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Abstract— In this paper we examine the problem of regu-
lation of thermal transients in a microsystem. Using second-
order statistical properties we obtain the dominant structures
that characterize the dynamics of an ensemble of data. These
dominant structures, otherwise called empirical eigenfunc-
tions, are the most efficient way of capturing the dynamics
of an infinite dimensional process with a finite number of
modes. We propose a new receding horizon boundary control
scheme using these empirical eigenfunctions in a constrained
optimization procedure to track a desired spatiotemporal
profile. Additionally we consider a disturbance rejection
problem. Finite element method simulations of heat transfer
are provided and used in order to implement and test the
performance of the controller.

I. I NTRODUCTION

ONE of the most active research areas of the past
decade is the Systems-on-a-Chip (SoC) applications.

Evolving from simple prototype applications, novel more
sophisticated SoC are currently being developed for a va-
riety of applications. The SoC market is expanding rapidly
to areas like bioengineering (DNA analysis and synthe-
sis, drug delivery), avionics and aerospace (microactuators,
microsensors and microgyroscopes) and automotive sys-
tems (accelerometers). A new generation of SoC are the
integrated microchemical systems [1], [2], [3]; miniature
chemical systems that carry out chemical reactions and
separations in microreactor configurations in the size range
of a few microns to a few hundred microns. The main
focus of research in microchemical systems remains on the
micro-fabrication aspects. As a result, there is very little
work in the literature on the dynamics and control of these
highly functional and versatile SoC. Applying control in
a microchemical system may include efficient mixing of
different laminar streams, manipulating microflows and ad-
justing the temperature distribution of the microsystem. The
system states such as temperature, concentration, pressure
and velocity are functions of space and time. Thus we have
Distributed Parameter Systems (DPS) [4] with combined
distributed boundary sensing and actuation. From a control
perspective we face the following challenges. Firstly the
development of an efficient controller capable of handling
the high dimensional models of these SoC and secondly
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reducing its complexity so that it can be implemented on a
chip and subsequently embedded with the rest of the system.

Due to the low Reynolds number flows encountered in
microsystems, mixing of adjacent streams occurs primarily
by diffusion. To decrease the mixing length and time,
transverse streams must be created within the microchan-
nels. This is mainly accomplished using passive control
methods; by creating appropriate geometries to enhance the
mixing [5], [6]. There are also reports on active methods
of creating transverse flows, by using mechanical oscillat-
ing components on the microchannel walls or introducing
flows via side channels. Manipulating microflows can be
achieved by applying control both on the macroscopic
level or within the microchannel. The simplest approach
is applying control on specific inlets and outlets on the
macroscopic level. Within the microchannels control can
be applied using different kinds of external fields. There are
applications that use electric fields, magnetic forces, sound
and capillary effects [7]. Some initial research efforts have
been reported on controlling the temperature distributionin
microchemical systems [8]. We have previously [9] used
Finite Element Method (FEM) simulations of heat transfer
of microchannels coupled with the use of SIMULINK as a
framework for the application of Proportional Integral (PI)
and On/Off control. We are currently investigating ways of
embedding model predictive control for the application of
optimal control in SoC applications [10].

In this paper we propose to employ general principles
from Proper Orthogonal Decomposition (POD) theory, de-
rived from the control of distributed parameter systems [11],
[12], in order to provide a novel reduced order boundary
control scheme. In [13] we proposed an off-line control
scheme based on POD of the temperature profiles obtained
by FEM simulations. In [14] we examined an on-line
open-loop boundary control scheme using the POD based
empirical eigenfunctions of a spatiotemporal profile. In this
work we extend the above ideas. In order to reduce the
size of the control problem of regulating the temperature
in a microsystem we use spatial and temporal empirical
eigenfunctions, that characterize the dominant dynamics
of the process. In contrast to proposed approaches these
eigenfunctions are used without the usually subsequent
Galerkin projection, that would yield a system of Ordinary
Differential Equations (ODEs). We propose a novel reced-
ing horizon boundary control scheme using the empirical
eigenfunctions in a constrained optimization procedure, that
results in the desired spatiotemporal profile.

This paper is organized as follows. Section II contains
a brief analysis of the theoretical aspects of the proposed
approach. Details on the examined micro-geometry and the



heat transfer model are given in Section III. In Section IV
we provide the closed-loop receding horizon eigenfunction
based controller. We analyze the reason for introducing
constraints on the boundary actuation and we examine
the performance of this control approach under external
disturbances.

II. T HEORETICAL ASPECTS

A mathematical method which has received growing
attention lately, is proper orthogonal decomposition. POD
is the most efficient way of capturing the dominant com-
ponents of an infinite dimensional process with a finite
number of modes [15]. LetY ∈ ℜN×M be the matrix
that contains data collected from experimental results or
simulations. The value of this matrix at rowt and column
x is represented by the scalaryt(x). Thus we haveN
observations (called snapshots) of some ergodic physical
process taken at positionsx, where x = 1, ...,M . The
aim of POD is to find the most representative structure
ϕ(x) of this ensemble of snapshots. This is equivalent to
maximizing the averaged projection ofϕ onto y

max
ϕ

{λ =
〈(ϕ, y)2〉

(ϕ,ϕ)
} (1)

A necessary condition for (1) to hold is thatϕ is an
eigenfunction of the two-point correlation function

∫
Ω

1

N

N∑
t=1

yt(x)yt(x
′)ϕ(x′)dx′ = λϕ(x) (2)

This integral equation can be solved by means of the
Hilbert-Schmidt [16] technique or the method of snap-
shots [17] (practical when the number of observationsN is
less than the discretizationM ). For the method of snapshots
we assume that the eigenfunctions are a linear combination
of the snapshots

ϕ(x) =

N∑
t=1

αtyt(x) (3)

The solution of (2) is reduced to the eigenvalue problem of
CijV = λV , whereC is a Hermitian matrix, in the discrete
case given by

Cij =
1

N

M∑
x=1

yi(x)yj(x) i, j = 1, ..., N (4)

The projection ofϕ(x) onto yt(x) is maximized when the
coefficientsα are the elements of the eigenvectorV that
corresponds to the largest eigenvalue ofC. The eigenfunc-
tion that corresponds to the first eigenvector is consideredto
be the most “energetic”. The “energy” is defined as being
the sum of the eigenvalues of the matrixC, and to each
eigenfunction we assign an “energy” percentage based on
the eigenfunction’s associated eigenvalue

Ek =
λk∑N

i=1 λi

(5)

There is no a priori framework for the generation of the
ensemble, but a basic assumption generally made is that the
snapshots are fully representative of the temporal evolution
of the system. In this work we assume that the data
ensemble represents the dynamics of the system perfectly
both temporally and spatially. Under this assumption we
obtain two families of empirical eigenfunctions. One family
that characterizes the changes in the spatial profile (the
spatial eigenfunctionsφ) and one the characterizes changes
in time (the temporal eigenfunctionsψ). Using the method
of snapshots the problem of obtaining the spatial eigenfunc-
tions is reduced to finding the eigenvalues and eigenvectors
of theN ×N matrix Cs

(Cs)ij =
1

N

M∑
x=1

yi(x)yj(x) i, j = 1, ..., N (6)

The eigenvectorsA(n) of Cs and the corresponding eigen-
valuesλs

n satisfy

CsA
(n) = λs

nA
(n) n = 1, ..., N (7)

The empirically determined spatial eigenfunctionsφk(x)
are then computed using the obtained eigenvectors using

φk(x) =

N∑
i=1

A
(k)
i yi(x) (8)

In order to calculate the temporal eigenfunctionsψ (when
working in 1D in space and in time), we take the transpose
of the initial snapshot matrixY and we obtain an adjusted
data setỸ , whereỸ is now anM ×N matrix. The scalar
ỹt(x) represents the value of̃Y at row t and columnx,
where t = 1, ...,M and x = 1, ...N . Using this ensemble
we apply the method of snapshots (analytically in [18]). To
obtain the Hermitian matrix (nowM ×M ) we use

(Ct)ij =
1

M

N∑
x=1

ỹi(x)ỹj(x) i, j = 1, ...,M (9)

and the temporal eigenfunctionsψk(t) are given by

ψk(t) =

M∑
i=1

B
(k)
i ỹi(t) (10)

whereB(n) are the eigenvectors ofCt.

III. G EOMETRY EXAMINED

With the rapid development of computers and the soft-
ware tool capabilities, SoC applications can be examined
through advanced simulation techniques. We use FEM-
LAB [19], a Partial Differential Equation (PDE) solver.
With FEMLAB one can build 3D geometries and define
the equations that describe the dynamics of the system.
Consider Fig. 1 which shows a wafer geometry, with thin
film resistive heaters placed on the top wall. The wafer
states such as temperature are functions of space and
time. Thus, this is a distributed parameter system with



Fig. 1. 3D Wafer Geometry (dimensions in meters)

combined distributed and boundary sensing and actuation.
We note that this system is inherently distributed, as op-
posed to a number of reported studies on systems that
are distributed because they are comprised of distributed
interacting systems. Because of the increasing complexity
of microchemical systems we often desire to have spa-
tiotemporal differences in temperature within the same SoC
usually built on a wafer. This can be partially achieved
with the use of low thermal conductivity materials coupled
with the use of thermal barriers and insulations but the
application of control is essential. In the following section
we examine the temperature distribution in the cross section
of the wafer shaped rectangular geometry of 5cm width and
2mm thickness, as illustrated in Fig. 2. Ten resistive heaters
are placed on top and we have ten temperature sensors, on
equally spaced nodes of the finite element mesh located at
the bottom of the geometry. The temperature distribution in
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Fig. 2. Geometry examined

the wafer cross section is described by the time-dependent
two dimensional heat equation

∂T (t, x, y)

∂t
=

1

a
∇2T (t, x, y) (11)

where a = ρC/κ, κ is the thermal conductivity,ρ is
the density andC is the heat capacity. We consider nat-
ural convection for boundary conditions (Tair=300K and

h=25W/m2K) and initial condition ofT (0, x, y) = 300K.
The material used for the FEM simulations is ceramic.

IV. RECEDING HORIZON EIGENFUNCTION BASED

CONTROLLER

Generally controllers belonging to the Receding Horizon
Control (RHC) family [20] are characterized by the fol-
lowing steps. Initially the future outputs are calculated at
each sample interval over a predetermined horizonN , the
prediction horizon, using the process model. These outputs
y(t + k|t) for k =1,...,N depend up to the timet on the
past inputs and on the future signalsu(t+k|t), k=0,...,N -1
which are those to be sent to the system. The next step is
to calculate the set of future control moves by optimizing
a determined criterion in order to keep the process as close
as possible to a predefined reference trajectory. Finally, the
first control moveu(t|t) is sent to the system while the rest
are rejected. This is because at the next sampling instant the
outputy(t + 1) is measured and the procedure is repeated
with the new values so that we get an updated control
sequence.

In order to implement this strategy for our problem
using the empirical eigenfunctions we have to make some
adjustments. The model used to predict the future outputs
is a FEMLAB created model. We provide an initial input

u'(t,x)

System
y(t,x)

u(t...t+N,x)

u'(t...t+N,x)

Cost Function
y(t...t+N,x)

J > e POD

Desired Eigenfunctions

Input Update

J < e 

u'(t,x)

EBC

FEMLAB Model +

d

y(t...t+N,x)

Fig. 3. Receding horizon controller block diagram

to the systemu(t+k|t)(x), where k = 0, ..., N − 1 (N
is the prediction and control horizon) andx = 1, ...,M
(M are the spatially distributed points). The output of
the FEM modelyt(x), measured at the locations of the
distributed sensors, undergoes POD for the calculation of
the dominant empirical temporal and spatial eigenfunctions.
For both of the above families of eigenfunctions we keep
the most “energetic” eigenfunctions. These dominant spatial
and temporal eigenfunctions are then used in objective
functions that consist of the difference of the current and
the desired dominant eigenfunctions



Jt(u) =
N∑

t=1

|ψ1(t) − ψd
1(t)| (12)

and

Js(u) =
M∑

x=1

|φ1(x) − φd
1(x)| (13)

The dominant temporal and spatial empirical eigenfunctions
are given by

φ1(x) =

N∑
i=1

A1
i yi(x) (14)

and

ψ1(t) =

M∑
i=1

B1
i ỹi(t) (15)

and theψd
1(t) andφd

1(x) are pre-calculated from the desired
spatiotemporal profile. In order to be able to use these
eigenfunctions in the proposed optimization procedure we
have to directly relate them to the boundary actuationu.
From (14) and (15) we can conclude that to be able to
steer the eigenfunctions to a desirable reachable state we
need to obtain further information for the eigenvectors
A1

i and B1
i . A change in the boundary actuation will

result in a relative change in the temperature output and
subsequently to new Hermitian covariance matrices. We
assume that small changes on the boundary actuation result
in new matricesC ′

s andC ′
t which can be considered as a

perturbation of the initial matricesCs andCt by Hs and
Ht respectively.

At this point we can use the theory on perturbation
of Hermitian matrices in order to calculate the bound
on the boundary actuation that will assure that the most
dominant eigenvectors of the new matricesC ′

s and C ′
t

remain invariant. The difference between the subspace
spanned by the eigenvectors of a Hermitian matrix and its
perturbation can be expressed in terms of certain angles,
through which one subspace must be rotated in order to
reach the other. This angle can be calculated using the
tan2θ theorem [21] for an eigenvalue and eigenvector pair.
An alternative would be to directly calculate the angle be-
tween the dominant eigenvectors V′ and V of the perturbed
and initial matrix respectively. This of course requires the
solution of an eigenvalue problem for the eigenvectors at
each optimization cycle introducing further computational
costs. We chose to impose an empirically derived constraint
on the boundary actuation that is expected to leave the
dominant eigenvectors of the initial and perturbed matrices
invariant. With the use of simulations we concluded that
for the examined wafer system the bound for the boundary
actuation that leaves the dominant eigenvectors invariantis
applying changes up to 1W/m2. As a consequence based on
(14) and (15) we conclude that we can achieve a monotonic
relationship between the changes on the boundary and the
resulting most dominant eigenfunction. This observation is
used in the optimization procedure required by the control

algorithm. By imposing this constraint we are able to drive
the most dominant eigenfunction to any desired reachable
temperature, by adjusting accordingly the boundary energy
supply.

As illustrated in Fig. 3 we have a closed loop controller.
When the optimization for the first receding horizon win-
dow is complete, the first calculated boundary actuation
input is implemented on the actual system. The response of
the actual system to this input is then used as the starting
points at the next sampling time instead of the FEMLAB
model output, thereby providing feedback. The procedure
is repeated moving the control horizon ahead in time.
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Fig. 4. Desired temperature profile

By minimizing the cost functions of (12) and (13) we
want to steer the profile to the desired one (Fig. 4). The
overall algorithm is as follows:

Receding Horizon Eigenfunction Based Control
(EBC) Algorithm

Select the toleranceε > 0, horizonN , compute desired
spatial and temporal dominant eigenfunctions and perform
the following steps:
Step 1: Give initial input to the model.
Step 2: Compute snapshots and associated spatial and tem-
poral dominant eigenfunctions.
Step 3: Compute cost functions of (12) and (13). If both are
less thanε go to Step 5.
Step 4: Adjust the boundary actuationu under the constraint
of invariant eigenvectors until both cost functions are less
than ε. If θ is not close to zero, decrease the boundary
actuation.
Step 5: Implement the first computed boundary actuation
input on the actual system, move the control horizon one
sample ahead and go to Step 2.

A. Simulation Results

We use as set-point the temperature profile of Fig. 4. In
order to test the proposed receding horizon approach we



initially chose to use30 seconds as the receding horizon,
and we assume no external disturbances. The boundary
actuation has the upper constraint of 10W/m2. Initially
we provide 5W/m2 and we obtain temperature profiles
from FEM simulations. Subsequently the energy supply is
adjusted in order to minimize the cost functionsJs andJt.
Applying the proposed receding horizon algorithm we suc-
cessfully drive the dominant eigenfunctions to the desired
states (Fig. 5). Although we consider only the dominant
eigenfunctions in the objective functions we notice that all
of the first three spatial and temporal eigenfunctions are in
good agreement.
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Fig. 5. First three (a) spatial and (b) temporal eigenfunctions for receding
horizon of 30 (Solid line: desired values - Dotted line: resulting values)

2

4

6

8

10
10 20 30 40 50 60 70 80 90 100

300

310

320

330

340

350

360

Time (Sec)

Sensors

T
e

m
p

e
ra

tu
re

 (
K

)

Fig. 6. Resulting temperature profile for receding horizon of20

Using a control horizon of20 the results can be further
improved. From Fig. 7 and Fig. 8 we observe that the second
and third spatial and temporal eigenfunctions are closer
than these of using control horizon of30. The resulting
temperature profile is given in Fig. 6. We have to note here
that there is a trade off in the accuracy of POD and the
choice of less snapshots. Therefore one should proceed with
caution choosing the window size in order not to sacrifice
the efficiency of POD in capturing the dynamics of the
system.

B. Disturbance Rejection

In this subsection we consider a disturbance rejection
problem. We suppose that at time65 seconds the ambient
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Fig. 7. First three spatial eigenfunctions for receding horizon of 20 (Solid
line: desired values - Dotted line: resulting values)
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Fig. 8. First three temporal eigenfunctions for receding horizon of 20
(Solid line: desired values - Dotted line: resulting values)

temperature changes to320K; this results in a disturbance at
the system output. As shown in Fig. 10, the receding horizon
EBC is able to reject this disturbance by adjusting accord-
ingly the boundary actuation. The open-loop EBC [14] is
unable to recover the prescribed performance.

V. CONCLUDING REMARKS

The application of a novel receding horizon eigenfunction
based control scheme has been examined in this paper. Our
extensive simulation experiments suggest that the applica-
tion of this empirical eigenfunction based controller is most
promising. Due to the novelty of the proposed idea there
are open problems for further investigation.

For the formulation of the proposed control schemes
we used the empirical eigenfunctions, that represent the
dynamics of the heat transfer in the examined geometry. The
minimization of the cost functions that consist of the spatial
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Fig. 9. Resulting temperature profile in presence of disturbance using
open-loop EBC algorithm
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Fig. 10. Resulting temperature profile in presence of disturbance using
closed-loop receding horizon EBC algorithm

and temporal eigenfunctions was achieved by a constrained
move of the manipulated variables, in our case the boundary
energy supply. It would be valuable to examine algorithms
that utilize all of the POD-based empirical eigenfunctions
in a multiple optimization problem. More specifically when
the first eigenfunction does not contain99% of the “energy”
of the system we want to use a sufficient number of
eigenfunctions in a cost function to capture this energy.

This novel receding horizon controller was applied for the
regulation of temperature transients in a wafer-like cross
section. Our analytical work and simulation results show
that the proposed approach can provide an efficient reduced
order boundary control method for even more complicated
physical problems. In this direction, we are currently work-
ing on analyzing the stability and convergence properties
of the proposed algorithm and applying the formulation to

more complex microchemical systems that incorporate fluid
flow and reactions.
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