
 
 

 

Fig. 1 Polymerization reactor system and its 
control scheme 

  
Abstract—The study is carried out on temperature control of a 

high-order reactor system subject to physical input constraint and 
output multiplicity. Since many process states are unmeasurable in 
the real-time evaluation and thermal effects of exothermic 
reactions usually tend towards operation with stability margins, 
nonlinear control algorithms derived from the state-space 
formulation of model-based controller design for nonlinear 
relative-degree-one and relative-degree-two systems are addressed. 
With the aid of the equilibrium-based design, the nonlinear PI and 
PID-types control frameworks are more amenable to industrial 
implementation. Additionally, the tuning procedure with two 
controller parameters is relatively simple and straightforward. 
Through numerical simulations, the low-and-high gain technique 
and anti-reset windup design are added to enhance the process 
control performance. 
 
Keywords: Feedback linearization; nonlinear PI/PID control; 
Anti-reset windup; Polymerization Reactor 

I. INTRODUCTION 
OME important polymers are industrially produced in 
continuous stirred tank reactors (CSTRs), for instance 
polystyrene. In mass and solution free-radical 

polymerizations, heat transfer is poor due to high viscosities 
such that thermal effects associated with exothermic 
reactions and poor heat transfer probably cause the thermal 
runaway in some PCSTR systems. Therefore, free-radical 
polymerization reactors not only exhibit highly nonlinear 
dynamic behavior with many instability features [17, 19], 
but also their control designs are so attractive as to control 
other emulsion polymerization reactor systems [7]. 

While product quality and operation safety are 
simultaneously maintained, relevant control designs for 
polymerization reactors are often multivariable [3, 13]. 
Additionally, the relationship between concentrations and 
reaction rates has highly nonlinear nature, and the 
monitoring property related to molecular weight distribution 
(MWD) is a challenging task [9, 16, 21]. Inspired by 
feedback linearization methodologies having been widely 
studied for chemical process applications [10, 15], nonlinear 
control techniques combined with functional state 
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estimations have been explored for improving productivity 
of PCSTR systems [9, 23], in which high-gain observers 
usually provide rapidly estimating unknown polymer 
properties to recover the performance of partial feedback 
controls. Besides, some linearization control designs 
connected with the anti-windup compensation are expected 
to deal with physical controller constraints [8, 11, 26]. 

In the last decade, feedback linearization methodologies 
have been widely explored for the stabilization of chemical 
reactors [4, 24], and PI-type compensation techniques were 
applied for the stabilization of a class of chemical reactors in 
which jacket dynamic is usually neglected [1, 2]. In recent 
year, Wright et al. [25] proposed nonlinear PI and PID 
controllers resulted from the application of model-based 
controller design methods to specific first- and second-order 
systems, Chang et al. [5] proposed a self-tuning PID 
controller with a stable adaptation mechanism was carried 
out on a class of feedback linearizable systems, and Tan et al. 
[22] used a preload relay into a PID controller such that the 
robust self-tuning mechanism is suitable for nonlinear 
systems. Obviously, the conventional PI/PID algorithms are 
gradually translated into the adaptable, nonlinear PI/PID 
algorithms.  

II. EXAMPLE 
In this paper we consider a jacketed CSTR system in which 
the free-radical polymerization of styrene takes place [19]. 
Fig. 1 shows that the reactor is continuously fed with 
monomer, initiator and solvent. Under the equal-reactivity 
hypothesis, the quasi-steady-state assumption for all radical 
species, and ignoring the reaction of chain transfer to the 
polymer, the process model is described by the following set 
of equations: 
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Fig. 2  Open-loop state profiles for step change of initiator in the feed
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This CSTR exhibits multiple steady states, and the poor heat 
removal device usually causes the ignition/extinction 
behavior or open-loop instability. In general, many 
polymerization reactor control strategies are multivariable in 
nature, so the single-loop temperature control connected 
with PI/PID control framework is rarely employed [17].  

Discussion 1: In order to maintain the good product quality 
of exothermic reactor systems, the cooling jacket is often 
treated as the feasible heat removal. To examine heat 
removal effects, Fig. 1 shows the open-loop dynamic of this 
styrene polymerization reactor in the presence of coolant 
flowrate changes. However, the low coolant flowrate ( cQ ) 
induces undesired reactor temperature or even thermal 
runaway. In Fig. 2, the inlet perturbation of initiator in the 
feed causes the unsymmetrical open-loop responses. Those 
simulations demonstrate that this reactor has highly 
nonlinear, unstable dynamical behavior due to thermal 
effects of polymerization reactions. Referring the issue of 
process operation in Viel et al. [23], the physical constraints 
for the safe reactor temperature ( ,max 450 KrT≤ = ) and the 
proper range of inlet coolant temperature 
( 300 K 450 KcfT≤ ≤ ) are considered. Furthermore, we 
assume that the PCSTR system is affected by perturbations 
in the feeds, and the state-space form of reactor model in eq. 
(1) is written as 

1 1

2 2

( , ) ( , )

( , ) ( , )sat( )
( )

c

x f x g x

f x g x u
y h x

ω ω ξ

τ ξ ξ ξ

= +

= +

=

                                    (2) 

where [ ], , ,M S I rx W W W T ′= , cTξ = , c c cV Qτ = , ry T=  

and cfu T= . 2ω ∈ Γ ⊂ ℜ  represents the class of bounded 

disturbances for both IfW  and fT . The saturation function is 
shown as 
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Note that the nonlinear vector functions ( 1f , 1g , 2f , 2g ) can 

be directly constructed by eq. (1), and maxu =450 K and 

minu =300 K. 

III. NONLINEAR PI CONTROL SCHEME 
Obviously, the state-space form of eq. (2) can be denoted as 
a two-time-scale nonlinear system [14, 27]. A 
quasi-steady-state equation while cτ =0 is shown as 

2 20 ( , ) ( , )s sf x g x uξ ξ= +                                             (4) 

where sξ  represents a quasi-steady-state value. The 

solution of sξ  by eq. (4) is described by 

( , )s x uξ ϕ=                                                               (5) 

The reduced-order linearizable system is expressed as 



 
 

 

 
Fig. 3 Closed-loop state trajectories with respect to step change in 

the feed temperature using the PI-type state feedback 
controller  
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where the function 1
1( ) nxη −∈ℜ  satisfies 

1 1 ( ) 0gL xη = . In 
general, the static state feedback control cannot reduce 
steady state errors in the presence of step disturbances or 
structured modeling errors. Thus, a first-order reference 
model as an error compensator is introduced 

1( )m spy y yε= −                                                         (7) 

and the control law is given by  

( )1 1

1
1 2( ) ( )sp m f gu y y y y L h L hϕ ε ε−  = − − − − 

           (8) 

where 1 2, 0ε ε >  are denoted as tuning parameters, and 
ℜ∈my  is the reference output. Moreover, the closed-loop 

linearizable system is augmented  

12 1 1 1 1 1 1,      ,      m m fz z y y Lε ε ε δ η η= − = − + =                   (9) 

where 1 mz y y= −  and δ = sp my y y− + . Both parameters 
( 1ε , 2ε ) dominates the closed-loop transient response.  
Remark 1: If the integration of first-order reference model is 
shown as 

, 1 0
( )
t

m m b spy y y y dε τ= + −∫                                        (10) 

where ,m by  represents the initial of reference model. 
Moreover, the PI–type state feedback control by eqs (8) and 
(10) is represented as 
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Note that the modes of PI configuration are parameterized 
by both tuning parameters 1ε  and 2ε . Active input 
constraints often degrade the PI control performance due to 
the pure integral effect. The anti-reset windup design for the 
nonlinear gain PI

cK  is introduced 
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where ,b ssu  is control bias, and 0σ ≥  is a adjustable 
parameter.  
Discussion 2: For a demonstration, Fig 3(a) and 3(b) depict 
that the nonlinear PI control with two kinds of tuning 
constants can ensure the convergent temperature trajectory 
around the same boundaries while an unknown disturbance, 

FT∆ , appears in the inlet flow. It is noted that both 

parameters 1ε  and 2ε  can individually perform the same 
high-gain effect for the output regulation. Under the actuator 
constraints ( 300 K 450 Ku≤ ≤ ), Fig. 4(a) shows that the 
added anti-reset windup design can keep the stable output 
regulation, and Fig. 4(b) depicts that controller is 
unsaturated by adjusting 0σ = . 
 
Control based on an equilibrium manifold 

In fact, the state information of control laws in eq. (11) is 
unavailable for practical applications. Inspired by the 
equilibrium-based control strategy [20] for output regulation 
of nonlinear systems, the PI-type state feedback control will 
be extended to involve this useful feedforward design. 
 It is assumed that smooth maps 4:ex Γ → ℜ  and 

:eu Γ → ℜ  are determined by solving the following 
algebraic equations 



 
 

 

 
Fig. 4  Disturbance rejection of step change in the feed 

temperature using the PI-type state feedback controller 
without or with anti-reset windup design 

 
Fig. 5  Disturbance rejection of step change of initiator in the feed 

using the PI-type feedforward/output feedback controller: 
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where
( )( ) ( ) ( )( ) ( ) ( )( )1 1, , ,e e e eF f x g x x uω ω ω ω ϕ ω ω+ , and 

both functions ex  and eu  are specified the equilibrium 
manifold with the nominal equilibrium point, ( )0e

ssx x= . If 

the equilibrium function of ex  is determined from the 
off-line approach, then a PI-type feedforward/output 
feedback control is written as 
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and also suppose that the following term 
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has only negative-real-part eigenvalue for ω ∈ Γ . 
Basically, the approximation of equilibrium function ex  for 
this PCSTR system can be easily obtained through 
numerical approaches, e.g. an interpolation combination [6]. 

Discussion 3: Two modes of above PI configuration are 
nonlinear and parameterized, so the tuning interaction 
between 1ε  and 2ε  are worthily investigated. Inspired by 
the low-and-high gain design technique in Saberi et al. [18], 
both tuning parameters are expected to perform 
low-and-high gain effects for stable output regulation. In Fig. 
5(a), the tuning constants ( ) ( )1 2, 10,10ε ε =  provide the 
satisfactory output regulation for an unknown disturbance, 

IfW∆ , but the pure high-gain approach ( ) ( )1 2, 10,1ε ε =  

may destabilize the closed-loop system. 

IV.  NONLINEAR PID CONTROL SCHEME 
Above PI control design procedures are superior to a 
two-time-scale PCSTR system with 1cτ << , but the 
extended design procedure for a relative-degree-two system 
is developed. First, the augmented transformation is defined 
as  

1 2 2 1 1,      ( )m mz y y z y zε α= − = − +                             (18) 

where 
1 11 f gL h L hα ξ= + . Moreover, the time derivative of 

z1 and z2 are expressed as 
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control law is set as  
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Then the closed-loop system can be written as 
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where 2
2 ( ) nxη −∈ℜ . Similarly, the stable nonlinear 

inversion and the stable internal dynamic 2η  are required. 
Using the reference model in eq. (7), the novel PID-type 
state feedback control is written as 
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Remark 2: Obviously, the system has not restricted in a 
two-time-scale form, and the control law connected with the 
derivative output will induce the nonlinear PID 
configuration. The state-dependent nonlinear function PIDu  
is similar to a bias of PID algorithm, PID

cK  is a 
state-dependent nonlinear gain, and PID

Iτ  and Dτ  are 
parameterized by both tuning parameters ( 1ε , 2ε ). A small 

2ε  or a large 1ε  will produce the fast mode so that both 
tuning parameters are related to high-gain effect. Moreover, 
if the saturated composite gain PID PID

c IK τ  is described as 
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then eq. (22) is modified to 
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Similarly, the equilibrium-based design is added to establish 
a PID-type feedforward/output feedback control  
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where the smooth map 
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suppose that the following term 
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has only negative-real-part eigenvalue for ω ∈ Γ . 
Remark 3: The above PID-type nonlinear control scheme is 
derived from the I/O linearization approach, but the 
closed-loop stability should depend on limitations of 
positive parameters ( )1 2,ε ε , the stable internal model my , 
and stable internal dynamics 2η . The control performance 
relies on the choice of both parameters ( )1 2,ε ε . Essentially, 
the developed nonlinear PID control schemes are 
implemented to a relative-degree-two system subject to 
input constraints. Since the derivative mode can make the 
smooth output trajectory and increase the closed-loop 
stability, the PID controller design can improve the 
drawback of the previous nonlinear PI controller. 
Discussion 4: To demonstrate above PID control schemes, 
Fig. 6(a) depicts that the PID-type state feedback control can 
effectively reject an unmeasured disturbance on the output, 
and the corresponding control action in Fig. 6(b) is 
unsaturated by exploiting the anti-windup compensation 
with 2σ = .  
  

V. CONCLUSION 

 The study is carried out on temperature control of a 
free-radical PCSTR system subject to physical input 
constraint and output multiplicity. Through the I/O 
linearization method as a base of controller syntheses, the 
state-space formulation of PI- and PID-types state feedback 
control frameworks are applied for nonlinear 
relative-degree-one and relative-degree-two systems, 



 
 

 

 
Fig. 6  Disturbance rejection of step change in the feed 

temperature using the PID-type state feedback controller 
without or with anti-reset windup design 

respectively. With the aid of the equilibrium-based design, 
the novel nonlinear PI/PID controllers are developed. 
Whatever PI or PID control configuration, only two tuning 
constants are implemented to reduce input constraints as 
well as reset windup problems. In addition, the proposed 
issues for closed-loop stability analyses are quite 
straightforward from the basis feedback linearization 
approach and equilibrium manifold.  
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