
 
 

 

  
Abstract� A structure�s health or level of damage can be 

monitored by identifying changes in structural or modal 
parameters. This research directly identifies changes in 
structural stiffness due to modelling error or damage using a 
structural health monitoring method based on Adaptive Least 
Mean Square (LMS) filtering theory. The focus in developing 
these methods is on simplicity to enable real-time 
implementation with minimal computation. An LMS filtering 
based approach is used to analyze the data from the IASC-
ASCE Structural Health Monitoring Task Group Benchmark 
problem. The proposed methods accurately identify damage 
to within 1%, with convergence times of 0.4 � 13.0 seconds for 
the twelve different 4 and 12 degree of freedom Benchmark 
Problems and modal parameters match to within 1%. Finally, 
the method presented is computationally simple, requiring no 
more than 1.4Mcycles of computation. 

I. INTRODUCTION 
Structural Health Monitoring (SHM) is the process of 

examining the current state of a structure�s condition and 
determining the existence, location, and degree of damage 
that may exist, particularly after a damaging input, such as 
an earthquake or other large environmental load. Current 
SHM methods are based on the idea of vibration-based 
damage detection where changes in modal parameters, such 
as frequencies, mode shapes and modal damping, are a 
result of changes in the physical mass, damping and 
stiffness properties of the structure (Doebling et al, 1996). 
SHM can simplify typical procedures of visual or localized 
experimental methods, such as acoustic or ultrasonic 
methods, magnetic field methods, radiography, eddy-
current methods or thermal field methods (Doherty, 1997), 
as it does not require visual inspection of the structure and 
its connections or components. Doebling et al (1996a) has 
an excellent review of the numerous different approaches 
for vibration-based damage detection methods.  However, 
the various studies apply different methods to different 
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structures, rendering side-by-side comparison difficult.   
In 1999, under the auspices of the International 

Association for Structural Control (IASC) and the 
Dynamics committee of the American Society of Civil 
Engineers (ASCE) Engineering Mechanics Division, the 
SHM Task Group was formed and charged with studying 
the efficacy of various SHM methods.  The IASC-ASCE 
SHM Task Group developed a series of Benchmark SHM 
problems and established a set of specific Benchmark 
results for a specially designed test structure in the 
Earthquake Engineering Research Laboratory at the 
University of British Columbia (Johnson et al, 2000). After 
the Benchmark problem was established, SHM research for 
civil structure was concentrated on applying different 
techniques to the Benchmark problem to examine the 
relative and absolute effectiveness of different algorithms.  

SHM in Civil structures is useful for determining the 
damage state of a structure. In particular, the ability to 
assess damage in real-time or immediately after an 
earthquake would allow Civil Defence authorities to 
determine which structures were safe. Current methods are 
more applicable to steel frame or bridge structures where 
vibration response may be more linear. These problems 
typically have known, or reasonably estimated, input loads. 
However, the insensitivity of modal parameters to 
(localised) damage in some cases can be a major limitation 
for the larger number of methods that rely on identifying 
these parameters to assess and locate damage. This research 
uses adaptive filtering to assess the damage directly without 
using modal parameters. 

The most common method for identification of civil 
structural model parameters is the Eigensystem Realization 
Algorithm (ERA). The ERA method is based on knowledge 
of the time domain free response data. In ERA, a discrete 
Hankel matrix is formed, and the state and output matrices 
for the resulting discrete matrix are determined. These 
matrices are transformed to the corresponding continuous 
time system. The natural frequencies are found by 
determining the eigenvalues of the continuous time system. 
Dyke et al (2000) use cross correlation functions in 
conjunction with the ERA method for identification of the 
modal parameters, which are used to identify frequency and 
damping parameters. Caicedo et al (2000) introduces SHM 
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methods based on changes in the component transfer 
functions of the structure, or transfer functions between the 
floors of a structure, and use the ERA to identify the 
natural frequencies of each component transfer function. 
Lus and Betti (2000) also proposed a damage identification 
method based on ERA with a Data Correlation and 
Observer/Kalman Identification algorithm. Bernal and 
Gunes (2000) also used the ERA with Observer/Kalman 
Identification for identifying modal characteristics when 
the input is known, and used a Subspace Identification 
algorithm when the input cannot be measured. 

Wavelet analysis approaches for SHM and damage 
detection may found in Corbin et al (2000) and Hou et al 
(2000). Damage, and the moment when the damage occurs, 
can be detected by a spike or an impulse in the plots of 
higher resolution details from wavelet decomposition of the 
acceleration response data. Wavelets offer the advantage of 
determining not only the extent of the damage but also the 
time of its occurrence, which can be correlated to the input 
record for greater understanding of what occurred.  

The major drawback of all of these approaches is their 
inability to be implemented in real-time, as the event 
occurs. More specifically, the wavelet and ERA methods 
require the entire measured response to process and 
identify damage. Further, their reliance on modal 
properties, which can be subject to noise, has potential 
problems. In addition, modal properties have been shown 
in some cases, to be non-robust in the presence of strong 
noise and insensitive to small amounts of damage (Hou et 
al, 2000). 

Adaptive identification methods were employed to 
identify modal parameters by Sato and Qi (1998) and Loh 
et al (2000). Loh et al (2000) used the adaptive fading 
Kalman filter technique, and Sato and Qi (1998) an 
Adaptive H∞ Filter, to achieve real-time capable or near 
real-time capable results. What these approaches provide in 
real-time identification of modal parameters comes with 
significant computational cost and complexity. 

This paper presents the development of a much simpler 
and efficient algorithm than existing methods for 
continuously monitoring the status of a steel frame 
structure. This task is accomplished by taking advantage of 
an LMS filter�s ability to adaptively model noisy signals to 
identify changes in structural parameters in comparison to a 
base structural model..  

II. PROBLEM DEFINITION 
A seismically excited structure is can be modeled using 

standard linear equations of motion with an additional time 
varying stiffness term to account for damage: 

{ } { } ( ) { } gxvvv !!!!! ⋅−=⋅∆++⋅+⋅ MKKCM    (1) 

where M, C and K are the mass, damping and stiffness 
matrices of the model, respectively, v!! , v!  and v  are the 
responses of the damaged structure, and ∆K contains 
changes in the stiffness of the structure and can be a 
function of time. By tracking the changes in the stiffness 
matrix via the ∆K term, the structure�s condition can be 
directly monitored without having to identify modal 
parameters or mode shapes first. These changes can be time 
varying or result without an input from simple modelling 
error. 

Damping changes, ∆C, could also be identified and can 
occur due to hysteresis. However, hysteretic damping could 
also be seen as oscillations in ∆K, rather than absolute 
changes, and identified that way. Change in the mass 
matrix, ∆M, is not likely to be significant, hence it is 
ignored. Finally, the approach can be generalized to more 
detailed or complex models of the system and variations, as 
required. Finally, for steel framed structures, as in the 
Benchmark Problem, it is the stiffness that is most likely to 
change substantially. 

To determine ∆K using adaptive LMS a new form of is 
defined with time varying scalar parameters, αi, to be 
determined. For a three story example, the ∆K matrix is 
sub-divided into three matrices with entries of 1, -1 and 0 
to allow independent identification of changes in k1, k2 and 
k3, the story stiffnesses, from the αi coefficients.  
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where: 
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Rewriting Equation (1) using Equations (2) � (4) yields: 
 

{ } { } { } FKCM =∆+⋅+⋅+⋅ ∑
=
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n

i
ii

1

α!!!        (5) 

where n is the number of degrees-of-freedom (DOF) of the 
model and F is the known, or estimated, input load vector. 
Note that n is the maximum number of coefficients to 
identify changes in each story stiffness. A lesser number 
can be used if some storys are assumed not to suffer 



 
 

 

damage. Similarly, a greater number could be used for a 
more complex structural model with more DOF per story. 

The varying stiffness term is simply the error between 
the, in this case, linear model and real measurements ( v , v!  
and v!! ). Hence, vK∆  is the linear model error. 

vvvvK
n

i
ii KCMF −−−=∆∑

=

!!!
1
α     (6) 

where v , v!  and v!!  are measured values obtained either 
directly and/or from a dynamic state estimator. Equation 
(6) is only valid at any point in time if the αi have the 
correct values. Therefore, at any discrete time, k, the 
difference between the linear model and actual 
measurements can be defined: 

kkkkk vvvy KCMF −−−= !!!      (7) 
The elements of the vector signal yk can each be readily 
modelled in real-time using an adaptive LMS filter so that 
the coefficients αi can be readily determined from the 
reduced noise modelled signal. 

∑
=

∆=
n

i
kiik vKy

1
α      (8) 

More specifically, if each element of the vector signal yk is 
modelled using an adaptive filter then the αi are then 
determined using the linear system of equations defined in 
Equation (8) at each time step. 

III.  ADAPTIVE LMS APPROACHES TO SHM 
In adaptive LMS filtering, the coefficients are adjusted 

from sample-to-sample to minimize the Mean Square Error 
(MSE), between a measured noisy scalar signal and its 
modelled value from the filter. 
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where Wk is the adjustable filter coefficient vector or 
weight vector at time k, ky�  is the noisy measured signal to 
be modelled or approximated, Xk is vector the input to the 
filter model of current and previous filter outputs, ikx − , so 

k
T

k XW  is the vector dot product output from the filter to 
model a scalar signal ky� , and m is the number of taps or 
prior time steps considered. The Widrow-Hopf LMS 
algorithm for updating the weights to minimise the error, ek 
is defined (Ifeachor and Jervis, 1993): 

kkkk XeWW ⋅⋅+=+ µ21            (10) 
where µ is a positive scalar that controls the stability and 
rate of convergence. The general computational procedure 
for the basic adaptive LMS algorithm is summarized in 
Ifeachor and Jervis (1993).  

For SHM, a noisy signal vector, ky , for the linear 
model error is obtained from a simulation of the non-linear 

Benchmark model, and can be modelled using adaptive 
LMS filters. 
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where each T
kW  is updated individually for n different 

input signals and ( )i
k

T
k XW  is the output for the ith 

individual adaptive LMS filter. In this two step method, 
adaptive LMS filters approximate the noisy signal, kk yy ≈  
for each step, where ky  is the estimate of ky  with 
dimension n×1. Hence, from Equation (8), the filter 
approximation, ky  is defined: 
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where dimensions of matrix A are n×n and αk is a n×1 
vector of coefficients αi at time k. Therefore, the αi values 
can be determined analytically by solving Equation (12) as 
long as the matrix is full rank. This two step method is a 
fast and simple approach, and robust to noise because of its 
use of LMS filters. 

A second approach is to couple these filters and solve 
in a single step as a One-Step method. The linear model 
error, estimated between the measured noisy signal and its 
modelled value from the filter, defined in Equation (11) can 
be expressed:  
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where kv  and yk are noisy signals, Qk is a n×1 vector, αij 
are weights where i = 1, �, n and j = 1, �, m. Hence, the 
change in ki will be the sum over j of αij. This averaged 
approach essentially low pass filters the signal kv  and 
reduces the impact of noise. An exact unfiltered solution 
would simply use m = 1. Note that there are no prior time 
steps involved when estimating error at time k, because yk 
is not stationary, and the error, ek, in Equation (13) is the 
error at this time step is really a function of the response at 
time k only. 

Hence, the mean square error (MSE) can be defined: 
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Adaptive LMS minimises the MSE with respect to the 
weights αij, and the optimum solution occurs when the 
gradient is zero.  
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where 
ij

MSEα∇  is one element of an n×m matrix MSE∇  

and the gradient term for Q is an n×1 vector defined: 
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Therefore, 
[ ]ki

T
k vKeMSE ∆−=∇ 2                (17) 

where MSE∇  is a n×m matrix and [ ]ki
T
k vKe ∆  is the same 

across an entire row for all i = 1, �, n rows. The weight 
matrix of dimension n×m can then be updated.  
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where the term [ ]ki
T
k vKe ∆  is the (i,j)th element and is the 

same for all m elements in the ith row.  
Finally, decoupling the gradient estimation by 

approximating iK∆  as a zero matrix with a 1.0 for the (i,i) 
element results in the following weight update formula: 

( ) ( )[ ] mnk
T
kkk ivieww ×+ += µ21         (19) 

Without these coupling terms the gradient is calculated 
based only on changes in diagonal elements of the stiffness 
matrix reducing the likelihood of coupling terms producing 
a near zero gradient when the error is small, near final 
convergence. Note that the error calculation Equation (13) 
still uses the iK∆  as originally defined, and Equation (19) 
only changes the means by which weights are updated. 
This One-Step approach also leads to a computationally 
simpler approach by eliminating additional multiplication 
and addition operations. 

IV. APPLICATION TO THE BENCHMARK PROBLEM 
The IASC-ASCE task group on SHM was established 

in 1999 and the group developed a series of benchmark 
SHM problems (Johnson et al, 2000). In the 12 DOF 
model, the structure is assumed to act as a shear building 
with three DOF per floor: translation in x- and y-direction 
and rotation. In this paper, only the 12 DOF model and the 
simpler, one direction, 4 DOF model are considered, and 
the displacements, velocities and accelerations of each 
story are assumed to be either measured and/or estimated. 

The following set of parameters are used in all 
simulations, unless otherwise stated: 

o Input load(s) = 1×106 ~ 107 sin (30t) N 
o Sample rate = 100 Hz 
o µ = 0.3  
o Number of taps, m = 5 

The convergence rate of the weights in the algorithm 
depends on the LMS parameter µ and the number of taps 
used. Even though faster convergence for each different 
case of the Benchmark problem can be achieved by varying 
those parameters, they would typically be fixed in a 
practical application. The values used here were developed 

by trial and error to illustrate the methods developed and 
may not be completely optimal. 

Table 1 shows the convergence times for the One Step 
method and the Two Step method for all the 4 and 12 DOF 
sudden failure cases examined. These times are the time 
taken for α1 (change in stiffness of the first floor in y-
direction) to reach 90 and 95 percent of the actual change 
from the time when the damage occurred. The first story is 
examined due to its dominance in seismic structural 
response and rotational DOF can take longer to converge in 
the 12 DOF model. The times are very quick, indicating the 
potential for both methods in real-time or adaptive 
algorithms. 

Table 1: Convergence times (seconds) for α1 

  One Step 
method 

Two Step 
method 

Case Damage 
Pattern 90 % 95 % 90 % 95 % 

1 0.33 0.41 0.20 0.21 
2 0.31 0.33 0.21 0.22 
3 0.11 0.12 0.20 0.21 

1 

4 0.31 0.34 0.21 0.22 
1 0.33 0.41 0.20 0.21 
2 0.31 0.33 0.21 0.22 
3 0.21 0.32 0.08 0.08 

3 

4 0.21 0.32 0.08 0.08 
1 0.21 0.22 0.09 0.01 
2 0.13 0.15 0.21 0.23 
3 0.29 0.32 0.22 0.28 

4 

4 0.29 0.32 0.21 0.28 
 
Figures 1 and 2 shows the One-Step method results for case 
1 and damage patterns 1 for a sudden failure occurring at 5 
seconds, as well as for gradual failure starting at 5 seconds 
and taking 5 seconds to finish. The figure shows that only 
the first story coefficient changes as expected. 
Additionally, the fast convergence times are illustrated in 
the rapid tracking of the actual damage function, 
particularly for the sudden failure. The gradual failure 
convergence is not quite as fast due to the fact that the filter 
does not track as fast while the error is changing every step.  

For more complex cases the plots are not necessarily 
clear, however two results emerge. First, rotational DOF in 
the 12 DOF model take longer to converge, up to 10 
seconds, which may not be suitable for adaptive control 
applications. Second, some ai parameters that end up zero 
valued, may not initially be zero while convergence is not 
complete, also inhibiting the applicability for adaptive 
control applications. These results indicate that this 
approach will work best for shear building model based 



 
 

 

approaches to SHM, but is still effective for identifying 
damage when rotational DOF are included. 
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Fig. 1: Case 1 Damage Pattern 1 sudden failure. 
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Fig. 2: Case 1 Damage Pattern 1 gradual failure 

Modal parameters for each of the cases studied can be 
determined by reconstructing the damaged stiffness matrix 
and finding the eigenvalues of the system. In each case the 
final natural frequencies are all within 1% for all 4, or 12, 
modes of the structure. This performance matches those in 
the literature for the cases that have been previously 
reported.  

For real-time applications however it is the 
convergence times that are most important along with the 
computational intensity. From an examination of the One 
Step method, there are, conservatively, 1400 single cycle 
operations per time step, including memory storage and 
retrieval for a 4 DOF model. If a sampling rate of 100 Hz is 
used, then 0.14 MHz (or mega-cycles) of computation is 
required and 1.4 MHz are required for a sampling rate of 
1000 Hz. A 12 DOF model would require approximately 3 
times more computational effort. A current Digital Signal 
Processing (DSP) chip operates at 300 � 1000 MHz. At a 
single operation per chip clock cycle, and many such chips 
have up to four operations per cycle, computation of the 

One Step method is well within this range. The Two Step 
method would involve approximately ten times more 
computation due to the matrix solutions required. 
Therefore, SHM for civil structures using the adaptive 
LMS filtering based methods as presented could be readily 
implemented in real-time, even without any significant 
computational simplifications or parallelization. 

V. CONCLUSIONS 
This paper presents SHM methods for civil structures 

using adaptive Least Mean Square filtering theory. Damage 
that occurs in the structure can be identified by changes in 
the stiffness matrix. One Step and Two Step adaptive LMS 
based methods were developed and tested. All of the 4 and 
12 DOF cases of the SHM Task group�s Benchmark 
problems were tested using the proposed methods, and the 
results show that the adaptive LMS filtering is very 
effective for identifying damage in real-time. 

The different variations are compared and the method 
without coupling terms in the gradient calculation is seen to 
converge the fastest. However, the final results for all 
methods converge to the desired final values. In each case 
the changes in stiffness are determined directly and then the 
modal parameters presented are calculated for comparison. 
The resulting modal parameters are well within 1% of the 
IASC-ASCE Benchmark problem results.  

The methods presented require only 0.14 � 1.4 Mega-
cycles of computation and can operate on a sample to 
sample basis without requiring the entire record. Hence, 
they are all suitable for real-time implementation, and the 
One Step method without coupling in the gradient 
calculation has convergence times for the Benchmark 
problem under 0.41 seconds making it suitable for adaptive 
control applications. Convergence times for the Two Step 
method presented are faster, however the computational 
costs are significantly higher. Finally, the convergence 
times of the adaptive LMS methods presented improve as 
sampling rate increases from the 100 Hz of the Benchmark 
problem to a still practicable value of 1000 Hz. Overall, 
these methods provide accurate, robust identification of 
damage with stability, little computational cost, and fast 
convergence. 
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