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Abstract 
 
The paper presents an innovative wavelet packet based 
sifting process to decompose a signal into its 
components with different frequency content. The 
method is illustrated for simulation data of a linear 
three degree-of-freedom system and the results are 
compared with those using the empirical mode 
decomposition (EMD) method.  Both methods provide 
good approximations for the modal responses from the 
modal analysis.  Incorporated with the classical Hilbert 
transform, the proposed sifting process may be 
effectively used for structural health monitoring, 
including both detecting abrupt structural stiffness loss 
and monitoring development of progressive stiffness 
degradation, as demonstrated by two case studies.   
Results from a preliminary study for experimental 
data are also presented. 
 
1. Introduction 
 
Wavelets have been widely used in damage detection [1] 
and image processing [2].  Using its capability in multi-
resolution and time-frequency analysis, wavelet analysis 
has become a promising technique for structural health 
monitoring of large-scale structures [3], [4].  
 The Empirical Mode Decomposition (EMD) 
method was recently developed as a systematic and robust 
tool for signal processing for non-linear and non-stationary 
data [5].  Using this technique a signal can be decomposed 
into its mono-components, called as Intrinsic Mode 
Functions (IMF) by an empirical sifting process. By 
incorporating Hilbert transform with the sifting process, 
the instantaneous frequency and instantaneous amplitude 
variation of intrinsic mode functions can be found and 
used in applications of damage detection and system 
identification [6],[7].  The empirical nature of the 
approach may be partially attributed to a subjective 
definition of the envelope and the intrinsic mode function 
involved in its sifting process.  For example, an impulse 
response of a simple linear damped oscillator, which is 

physically mono-component with a single frequency, may 
not be necessarily fit the definition of IMF and envelope 
function.   
 This paper intends to present a sifting process 
based on wavelet packet decomposition of a signal. 
Grouping its wavelet packet components of a signal based 
on the minimum entropy, the original signal can be 
decomposed into its dominant components with nearly 
distinct frequency contents.  This wavelet theory based 
sifting process may produce comparable decomposition of 
a signal as compared with the EMD approach. An attempt 
has been made to apply the proposed sifting process for 
structural health monitoring, as illustrated in two case 
studies.    
 
2. Background 
 
This section presents brief background of the wavelet 
packet analysis and the empirical mode decomposition 
method.  The reader is referred to the relevant references 
for details. 
 
2.1 Wavelet Packet Analysis  
 
In contrast to Short Time Fourier Transform, which uses a 
single analysis window, the wavelet uses short windows at 
high frequencies and long windows at low frequencies 
providing ‘zoom in-zoom out’ effect. This property makes 
wavelet transform as a potential tool to analyze non-
stationary signal. The signal is mapped on Time-Scale 
plane where the scale is introduced as an alternative to 
frequency. This section summarizes the information about 
continuous and discrete wavelets. For detailed 
information, readers are referred to [8], [9], and [10]. 
 Continuous Wavelet Transform (CWT) of a 
signal f(t) is defined as 
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Where Ψ  is a conjugate of mother wavelet Ψ , ‘a’ and 
‘b’ are dilation and translational parameters, respectively. 
Both are real and ‘a’ must be positive. 
 The continuous wavelet transform implies that 
local data in the time domain are examined by a shifted 
wavelet window with a variable window size and the 
wavelet coefficient measures correlation between the local 
data and the shifted and scaled wavelet windows.  As a 
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result, the transient frequency content of the signal can be 
revealed. The original signal can be reconstructed by an 
inverse wavelet transform. The mother wavelet needs to 
satisfy certain admissibility condition to ensure existence 
of the inverse wavelet transform.  
 Discrete Wavelet Transform (DWT) is often used 
for more efficient implementation in a practical 
application.  In DWT the dilation parameter ‘a’ and the 
translational parameter ‘b’ is discretized by using the 
dyadic scale i.e. 
 
a = 2j  b = k.2j                                                 (2) j k z, ∈
where z is the set of positive integers. 
 In the discrete wavelet transform, the wavelet 
plays a role as filters. Using shifted and scaled wavelet 
filters the signal is examined locally in the time domain at 
different levels of scale. As a result, the signal can be 
decomposed into a tree structure with wavelet details and 
wavelet approximations at various levels as follows  
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where D i (t) denotes the wavelet detail and A j (t) stands 
for the wavelet approximation at the jth level, respectively.  
Note that at each level, the DWT decomposition results in 
halving the time resolution and doubling the frequency 
resolution.  Reconstruction of the signal can be easily 
implemented as the dyadic wavelet filter family forms an 
orthonormal basis [9]. 
 In certain applications, where the important 
information is located in higher frequency components, the 
frequency resolution of discrete wavelet decomposition 
may not be fine enough to meet certain requirements. The 
necessary frequency resolution may be achieved by using 
wavelet packet transform [10], an extension of regular 
wavelet analysis.  In the wavelet packet analysis the 
wavelet details at each level is, in addition to 
decomposition of only the wavelet approximation in the 
regular wavelet analysis, further decomposed to its own 
approximation and details.  By this process, some lower 
frequency contents leaked in the wavelet details at the 
previous level can be further sifted out at the current level 
and also the frequency resolution for signal analysis 
increases.  As a result, the wavelet packet analysis may 
provide better accuracy in both higher and lower 
frequency components of the signal.  
 
2.2 Empirical Mode Decomposition (EMD) Method 
 
The empirical mode decomposition (EMD) method was 
recently proposed to decompose a signal into its 
monocomponents, referred as the Intrinsic Mode Functions 
(IMF), by an innovative sifting process [5].  The IMF is 
defined as (i) a function in which the number of extrema 
and the number of zero crossings must either equal or 
differ at most by one; and (ii) at any point, the mean value 
of the envelope defined by the local maxima and the 

envelope defined by local minima is zero. The sifting 
process separates the components from  the signal called 
as Intrinsic Mode Functions (IMFs) by extracting the 
highest frequency component first. The signal is 
decomposed into IMFs and residue as 
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where C i (t) is the  ith Intrinsic Mode Function and rn is the 
residue. 
 This technique along with Hilbert Transform can 
be used in variety of applications including damage 
detection and coronal oscillations analysis. 
 
2.3 Instantaneous Frequency and Hilbert  
      Transform  
 
As a general definition, the instantaneous frequency of a 
signal at time t can be expressed as the rate of change of 
phase angle function of the analytic function obtained by 
Hilbert Transform of the signal [11]. The analytic function 
z(t) of a signal s(t) is a complex signal having original 
signal s(t) as a real part and Hilbert transform of original 
signal as its imaginary part.  By representing the signal in 
polar coordinate form one has 
 
z(t) = s(t) + jH [s(t)] = a(t).ejØ(t)       (5) 
 
where a(t)  is the instantaneous amplitude and Ø(t) is the 
instantaneous phase function.  Thus, the instantaneous 
frequency is   
 
w(t) = dØ(t)/d(t)                                                               (6) 
 
 Note that various other formulations for the 
instantaneous frequency of signal can be found in the 
literature [12].  In a special case of a single harmonic 
signal, the instantaneous frequency is constant and equal to 
the frequency of the harmonic. In general, the concept of 
instantaneous frequency provides an insightful description 
as how the frequency content of the signal varies with the 
time.  
 
3. Methodology 
 
The proposed wavelet based sifting process starts with 
interpolation of data with cubic spline interpolation. The 
interpolated data increases the time resolution of the signal 
which will in turn increase regularity of the decomposed 
components.    
 The interpolated data is decomposed into 
different components by using wavelet packet 
decomposition. A symmetrical wavelet is preferred in the 
process to guarantee symmetrical and regular shaped 
decomposed components. In case of the binary wavelet 
packet tree, decomposition at level ‘n’ results in 2n 
components. This number may become very large at a 



higher decomposition levels. An optimum decomposition 
of the signal can be obtained based on the criteria of best 
entropy value [13], [14].  A particular node N in the 
decomposition is split into two nodes N1 and N2  if and 
only if the sum of the entropy of those decomposed nodes, 
N1 and N2  is lower than the entropy of N, thus the entropy 
of decomposition is kept as minimum as possible. 
 The percentage of energy contribution of an 
individual component to the total signal can be computed 
to sift out the significant components of the signal.  Other 
criteria can also be applied to sift out the potential 
components in the signal; candidates include the minimum 
number of zero crossings and the minimum peak value of 
components. 
 
4.  Results of Numerical Validation  

 
The wavelet packet based sifting process was validated by 
analyzing a vibration signal from a linear three-degree-of-
freedom (3DOF) spring-mass system, as shown in Figure 
1.  The system natural frequencies are 1.29, 3.62 and 5.23 
Hz, respectively. Without the loss of generality, zero 
damping was assumed in this study. An impact force was 
applied to the first mass element (M1).  Dynamic response 
data were numerically simulated by subroutines in the 
commercial software MATLAB.  The data was sampled at 
100Hz.  
 Acceleration response data at the second mass 
element is selected to illustrate the concept and accuracy 
of the proposed approach. By applying the proposed 
wavelet packet based sifting process; the original signal is 
decomposed into three dominant components, as shown in 
Figure 2.  The wavelet of Db36 was used as the analyzing 
mother wavelet in data decomposition.  The time 
resolution of the signal is increased by using spline 
interpolation for interpolating the signal data with finer 
increment. Wavelet packet decomposition of the signal 
was carried out up to level 9 and the optimum 
decomposition tree is obtained by minimizing the entropy 
contribution of individual components at different levels.  
 To verify its accuracy the Fourier spectra of these 
components are plotted in Figure 3.  The peak frequencies 
are almost identical to the natural frequencies, as expected.  
The three dominant components obtained by the present 
approach are compared with the exact solution for modal 
responses from the modal analysis in Figure 4 and only 
small errors are observed.  Furthermore, the original signal 
is reconstructed by adding the three dominant components 
sifted out.  Comparison between the original signal and the 
re-constructed signal shows only a small error.       
 The wavelet packet based sifting process is 
compared with the well known sifting process in the EMD 
method for different types of signal.  In general, 
comparable results were obtained.  Figure 4 shows a 
comparison of these two methods applied to the same 
acceleration data from the previous linear undamped 
3DOF system. The exact modal responses from the 
classical modal analysis are also plotted in Figure 4 as a 

benchmark.  Note that a shorter time interval is used in 
Fig. 4 for a zoom-in presentation for clarity.  As observed, 
there are no significant differences between these two sets 
of results. The comparison indicates that performance of 
these two sifting are very similar.  In certain sense, the 
sifting process in the EMD method may be viewed as an 
implicit wavelet analysis and the concept of the intrinsic 
mode function in the EMD method is parallel to the 
wavelet details in wavelet analysis.  
 
5.  Application of the Methodology for  
     Structural Health Monitoring  
 
The application of the wavelet packet sifting process for 
structural health monitoring is illustrated for two typical 
cases: sudden stiffness loss and progressive stiffness 
degradation.  The former may be caused by an excess 
response of a structural member during a severe seismic 
event and the latter may be attributed to mechanical 
fatigue due to cyclic loading or chemical corrosion in a 
hazardous environment.  
 A dominant component of the original signal 
from the wavelet packet based sifting process usually has 
quite simple frequency characteristics and is suitable for 
the classical Hilbert transform.  The transient frequency 
content or the so-called instantaneous frequency of the 
component can be found from the phase curve of the 
Hilbert transform of the component.  For a healthy 
structure the associated instantaneous frequency is time-
invariant. Any reduction in the instantaneous frequency 
may reflect structural damage.  For a sudden stiffness loss, 
the change occurs in a very small time interval and for 
progressive stiffness degradation a gradual change in the 
instantaneous frequency can be observed.     
 In this study the same 3DOF structural model is 
employed and structural damage is introduced by linearly 
reducing the stiffness of spring K2 up to certain value. By 
selecting the rate of change in stiffness reduction, both 
cases of sudden damage and progressive damage can be 
simulated.  For both cases, the proposed wavelet packet 
based sifting process is first applied to the simulated 
response data to sift  their dominant components and the 
Hilbert transform is then applied to investigate their 
transient frequency characteristics for the purpose of 
structural health monitoring.   
 
5.1 Case Study 1: Detection of Sudden Damage 
 
In the case study of detection of sudden damage, a sudden 
stiffness loss is introduced at t=15sec by linearly reducing 
stiffness of the middle spring, i.e. K2 by 10% from 
t=15sec to t=15.05sec.  Damage in such a small time 
interval may be reasonably considered as sudden.  Without 
loss of generality only the dominant component of 
acceleration response data of M2, which is obtained by the 
proposed sifting process and corresponds to the highest 
mode of the healthy system, is selected for analysis.   
 Figure 5 plots the component and the associated 



instantaneous frequency history; the latter was obtained by 
Hilbert transform. An exact solution for the instantaneous 
frequency is also presented for comparison. A sudden 
change in the instantaneous frequency can be observed at 
t=15 sec, implying some sudden damage has occurred at 
that moment.  The amount of frequency drop provides a 
global measure of damage severity of a local stiffness loss. 
Data analysis of other dominant components has lead to 
the similar conclusions.   
 It should be pointed out that numerical 
differentiation of the phase curve of Hilbert transform of a 
signal may generally produce fluctuated instantaneous 
frequency history. The associated variance is reduced in 
this study by filtering the phase angle curve. 
 
5.2 Case Study 2: Monitoring Development of  
      Stiffness Degradation  
 
To model a progressive stiffness degradation, the value of 
K2 is reduced linearly by 10% from t=15sec to t=45sec. 
Again, the acceleration signal from the middle mass is 
selected for analysis.  Its highest-mode component of the 
signal by the proposed sifting process and the associated 
instantaneous frequency are shown in Figure 6. A change 
in the instantaneous frequency is clearly observed in the 
same time interval as specified for the progressive damage 
in the data simulation. The trend and amount of change in 
instantaneous frequency provide valuable information as 
how stiffness degradation is developed.  Note that despite 
the same trend, the change in the instantaneous frequency 
in Figure 6 is not linear. 
 
6.   Experimental Validation: 
 
To examine feasibility of proposed method in real life 
applications, the proposed approach was applied to 
experimental data obtained by a Shaking Table Test of a 
two-story full size wooden frame performed at the Disaster 
Prevention Research Institute (DPRI), Kyoto University. 
The NS component of 1940 El Centro was used as the 
ground excitation.  Several test runs were conducted and 
each test run was excited by the original records scaled at a 
nominal level targeted at certain intensity.  Various types 
of damages were observed during the testing.  As a 
preliminary study this paper analyzes the acceleration 
response of first floor at a load level of 6 m/s2. For detailed 
information about the test, the reader is referred to [15]. 

The acceleration measurement of the first floor, 
as shown in Figure 7.1, is sifted by implementing the 
proposed wavelet packet sifting process. By performing 
the Hilbert transform of the decomposed lower frequency 
component in Figure 7.2, the corresponding instantaneous 
frequency is extracted and plotted in Figure 7.3.  A 
permanent reduction in instantaneous frequency of 
structure clearly indicates that sudden damage has 
occurred at around t = 7sec. This result is in good 
agreement with the previous results using the Discrete 
Wavelet Transform in [15] where a wavelet damage spike, 

an indication of sudden damage,  was clearly observed at 
t=7 sec. The result illustrates great promises of the 
proposed approach for real life applications.  However, 
several practical issues need to be further investigated.  
  
7. Concluding Remarks 
 
This paper proposes an innovative sifting process based on 
wavelet packet analysis of a signal.  Using this technique, 
a signal can be decomposed into its dominant components 
with different but simple frequency contents.  The 
approach was validated using the simulation response data 
of a linear 3DOF system subjected to an impact load.  It 
has shown that the sifted components are close to the 
modal responses of the system. As compared with the 
EMD method this new sifting process may provide 
comparable results on a theoretical basis.  Using Hilbert 
Transform for each dominant component decomposed, the 
resulted instantaneous frequencies provide useful 
information for monitoring the structural health condition.  
A successful application of the proposed approach in two 
case studies of detecting a sudden stiffness loss and 
monitoring progressively developed stiffness degradation 
as well as a preliminary study using experimental data 
from a shaking table test of a two-story full size wooden 
frame structure demonstrates great promises of the 
proposed approach for structural health monitoring 
applications.   
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 Figure 2.  Decomposition of an acceleration response 

signal by a wavelet packet sifting process  
 

  
 

 

 
 
 
 
 
 
 
 

Figure 3.  Fourier spectra of decomposed 
components in Figure.2 



  
Figure 4.  Comparison of wavelet packet components 
with the modal responses from a modal analysis and 
the IMFs using EMD method. 

Figure 7.1. Acceleration measurement at first floor for 
load level of 6 m/s2 in the Shaking Table Test  
 
  

  
Figure 7.2. A Low Frequency Component of 
Acceleration Response signal at first floor  

Figure 5. Results for a case study for sudden 
damage 

  

  
Figure 6. Results from a case study for Monitoring 
Progressive Damage 

Figure 7.3. Extracted Instantaneous Frequency of the 
low-frequency component in Figure 7.2 
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