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Abstract— Let H(z) be a third-order discrete-time trans-
fer function with complex poles. This paper considers the
following question: under what conditions does there exist a
positive realization whose dimension is equal to the McMillan
degree of H(z). A sufficient condition is established for
such a realization, which is also necessary under some mild
assumption on the behavior of the impulse response.

I. INTRODUCTION

In this paper, we study the following problem: LetH(z) be a third-
order discrete-time strictly proper transfer function, under what
conditions does there exist a positive realization with dimension
3, which is the McMillan degree ofH(z)? As shown in [2], the
problem is quite intriguing, since the positivity constraint on the
system matrices, may ”force” a given transfer function to have a
minimal positive realization of order much greater than its degree,
and this seems to be a typical feature of most systems, even for
a third-order transfer function. In [1], the positive realization is
considered for a third-order transfer function with distinct real
positive poles. In this paper, we will solve the positive realization
problem for a third-order transfer function with complex poles.

II. PRELIMINARIES AND LEMMAS

In this paper, we focus on the following transfer function

H(z) =
m0

z − λ
+

m1

z − x1 + y1j
+

m1

z − x1 − y1j
(1)

with λ, x1, y1, m1, m0 are real,y1m1m0 6= 0 andλ2 > x2
1 + y2

1 .
Definition 1 Given a matrixP , thenP 4

= cone(P ) is the set of
all (finite) nonnegative linear combinations of the columns ofP .
Definition 2 The setsR = (−∞,∞), R+ = [0, +∞) are called
the sets of real numbers, positive real numbers, respectively. Let
N = {1, 2, . . .} and denote byRn

+ the set ofn−tuples of the
positive real numbers. The setRn×n

+ is called the set of positive
matrices of sizen by n.
Definition 3 A transfer functionH(z) is said to be positively
realizable if it has annth order positive realization, i.e., there
exist a tripleA ∈ Rn×n

+ , b ∈ Rn
+, c ∈ Rn

+, such thatH(z) =
cT (zI −A)−1b, wheren is an integer.
Lemma 1[4] Let H(z) be a transfer function with nonnegative
impulse response. ThenH(z) has a positive realization if and only
if c1H(c2z) has a positive realization for any positive constants
c1, c2.
By Lemma 1, the transfer function given in (1) has a positive
realization of orderM(≥ 3) if and only if

H(z) =
1

z − 1
+

m

z − x + yj
+

m

z − x− yj
(2)
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has a positive realization of orderM . Without loss of generality,
takey < 0.
Definition 4 R = cl.cone(b, Ab, A2b, . . .), i.e. the closure of
cone(b, Ab, A2b, . . .); S = {z : cT Akz ≥ 0, k = 0, 1, . . .}.
Lemma 2[4],[8] Let H(z) be a transfer function with minimal
realization{A, b, c}, i.e., H(z) = cT (zI − A)−1b. Then,H(z)
has a positive realization if and only if there exists a matrixP
such that

R ⊂ P, AP ⊂ P, c ∈ P∗

whereP = cone(P ) andP∗ =
{
β : αT β ≥ 0,∀α ∈ P

}
.

Lemma 3[8] Let (A, b, c) be an n-dimensional realization of
H(z). Then, H(z) is positively realizable if and only if there
exists a polyhedral coneP such thatR ⊂ P ⊂ S, AP ⊂ P.
Moreover, a positive realization(A+, b+, c+) is given by solving

AP = PA+, b = Pb+, cT
+ = cT P

whereP is a matrix such thatP = cone(P ).
Lemma 4[9] Consider the transfer functionH(z) defined as in
(1), then(A, b, c) is a 3-dimensional realization ofH(z), where

A =

(
x y 0
−y x 0
0 0 1

)
, b =

(
m
m
1

)
, c =

(
1
1
1

)

Lemma 5[9] Let A11 =

(
x y
−y x

)
and Ak

11 =(
∆1(k) −∆2(k)
∆2(k) ∆1(k)

)
for k ∈ N , thenA =

(
A11 0
0 1

)
and

∆i(k), ∆i(k − 1) satisfy the following equations

∆1(k) = x∆1(k − 1) + y∆2(k − 1)
∆2(k) = x∆2(k − 1)− y∆1(k − 1)

k ∈ N (3)

with ∆1(0) = 1, ∆2(0) = 0.
Lemma 6[9] The impulse response of the transfer functionH(z)
in (2) is

h(k) = 1 + 2m∆1(k − 1), k ∈ N

with ∆1(0) = 1. Moreover,h(k) is nonnegative if and only if
2m∆1(k − 1) + 1 ≥ 0, k ∈ N .
Lemma 7[9] The vectors b, Ab and A2b lie in the plane
{(ξ1, ξ2, 1) : ξ1, ξ2 ∈ R}.
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Fig. 1

Lemma 8[9] b ∈ S if and only if 1+2m∆1(k−1) ≥ 0, k ∈ N .
Lemma 9 Let X = cone(b, M1, M2). ThenA11M2 ∈ X if and
only if{

x2 + y2 + 2x ≤ 0,
x ∈ (− 1

2
, 0)

}⋃{
x2 + y2 + 2x < 0,
x = − 1

2

}
.



III. M AIN RESULTS

Theorem 1 Let H(z) be a strictly proper transfer function
and (A, b, c) be ann − dimensional realization ofH(z).
Then,H(z) is positively realizable if and only if there exists
a polyhedral coneP such thatb ∈ P, c ∈ P∗, AP ⊂ P.
Theorem 2 The transfer functionH(z) defined in (2) has
a third-order positive realization if

a)

{
x2 + y2 + 2x ≤ 0,
x ∈ (− 1

2
, 0)

}⋃{ x2 + y2 + 2x < 0,
x = − 1

2

}
;

b)2mx + 1 ≥ 0;
c)2m + 1 ≥ 0.

(4)

Theorem 3 If there exists at least onek ∈ {3, 4, . . .} such
that 1 + 2m∆1(k − 1) = 0, then the conditions in (4) are
sufficient and necessary for the existence of a third-order
positive realization ofH(z).

IV. A PPENDIX

Remark Denoteb =

(
b
1

)
, Ab =

(
M1
1

)
andA2b =

(
M2
1

)
. Then,

b =

(
m
m

)
, M1 =

(
m(x + y)
m(x− y)

)
, M2 =

(
m(x2 − y2 + 2xy)
m(x2 − y2 − 2xy)

)
Proof of Lemma 9: Rewrite

A11 =
√

x2 + y2

( x√
x2+y2

y√
x2+y2

− y√
x2+y2

x√
x2+y2

)
,

and define a linear translation as follows:

σ : Rn → Rn,
σ(p) = A11p, p ∈ Rn.

Then the angle ofσ(p) is equal to the sum of that ofp and the angle
φ, and the magnitude ofσ(p) is equal to

√
x2 + y2 multiple of that of

p, wheresin φ = −y√
x2+y2

. Under the assumption ofy < 0, we have

φ ∈ (0, π).
In this case, the relationship betweenb, M1, M2 is shown in Fig. 1.
DenoteM3 = A11M2. Let | · | denote the determinant operation, by
classical geometry, the area ofX is

1

2

∣∣∣∣∣ m m 1
m(x + y) m(x− y) 1
m(∆1(2)−∆2(2)) m(∆1(2) + ∆2(2)) 1

∣∣∣∣∣ ,
where the endpoints of the triangle are in counterclockwise order.
Take

det(T1) =
1

2

∣∣∣∣∣ m m 1
m(x + y) m(x− y) 1
m(∆1(3)−∆2(3)) m(∆1(3) + ∆2(3)) 1

∣∣∣∣∣ ,
det(T2) =

1

2

∣∣∣∣∣ m m 1
m(∆1(3)−∆2(3)) m(∆1(3) + ∆2(3)) 1
m(∆1(2)−∆2(2)) m(∆1(2) + ∆2(2)) 1

∣∣∣∣∣ ,
det(T3) =

1

2

∣∣∣∣∣ m(∆1(3)−∆2(3)) m(∆1(3) + ∆2(3)) 1
m(x + y) m(x− y) 1
m(∆1(2)−∆2(2)) m(∆1(2) + ∆2(2)) 1

∣∣∣∣∣ .
If M3 lies in X, then det(Ti) ≥ 0, i = 1, 2, 3 and det(Ti) = 0 for

at most one uniquei ∈ {1, 2, 3}; and if M3 does not lie inX, then
det(Ti) < 0 for some uniquei ∈ {1, 2, 3}. Keeping this in mind, we
obtain that

M3 ∈ X if and only if det(Ti) ≥ 0, i = 1, 2, 3,
and det(Ti) = 0 for at most onei ∈ {1, 2, 3}.

Next, we compute det(Ti), which leads to

det(T1) = −m2y(2x + 1)(x2 + y2 − 2x + 1),
det(T2) = m2y(x2 + y2 + 2x)(x2 + y2 − 2x + 1),
det(T3) = −m2y(x2 + y2)(x2 + y2 − 2x + 1).

Hence,

M3 ∈ X if and only if
{

x2 + y2 + 2x ≤ 0
2x + 1 ≥ 0

∪
{

x = −
1

2
, y2 6=

3

4

}
With the assumptions ofx2 + y2 < 1 andy 6= 0, the condition above

is equivalent to{
x2 + y2 + 2x ≤ 0
x ∈ (− 1

2
, 0)

⋃{
x2 + y2 + 2x < 0
x = − 1

2

Proof of Theorem 1: By Lemma 2, necessity follows immediately from
the fact thatb ∈ R. To establish sufficiency, we assume thatb ∈ P ,
c ∈ P∗, AP ⊂ P and prove thatH(z) is positively realizable. Since
b ∈ P, AP ⊂ P, we haveAkb ∈ P for every k ∈ N . It follows that
R ⊂ P. By Lemma 2, the sufficiency is proved.
Proof of Theorem 2: The following is a third-order realization ofH(z),

A+ =

(
0 0 x2 + y2

1 0 −x2 − y2 − 2x
0 1 2x + 1

)
, b+ =

(
1
0
0

)
,

c+ =

(
2m + 1
2mx + 1
2m(x2 − y2) + 1

)
.

The proof of2m(x2 − y2) + 1 ≥ 0 can refer to [9].
Proof of Theorem 3: To establish necessity, we assume thatH(z) has
a third-order positive realization. By Theorem 1, there exists a polyhedral
coneP with three edges such that

I) b ∈ P; II) c ∈ P∗; III) AP ⊂ P.

It follows that b ∈ S. Application of Lemma 8 shows that conditions

b) and c) are true. Lemma 7 claims that the vectorsb, Ab, A2b lie in a

plane. LetK = (b, Ab, A2b), K = cone(K). Apparently,K ⊂ P; and

b, Ab, A2b are linear independent in view ofy 6= 0. If there exists at least

onek ∈ {3, 4, . . .} such that1 + 2m∆1(k− 1) = 0, then the first three

vectors of the free evolution emanating fromb lie on different edges of

the observability coneS. Hence, by Lemma 3,K is the polyhedral cone

satisfying conditions I)-III) with minimal number of edges contained in

S. By Lemma 9, condition III) implies condition a). By Theorem 2, the

statement is proved.
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