 2.

IV. SWING UP THE SECOND PENDULUM WHILE

STABILIZING THE FIRST PENDULUM (STEP 2)

In this section, a control method which swings up the
second pendulum while stabilizing the first pendulum is
proposed. The proposed method consists of two control
laws, to stabilize the first pendulum at the unstable equi-
librium point, and to swing up the second pendulum.
For the stabilizing controller of the first pendulum at the
unstable equilibrium point, a state feedback stabilization
controller is derived by using sliding mode controller[6].
And for swinging up the second pendulum, a modified
energy control method described in [1] is used.

First, the control law which stabilizes the first pendulum
is considered. By neglecting φ in (1), the dynamics of θ
becomes

Iθ θ̈ + (c1 + c2)θ̇ −M2g sin θ +M2 cos θz̈ = 0 (13)

The control input u1 is defined as

u1 = z̈ (14)

The following state variables are chosen as

x2 = [x21, x22, x23, x24]T

= [θ, θ̇, z, ż]T (15)

With (14) and (15), the linearized state-space equation
of (13) around the unstable equilibrium point of the first



pendulum ((θ, θ̇) = (0, 0)) is

ẋ2 = A2x2 +B2u1

=




0 1 0 0
M2g
Iθ

− c1+c2
Iθ

0 0
0 0 0 1
0 0 0 0


 x2 +




0
−M2

Iθ

0
1


 u1

(16)

A sliding mode controller is used to keep robustness for
stabilization of the first pendulum. The control input u 1

which stabilizes (16) is

u1 = −(S2B2)−1(S2A2x2 +R2sign(σ2) +K2σ2)(17)

σ2 = S2x2 (18)

where R2 > 0,K2 > 0 and S2 is the solution of the
following Riccati equation with ε2 > 0

P2(A2 + ε2I) + (A2 + ε2I)TP2 − P2B2B
T
2 P2 +Q2 = 0

S2 = BT
2 P2

Next, the control law which swings up the second pen-
dulum is considered. The energy control method is used as
the controller which swings up the second pendulum as a
same way to Step 1. In Step 2, the pendulum to be swung
up is the second one and the control input to swing up is
the displacement of the joint of the two pendulums (Joint
2), whereas, in Step 1, the pendulum is the first one and the
control input is the cart position. Hence, in Step 2, the joint
position is controlled in the same way as the cart position
in Step 1.

The coordinate of horizontal component z 2 of Joint 2 is
given by

z2 = z + L sin θ

Thus, the acceleration of z2 is

z̈2 = z̈ + Lθ̈ cos θ − Lθ̇2 sin θ (19)

From (1) and (2), it is obtained as

θ̈ =
A12(f21 + f22z̈) −A22(f11 + f12z̈)

A11A22 −A12A21
(20)

where

A11 = Iθ , A22 = Iφ

A12 = A21 = M1 cos (θ − φ)
f11 = M1φ̇

2 sin (θ − φ) + (c1 + c2)θ̇
− c2φ̇−M2g sin θ

f12 = M2 cos θ
f21 = −M1θ̇

2 sin (θ − φ) − c2(θ̇ − φ̇) −M3g sinφ
f22 = M3 cosφ

From (19) and (20), the relation between z̈2 and z̈ is derived
as

z̈ =
(z̈2 + Lθ̇2 sin θ)(A11A22 −A12A21)

A11A22 −A12A21 + (A12f22 −A22f12)L cos θ

− (A12f21 −A22f11)L cos θ
A11A22 −A12A21 + (A12f22 −A22f12)L cos θ

(21)

When uz2 is assumed to be the acceleration of the joint and
the second pendulum is assumed to be single pendulum, the
dynamics of the second pendulum is as follows.

φ̈ =
M3

Iφ
(g sinφ− z̈2 cosφ)

=
m2l2
I2

(g sinφ− uz2 cosφ) (22)

Therefore, the control input which swings up the second
pendulum using the energy control method as in Step1 is

uz2 = ua2sign(E2φ̇ cosφ) (ua2 > 0) (23)

where, E2 is energy of the second pendulum.
When the angle of the second pendulum is large, the

influence of the first pendulum is large and complex, and
deciding a swing-up input to the second pendulum is diffi-
cult. Therefore the control input is applied during a small
moment just after the second pendulum passes through the
vertical line, as shown below.

uz2 =




ua2sign(E2φ̇ cosφ) (sinφ · φ̇ < 0
and cosφ < cosµ)

0 (sinφ · φ̇ ≥ 0
and cosφ < cosµ)

0 (cosφ ≥ cosµ)
(24)

From (21), acceleration u2 of the cart which makes accel-
eration of the joint position to be uz2 which swings up the
second pendulum is

u2 =
(uz2 + Lθ̇2 sin θ)(A11A22 −A12A21)

A11A22 −A12A21 + (A12f22 −A22f12)L cos θ

− (A12f21 −A22f11)L cos θ
A11A22 −A12A21 + (A12f22 −A22f12)L cos θ

(25)

By combining u1 of (17) and u2 of (25), the following con-
troller is obtained, which swings up the second pendulum
while stabilizing the first pendulum.

u = u1 + u2 (26)

The sliding mode control input u1 which stabilizes the first
pendulum has strong robustness to disturbances and the
swing-up input u2 can be treated as disturbance, Therefore,
it is not influential to stabilization.

When the second pendulum is swung up in the
neighborhood φ = 0 by controller (26), the controller will
be switched to the controller of Step 3.



V. STABILIZE TWO PENDULUMS (STEP 3)

The state (θ, θ̇, φ, φ̇) = (0, 0, 0, 0) is an unstable equilib-
rium point of the both pendulums to which both pendulums
will be stabilized. Choose x3 as the following state variables

x3 = [x31, x32, x33, x34, x35, x36]T

= [θ, θ̇, φ, φ̇, z, ż]T (27)

With (3) and (27), the linearized state-space equation of (1)
and (2) around x3 = 0 is

ẋ3 = A3x3 +B3u

=




0 1 0 0 0 0
a21 a22 a23 a24 0 0
0 0 0 1 0 0
a41 a42 a43 a44 0 0
0 0 0 0 0 1
0 0 0 0 0 0



x3 +




0
b2
0
b4
0
1



u

(28)

where the elements of matrices A3 and B3 are given as
follows.

a21 = − M2Iφg

IφIθ −M2
1

a22 = −M1c2 + Iφ(c1 + c2)
IφIθ −M2

1

a23 =
M1M3g

IφIθ −M2
1

a24 =
Iφc1 +M1c2
IφIθ −M2

1

a41 =
M1M2g

IφIθ −M2
1

a42 =
Iθc2 +M1(c1 + c2)

IφIθ −M2
1

a43 = − M3Iθg

IφIθ −M2
1

a44 = −Iθc2 +M1c1
IφIθ −M2

1

b2 =
M1M3 −M2Iφ
IφIθ −M2

1

b4 =
M1M2 −M3Iθ
IφIθ −M2

1

By the result of the control in Step 2, the state variables
(x31, x32, x33) are in the neighborhood of (0, 0, 0). How-
ever, the state variable x34 is not in the neighborhood of
0, because the second pendulum is swinging. Therefore,
a sliding mode controller keeping robustness is used as
stabilizing controller for the two pendulums. The input
control u which stabilizes (28) is

u = −(S3B3)−1(S3A3x3 +R3sign(σ3) +K3σ3 (29)

σ3 = S3x3 (30)

where R3 > 0,K3 > 0 and S3 is the solution of the
following Riccati equation with ε3 > 0

P3(A3 + ε3I) + (A3 + ε3I)TP3 − P3B3B
T
3 P3 +Q3 = 0

S3 = BT
3 P3

VI. NUMERICAL SIMULATION

In order to show the performance of the proposed scheme
in this paper, computer simulation of the swing-up control
of the serial double inverted pendulum is conducted. The
parameters in (1) and (2) are selected to be those of an
experimental system of serial double inverted pendulums
in our laboratory. These are given in Table II. And the
parameters of the control law are given in Table III.
Simulation result is shown in Fig. 2. Fig. 2 illustrates the
responses of θ, θ̇, φ, φ̇, z, u and the number of steps. The
initial states of the system are given by (θ(0), φ(0), θ̇(0),
φ̇(0))=(0, 0.1, 0, 0.01). And the times when controllers are
switched are

• Step 1 −→ Step 2
At the condition of ’cos θ > 0.8’

• Step 2 −→ Step 3
At the condition of ’cosφ > 0.94’

The figure shows that, first, only the first pendulum has
swung up by (12) of the controller of Step 1, and next, the
second pendulum has swung up while the first pendulum is
stabilized at the upright position by (26) of the controller
of Step 2, finally both pendulums have been stabilized
at the upright position by (29) of the controller of Step
3. Especially, at Step 2, stabilizing the first pendulum is
not influenced by the input which swings up the second
pendulum. And the cart does not move greatly from the
center of a rail at each step.

TABLE II

VALUE OF SYSTEM PARAMETERS

m1 0.18 [kg] m2 0.10 [kg]

n1 0.078 [kg] n2 0.05 [kg]

l1 0.19 [m] l2 0.115 [m]

Jn1 2.8 × 10−5 [kgm2] Jn2 2.0 × 10−6 [kgm2]

I1 0.0089 [kgm2] I2 0.0018 [kgm2]

c1 0.0001 [kgm2/s] c2 0.002 [kgm2/s]

L 0.38 [m] g 9.8 [m/s2]



TABLE III

VALUE OF CONTROL PARAMETERS

Step 1 ua1 = 14, K1 = [6.5, 6.5]

Step 2 ua2 = 50, µ = π/6,

R2 = 3, K2 = 1.0, ε2 = 1.0

Step 3 R3 = 3, K3 = 10, ε3 = 1.0
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Fig. 2. Time responses of a swing-up control of a serial double inverted
pendulum

VII. CONCLUSIONS

In this paper, a control scheme which swings up a serial
double inverted pendulum is proposed. This problem is
divided into three steps, Step 1 is to swing up the first
pendulum, Step 2 is swinging up control of the second
pendulum while stabilizing the first pendulum and Step 3
is stabilizing the both pendulums at the upright position,
and the control laws for the three steps are proposed.
In Step 1, the energy based controller for swing-up the
first pendulum is used and added by the position control
of a cart to the energy based controller. In Step 2, a

controller which combines the controller to swing up the
second pendulum by the energy control method and the
sliding mode controller to stabilize the first pendulum is
proposed. In Step 3, a controller is proposed to stabilize
both pendulums by using a sliding mode control method
keeping strong robustness. Finally, a numerical simulation
is given to show the effectiveness of the proposed scheme.
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