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Abstract - An attitude determination routine based on
geometric relations coupled with an orbital position estimator
is designed. The proposed determination algorithm utilizes
Earth position and magnetic field vector measurements.
Orbital position data is provided by an Extended Kalman
Filter (EKF) estimation of the Keplerian orbital elements.
This estimator uses only measurements of the magnitude
of the Earth’s magnetic field. Coupling the orbital position
estimator and attitude determination routine results in a fully
autonomous satellite navigation system. The proposed atti-
tude determination routine significantly reduces the compu-
tational efforts necessary to accurately estimate the attitude.
It also eliminates the need of error-prone gyros while only
requiring a nadir vector measurement. Simulation of the
proposed system on the CATSAT (Cooperative Astrophysics
and Technology SATellite) model results in accurate orbital
position and attitude estimates for secondary fault detection
and isolation implementation.

I. I NTRODUCTION

For three-axis stabilized satellites, an accurate measure
of inertial attitude of all three axes is needed for accurate
control. As a satellite rotates about the Earth, sensors must
measure the satellite attitude with respect to a fixed reference
point (such as the Earth, sun and stars). Stars are the only
group of objects that can be considered inertially fixed with
respect to the satellite. However, star sensors need extensive
star catalogs for determination and may be a computational
burden for small satellite missions. Since stars are the only
inertially fixed points available, attitude determinationfrom
objects such as the sun and the Earth require knowledge
of satellite position with respect to the Earth. Such orbital
information must either be up-linked from a ground station
or be calculated autonomously by the satellite itself. Global
positioning systems have also recently been used for semi-
autonomous orbital estimates [1].

This paper deals with the use of only magnetometer data
for orbital position estimation. One of the earliest papers
by Psiaki et al. [2] used a square root information filter
implementation of the Extended Kalman Filter (EKF) to
estimate the Keplerian Orbital Elements (KOE) [3]. Shorshi
et al. [4] applied an EKF to estimate the KOE by using only
the dynamic equations of a mass under a central force while
neglecting the drag terms when an estimate is unnecessary.
The estimation of KOE utilizing an EKF was later combined
with an attitude estimation routine to yield an algorithm that
used magnetometer and gyro data filtered through an EKF
to obtain both the orbital and the attitude estimates [5], [6].

Another recent study by Deutschmannet al. [7] excludes
gyro measurements and also estimates the angular rates by
additional sun sensor measurements.

Inertial attitude determination involves the determination
of both the orbital position and the orientation of a body
fixed coordinate system with respect to an orbital reference
coordinate system. One possible way to determine the latter
is by utilizing an EKF to estimate the attitude quaternion
and the axis rates [6], [8], [9]. This requires the estimation
of seven states. Since both an update and propagation stage
are used for both states and the error covariance matrix, the
computational burden of such a process is enormous. For
many satellites with slow CPU and limited RAM, such a
computational load is undesirable.

An alternative is to determine the attitude directly from
vector observations. The first standard method used on many
missions is the TRIAD algorithm [10]. Using two vector sets,
the attitude information is found in a deterministic manner.
Matrix inversion of a three dimensional system is utilized,
directly yielding the directional cosine (attitude) matrix.
Unfortunately, some of the attitude information must be
discarded to prevent the system from being over-determined,
due to the existence of multiple solutions for a given attitude
matrix. Another method known as the QUEST (QUaternion
ESTimate) [10] overcomes some of the shortcomings by
combining all vector observations in an optimal manner by
minimizing a specified loss function of sensor data. This
method assumes accurate knowledge of the measurement and
process noise, a priori attitude information and gyro data.

This paper proposes a simple attitude determination rou-
tine that directly processes the magnetic field and Earth po-
sition vector measurements. Proposed method uses a similar
approach with the TRIAD algorithm, requiring a minimal
amount of sensor measurements and relatively inexpensive
measurement hardware. The computational requirements are
also significantly reduced. The algorithm is based on a
geometric development, where six independent equations can
be formed from the six independent variables that create
the directional cosine matrix. Using a numerical solution
method, a minimum error approximate solution to these
equations can be found. It is important to note that the
attitude determination routine is reliant on the accuracy of
the orbital estimator for both set of vectors.

The resulting completely autonomous navigation system
would be adequate as a primary routine if a coarse heading
is sufficient. Otherwise, the proposed attitude determination
and orbital estimation routines can be used as a part of the
contingency system.

The organization of this paper is given as follows. First,



the dynamic equations that govern the orbital dynamics are
given. Then an Extended Kalman Filter is formulated for the
orbital estimation problem. Next, the aforementioned attitude
determination method is explained. Finally, the results of
the coupled orbital estimator and the attitude determination
routine as simulated on the CATSAT1 (Cooperative Astro-
physics and Technology SATellite) model are demonstrated
for various orbital inclinations.

II. ORBITAL DYNAMICS

The state vector for the EKF is comprised of the six
classical Keplerian orbital elements in addition to a term
representing drag friction:

XT (t) = [a, e, i,Ω, ω, θ, Cd] (1)

wherea is the semi-major axis,e is the eccentricity,i is the
inclination,Ω is the right ascension of the ascending node,ω
is the argument of the perigee,θ is the true anomaly andCd

is the drag coefficient. Analysis of the dynamics of the orbital
parameters when the satellite is exposed to perturbing forces
is performed using the variation of parameters method [3],
which considers the direct effect of the perturbing forces
on orbital parameters. Analytical descriptions of the rates of
change of each parameter is obtained instead of a numerical
integration routine. Results of the analysis [3] are given as:
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whereft, fn, fl are the tangential, inward normal and lateral
orbital perturbing forces, respectively. The first two forces
are “in-plane” perturbations, whereas the last acts outside
the orbital plane. These forces are assumed small compared
to the central gravitational force. Additionally,
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where µ is the Earth gravitation constant. As the drag
coefficient is constant,̇Cd = 0, which is included in the state
dynamics, so as to allow for the estimation of its nominal
value.

1CATSAT is a small satellite mission sponsored by NASA and
developed by the Space Science Center of the University of New
Hampshire to detect gamma ray bursts in deep space.

III. EKF ORBITAL ESTIMATOR

The relation between the magnitude of Earth’s magnetic
field and the orbital elements is highly nonlinear. Therefore,
an EKF [11] is used for the estimation of orbital elements
instead of a linear KF, to incorporate the nonlinear effects
present both in the measurement model and in the dynamic
equations. The system and the measurement models are given
as:

Ẋ(t) = f [X(t), t] + w(t) (4a)

yk = hk[X(tk)] + vk (4b)

where f [X(t), t] is the nonlinear system equations,w(t)
is the white, zero-mean process noise,hk[X(tk)] is the
nonlinear measurement model, andvk is the white, zero-
mean measurement error. Development of the measurement
update and the propagation stages of the filter equations [11]
are reviewed in the following section.

A. Measurement Update Stage
The error between the measurement and the estimated

magnetic field vector is used to update the state estimates
to force the convergence of magnetic field estimates. The
measurement model is defined as

yk = | ~B(Xk, tk)| + vk (5)

where ~B(Xk, tk) represents the measured magnetic field
vector. The update equation is given as

X̂k(+) = X̂k(−) + Kk

[

yk − |B̃(X̂k(−), tk)|
]

(6)

whereX̂k() represents the estimated states. Pre-update and
post-update variables are also represented by - and +, respec-
tively. B̃(X̂k(−), tk) is the estimated magnetic field vector
using the International Geomagnetic Reference Field (IGRF)
model. The IGRF is a complex 10th-order spherical harmonic
model of the Earth’s magnetic field and models secular
variations to the 8th order. The IGRF model used in this
work uses the spherical harmonic coefficients calculated for
the epoch 2000. The secular variation terms vary slightly
each year but can be accurately calculated by modifying the
coefficients of the same epoch. Details of the IGRF model
can be found in [12].

The Kalman gain matrixKk in Eq.(6) is defined as

Kk = Pk(−)Hk
T

[

HkPk(−)Hk
T + Rk

]−1
(7)

where Hk is the measurement matrix,Pk(−) is the pre-
update estimation error covariance matrix, andRk is the
covariance matrix ofvk. Once the states have been updated,
the estimation error covariance matrix is updated as follows:

Pk(+) = [I−KkHk]Pk(−)[I−KkHk]T +KkRkKk
T (8)

The measurement matrixHk, relates the differential of
the norm of the magnetic field vector to the differential of
the orbital elements. As the relations for the magnetic field
and the nonlinear measurement model are highly involved,
the corresponding derivations and calculations are simplified
and briefly mentioned.



Fig. 1. Magnetic Spherical Coordinates

Measurement Model: The measurement matrixHk is
defined as
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where|B̂(RF )| refers to the norm of the estimated magnetic
field vector resolved in the Earth-fixed magnetic spherical
coordinate system. Figure 1 shows the components of the
magnetic field vector in the Earth-fixed spherical coordinate
system. The measurement model (i.e. the magnitude of the
estimated magnetic field vector) has no direct functional
relation with the orbital states, therefore Eq.(9) can be
expanded by chain rule to yield

Hk =
∂|B̂|

∂B̂
·

∂B̂

∂RF

·
∂RF

∂RI

·
∂RI

∂X

∣

∣

∣

∣

X̂k(−),tk

(10)

where RF and RI represent the spacecraft position vector
in the Earth centered fixed and the Earth centered inertial
coordinate systems, respectively. Definition of the lattercan
be seen in Figure 2 (X of Aries is an inertially fixed vector
that points from the Earth’s center to the center of the sun
on the vernal equinox).

The partial derivatives ofRI with respect to the filter states
are calculated analytically according to the spherical geome-
try. The partial derivatives of the magnetic field with respect
to the position vector are calculated using the magnetic field
model equations. Details of the matrix development can be
found in [13]. Measurement matrix calculations impose a
significant computational burden on the flight processors. For
this reason, calculations can be made analytically and offline.
Therefore, during the execution only the states are needed for
the propagation of the algorithm.

B. Propagation Stage
Orbital dynamics of Eq.(2) constitute the system model

previously given in Eq.(4a)

Ẋ(t) = f(X(t), t)

The derivatives of the states are approximated by the forward
Euler approximation. Hence, the estimated state at the next
time step is

X̂k+1(−) = X̂k(+) + f(X̂k(+)) · ∆T (11)

Fig. 2. Earth-Centered Inertial Spherical Coordinates

where ∆T is the time step between measurements. The
propagation of the covariance matrix is carried out as follows

Pk+1(−) = Ak(X̂k(+))Pk(+)Ak
T (X̂k(+)) + Qk (12)

whereQk is the process noise covariance matrix (used for
tuning purposes) andAk is the transition matrix approxi-
mation, which is computed using a first order Taylor series
expansion:

Ak(X̂k(+)) = I + Fk(X̂k(+)) · ∆T (13)

Here Fk(X̂k(+)) denotes the Jacobian matrix based on the
partial derivative of the nonlinear system dynamics with
respect to the orbital states:

Fk(X̂k(+)) =
∂f(X(t), t)
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(14)

After predicting the filter states and the covariance matrixat
the next step, the algorithm proceeds with the updates from
the sensor measurements of the following time step.

IV. ATTITUDE DETERMINATION

The attitude determination routine requires two sets of
vectors. These vector sets are essentially comprised of two
nonparallel vectors expressed in two different coordinate
systems: the satellite centered body (SCB) and the satellite
centered inertial (SCI) coordinate frames. (The SCB frame
is defined by the satellite principal inertial axes, whereasthe
SCI frame is in the same orientation with the Earth centered
inertial frame except the origin is translated to the satellite’s
center of mass). The magnetic field vector is one of these
vectors, and thenadir vector, which points from the satellite
to the center of the Earth, will be used as the second vector.

As the orbital position estimator converges, the inertial
position of the satellite with respect to the center of the
Earth is assumed known. Consequently, both the magnetic
field and the Earth position vectors are known in the SCI
coordinate frame. Assuming that both vectors are measured
in the SCB frame, the necessary sets of vectors are complete
and differ only by the satellite attitude. The transform relating



each vector set is merely the directional cosine matrix. This
relation can be shown as:

~BSCB = AIB · ~BSCI

~CSCB = AIB · ~CSCI (15)

where ~BSCB , ~BSCI , ~CSCB and ~CSCI are the magnetic
field and nadir vectors resolved in the SCB and the SCI
coordinates, respectively.AIB is the attitude (directional
cosine) matrix which transforms a given vector from the SCI
to the SCB coordinate system and is defined as

AIB = [~n ~o ~a ]T =

[

nx ny nz

ox oy oz

ax ay az

]

(16)

~n,~o,~a represent the respective principal inertial axes of
the satellite in the SCI coordinate frame. Indeterminacy of
Eq.(15) can be solved by using the knowledge that~n,~o,~a
form an orthogonal triad, such that~a can be replaced by

[
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(17)
Equations (15, 17) yield the nonlinear system

F1(nx, ny, nz, ox, oy, oz) = F1(Xa) = 0 (18)

to be solved in the attitude determination routine. The expan-
sion of Eq.(18) can be found in the Appendix. Using Taylor
series expansion and neglecting higher order terms,

F1(Xa) = F1(Xa0) + (Xa − Xa0) · J(Xa0) = 0 (19)

where Xa0 denotes the current iterated value of the state
vectorXa, andJ(Xa0) represents the Jacobian ofF1(Xa).
The closed form solution of Eq.(19) requires the inverse of
the Jacobian to be computed at every iteration. Since this is
not trivial for high-dimensional systems, an appropriate nu-
merical method (e.g. Gaussian elimination/back substitution)
can be used to find an approximate solution forXa.

Detailed simulation results [13] show that the Newton-
Raphson iteration technique requires only two iterations to
converge. Unfortunately, the convergence is not assured due
to the inherent nature of the numerical method employed. To
increase the number of successful determinations, a second
set of equations is also used:
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(20)
This set uses the unity constraint of vectors~n and~o

n2
x + n2

y + n2
z = 1

o2
x + o2

y + o2
z = 1 (21)

and
~n · ~o = 0 (22)

0.2 0.4 1.6 1.8 2

x 10
4

−10

−5

0

5

10
Difference in Magnetic Models [nT]

0.2 0.4 1.6 1.8 2

x 10
4

0

500

1000

RMS Orbital Error [km]

0.2 0.4 1.6 1.8 2

x 10
4

0

50

100
RMS Orbital Error (Magnified) [km]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

20

40

60

Time [sec]

Total Attitude Error [deg]

Fig. 3. Orbital and Attitude Estimator Results fori=45
o

In cases where the first set(F1) of equations does not
meet the performance requirements or converge, the Newton-
Raphson solution method (or applied numerical method) is
repeated for Eq.(20).

V. SIMULATION RESULTS

The orbital estimation and attitude determination routines
are tested on the University of New Hampshire CATSAT
simulation model. The orbital estimator results in acceptable
RMS orbital position errors between 29 and 42 km upon
convergence, with magnitude errors ranging from 5 km to
60 km. The attitude determination routine produces accurate
results within0.481o to 1.080o of total angular error for all
axes, over the range mentioned for the orbital position esti-
mator. Efficiency of the estimation routine is demonstrated
in Figure 3 for an orbital inclination of45o. The results
are investigated separately for the orbital estimator and the
attitude determination routine in the following sections.

A. Orbital Estimator Results
Obtaining success in convergence and in rates of con-

vergence in a global sense is difficult due to the complex
topography of the magnetosphere and varying initial condi-
tions of the estimator and the orbit. Therefore, the simulations
are performed only under varying orbital inclinations, since
the inclination is the most significant parameter affectingthe
observability of the orbit. All other initial conditions remain
constant. Initial conditions used for the simulated orbit and
the orbital estimator are given in Table 1.

Table 1. Initial conditions for the simulated orbit and the orbital
estimator

a e Ω ω θ
(km) (deg) (deg) (deg)

Orbital IC 6921.2 0.001 45 90 0
Estimator IC 6926.2 0.00101 48 86 -4

The orbital estimator is initialized with an inclination of2o

less than the actual inclination and tested for values ranging



between15o and 75o. The orbital position error results are
listed in Table 2.

Table 2. Orbital position errors for varying inclinations
Inclination Initial Orbital Position Initial Magnetic

i Error RMS Error After Field Magnitude
(deg) (km) Convergence (km) Error (nT)
15 1018 108 -321.359
20 894 194 -160.694
25 929 209 -65.095
30 710 52 -34.953
45 929 27 -223.009
60 995 39 -566.325
75 1068 30 -651.412

The orbital position error in Table 2 refers to the difference
between the actual and the estimated rectangular coordinates
of the center of mass of the satellite. The simulation duration
is 2 · 104 s, corresponding to approximately 3.5 orbits
according to the average orbital period [3] given by

Torbit = 2π ·

√

a3

µearth

(23)

where µearth is the gravitational constant equal to3.986 ·
105 km3

s2 . A sampling time of 2 s between measurements is
used for the simulations. Convergence of the orbital estimator
often occurs within one-half of an orbit.

It can be clearly seen that the steady-state estimation
error falls drastically for inclinations higher than30o. This
is due to the poor magnetic field magnitude variation at low
inclinations. The magnitude varies a great deal more at higher
inclinations because of the dipole shape of the magnetic field.

B. Attitude Determination Results
To quantify the accuracy of the attitude determination

routine, an approximate error expression based on the differ-
ence between the actual and the estimated directional cosine
matrices is established:

Aerr =

[

∆~n
∆~o
∆~a

]

=

[

~nact − ~nest

~oact − ~oest

~aact − ~aest

]

(24)

Taking the RMS of each error vector indicates the accuracy
of the estimated attitude information
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where m is the number of data points after convergence.
To obtain the equivalent angular difference, the error vector
is assumed to be approximately perpendicular to the actual
vector and the error angle is obtained as follows:

αk ≃ tan−1

(

Ek

1

)

(26)

A single indicator of the total attitudinal error is chosen to
be

β =
√

αn
2 + αo

2 + αa
2 (27)

whereβ is the total angular error. The attitudinal error sim-
ulation results are given in Table 3 for varying inclinations.
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Fig. 4. Attitude Error Vectors fori=45
o

Table 3. Attitudinal error results for varying inclinations

i Orbital Position αn αo αa β
(deg) RMS Error After (deg) (deg) (deg) (deg)

Convergence (km)
15 108 0.761 2.324 2.319 3.370
20 194 1.609 3.680 3.691 5.455
25 209 1.739 4.021 4.032 5.954
30 52 0.489 0.985 0.965 1.463
45 27 0.294 0.281 0.256 0.481
60 39 0.417 0.382 0.333 0.656
75 30 0.640 0.753 0.436 1.080

The correlation between the orbital estimator and the
attitudinal steady-state error is obvious from the data. The
attitude estimate increases in accuracy with increasing orbital
estimate accuracy. The ascending trend in attitudinal error for
inclinations about75o is due to the fact that the magnetic
poles and the Earth’s rotation axis do not align. The radial
component of the Earth’s magnetic field shows a peak for
locations corresponding to latitudes between70o and 75o

[13]. This leads to a loss of independence of the equations
used to obtain the attitude estimates as a result of the
near co-alignment of the magnetic and the nadir-pointing
vectors. This phenomenon occurs even for smaller orbital
inclinations at certain instances where the satellite travels
near the magnetic poles. This can be seen in Figure 4, which
shows the attitude determination results at an inclination
of 45o. The spikes correspond to brief intervals where
the determination routine fails. The autonomous navigation
routine implemented here is completely decoupled from the
specific satellite model used and works outside the control
loop. The actual model uses theORBINT code developed by
the NASA Jet Propulsion Lab (JPL) for orbit propagation. It
should be noted that the IGRF model is used for both the
true satellite model and the orbital estimator magnetic field
information; although both have different initial conditions.
As the IGRF model is a highly complex nonlinear function
of the orbital position, these varying initial conditions suffice
to effect the true and orbital estimator model outputs to differ
significantly.



VI. CONCLUSIONS

This paper presents a satellite attitude determination al-
gorithm coupled with an orbital position estimator utilizing
Earth position and magnetic field measurements. The satellite
position estimates are provided by Extended Kalman Filter-
ing of Keplerian Orbital Elements. The proposed attitude de-
termination routine is a computationally efficient and simple
algorithm, which directly processes two vector measurements
to obtain attitude information without requiring error-prone
gyros.

The resulting autonomous navigation algorithm is imple-
mented on the University of New Hampshire - CATSAT
simulation model. The results show that RMS orbital po-
sition errors vary between 27 km and 42 km, depending
on the orbital inclination. The orbital estimator succeedsto
overcome initial position errors exceeding 1000 km. This
algorithm works well for near-circular orbits. The EKF is
designed to incorporate an atmospheric drag estimate as well
as the Keplerian orbital element estimates.

Over the same range of convergence, the attitude de-
termination routine accuracy varies in total angular error
from 0.481o to 1.080o. The large angular deviation at higher
inclinations occur because of the position of the magnetic
poles. The simulations show that the band of optimal results
for orbital estimation and attitude determination is obtained
between40o and70o.

Both the orbital estimator and the attitude determination
routine are observed to converge to acceptable estimates
within an orbital period. The orbital estimator uses only
magnetometer data, while the attitude determination routine
requires only an additional Earth position measurement to
complete the autonomous navigation algorithm. The pro-
posed method is a simple and inexpensive solution for
smaller satellites, and reduces the extra computational re-
quirements imposed by adding the attitude states to the
EKF. The need for any priori knowledge of the attitude is
also eliminated, since the attitude is determined by a direct
processing of vector measurements.

The results are satisfactory for smaller satellites similar
to CATSAT, for which the mission requirements are less
stringent. However, if a more accurate navigation system is
deserved, the proposed algorithm may preferably be used as
a secondary system.

Future work involves developing a computationally more
efficient orbital estimation algorithm in place of the EKF.
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VIII. A PPENDIX: EQUATION (18)
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y
SCI + (nx · oy − ny · ox) · Cz

SCI − Cz
SCB
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