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Abstract

In this work the problem of identifying third-order Volterra
models from input-output process data is addressed. The
identification problem involves the rational design of
input sequences that exploit the Volterra model structure.
The criterion used to measure the model fitness is the
minimization of the prediction error variance (PEV). Explicit
estimators that utilize plant-friendly input sequences for
the identification of bias, linear, nonlinear diagonal, and
third-order sub-diagonal kernels are presented. As an
application of this technique, an isothermal polymerization
reactor case study is considered; it was found that the
third-order Volterra model does an efficient job of capturing
the nonlinear reactor behavior.
Keywords: empirical model identification, input sequence
design, Volterra series, polymerization reactor

1 Introduction

The increased emphasis on maintaining productivity with
sustained product quality has imposed strict requirements
on controller performance. For a model based control
scheme there is a direct link between model quality
and theoretically achievable controller performance [1].
Consequently, controllers based on nonlinear models are
needed as they provide higher quality control performance
over a wider manipulated variable range than controllers
based on linear models. One of the key impediments to the
practical application of nonlinear model based controllers
is the availability of suitable nonlinear models [2]. In this
regard, a number of researchers have focused on developing
nonlinear models from first-principles [3], [4]. An advantage
of fundamental models is that since they are based on the
underlying physics of the problem, they have parameters
with physical correspondence. Due to the physical insight
provided by these models, they can be used with confidence
beyond the operating range in which they were developed
provided the quality of the parameter estimates is good.
However, these models are time-consuming to develop and
often have a very high state dimension and a large number
of parameters that need to be identified from process data.
This complexity in the system model manifests directly in
the controller design and implementation which may be
computationally intensive. Furthermore, the optimization
problem that is solved in nonlinear model predictive control

(NMPC) is now a nonlinear programming problem (NLP) in
contrast to the more tractable convex quadratic program (QP)
solved for linear MPC.

An alternative to the use of first-principles models is to
use empirical or black-box modeling techniques. Here
a mathematical representation is chosen and the model
parameters are calculated to best capture the input-output
behavior of the process. Among the commonly used
model frameworks are artificial neural networks (ANN) and
nonlinear moving average with exogenous input models,
either with (NARMAX) or without (NMAX) auto-regressive
terms. Since these models are based purely on input-output
data they do not capture the underlying physics of the
process. However they are often much easier to develop;
as a testimony to their appeal, a vast majority of industrial
MPC controllers employ empirical dynamic models [2]. This
makes system identification from plant data a practical and
relevant problem. However, in most cases linear empirical
models are used for controller design and this may affect
the performance when the underlying physical process is
nonlinear. Thus there is a need to identify nonlinear models
quickly for processes that warrant a nonlinear controller.

The choice of the input signal is one of the primary design
elements in a system identification scheme. The chosen
input sequence should be persistently exciting, i.e. it
should be able to elicit sufficient output response in order
to identify the parameters in the model structure. It is also
desired to be plant-friendly [5], such that it provides enough
excitation to identify the model parameters without causing
excessive actuator movement, and without causing the plant
to deviate significantly from its nominal operating point. The
metric used to analyze plant-friendliness in this work is the
friendliness factor f given as [5]:

f = 100
(

1− nt

N −1

)

(1)

Here, N is the total sequence length whereas nt is the total
number of level transitions. An alternative approach is to use
frequency domain information whereby multisine signals are
employed with a goal of minimizing the crest-factor (ratio
of the `∞ norm of the input to its `2 norm). A low crest
factor signifies that most of the values of the input sequence
are distributed around its extreme ends. Minimization of



the crest factor improves the signal to noise ratio of the
output thereby making the input sequence plant friendly
[6]. However, in the context of this work the discussion
is limited to time domain input signals with a goal of
minimizing actuator wear due to frequent transitions in the
input sequence.

2 Third-order Volterra models

The general form of the Volterra model is given as,

y(k) = h0 +

N
∑

i=1

M
∑

j1=1

· ·
M

∑

jN=1

hi( j1, .., jN)u(k− j1) · ·u(k− jN)

(2)
In this equation, N is the model order and M is the model
memory, the duration over which the past inputs have an
effect on the current output, y(k). The Volterra model
kernels are given by hi( j1, ..., jN), and the identification
problem involves determining the values of these kernels.
The Volterra model structure is capable of capturing a
variety of nonlinear systems behavior [7],[8]. An example
is the ability to capture asymmetric output responses to
symmetric changes in the input; this behavior is shown
by many chemical engineering systems including reactors
and distillation columns. Furthermore, the Volterra model
returns the linear finite impulse response (FIR) model for
N = 1 in (2). Thus the Volterra model structure can be
considered as a nonlinear extension of the FIR model thereby
facilitating its use in on-line applications. One disadvantage
of this structure is the number of parameters that must be
estimated as the model order increases. This factor has
limited the widespread use of higher-order Volterra models
for practical applications. In this work, it is shown that by
judiciously exploiting the model structure, input sequences
can be tailored so as to simplify the task of, and minimize
the data requirements for, identifying the parameters for a
third-order Volterra model. The third-order Volterra model
is first decomposed in the following manner [5]:

ŷ(k) = h0 +L(k)+D(k)+S(k)+O(k) (3)

L(k) =

M
∑

i=1

h1(i)u(k− i)

D(k) =

M
∑

i=1

h2(i, i)u2(k− i)+

M
∑

i=1

h3(i, i, i)u3(k− i)

S(k) = 3
M

∑

i=1

i−1
∑

j=1

h3(i, i, j)u2(k− i)u(k− j)

+ 3
M

∑

i=1

i−1
∑

j=1

h3(i, j, j)u(k− i)u2(k− j)

O(k) = 2
M

∑

i=1

i−1
∑

j=1

h2(i, j)u(k− i)u(k− j)+

6
M

∑

i=1

i−1
∑

j=1

j−1
∑

`=1

h3(i, j, `)u2(k− i)u(k− j)u(k− `)

Here, L, D, S, and O represent the linear, nonlinear diagonal,
third-order sub-diagonal, and nonlinear off-diagonal terms,
respectively. The Volterra model can be assumed symmetric
without loss of generality [9]. Symmetry in the third-order
term can be visualized with respect to the main diagonal.

2.1 Third-order Volterra model Identification
The identification of the Volterra model coefficients is
carried out based on the decomposition presented in (3). As
a metric to analyze model fitness, consider the third-order
Prediction Error Variance expression:

σ2
p = σ2

0 +σ2
u

M
∑

i=1

δ2
1(i)+(κ+2)σ4

u

M
∑

i=1

δ2
2(i, i)

+2σ4
u

M
∑

i=1

i−1
∑

j=1

δ2
2(i, j)+(m6 −

m2
4

σ2
u
)

M
∑

i=1

δ2
3(i, i, i)

+9(κ+2)σ6
u

M
∑

i=1

M
∑

j=1

δ2
3(i, j, j)

+6σ6
u

M
∑

i=1

M
∑

j 6=i

M
∑

6̀= j 6=i

δ2
3(i, j, `) (4)

The first term represents the bias term whereas the second,
third, and fourth terms describe the contributions due to the
coefficient errors in the linear, second-order diagonal, and
the second-order off-diagonal terms. The last three terms
represent the third-order diagonal, third-order sub-diagonal
and the third-order off-diagonal terms, respectively. The
input sequences designed in the present work are based
on the structure and coefficients of the terms in (3) and
(4). Thus, an input-sequence which makes the coefficient
(

m6 − m2
4

σ2
u

)

large would be a candidate to identify the
third-order diagonal kernel. For the third-order sub-diagonal
terms, if an input sequence is designed such that no more
than two points have non-zero values within the model
memory M then the third-order off-diagonal terms would be
zero identically (according to (3)). Furthermore, the ratio of
the coefficient of the third-order sub-diagonal term to that of
the second-order off-diagonal term is:

C3SD

C2OD
= 4.5(κ+2)σ2

u (5)

Thus, a sequence with a high kurtosis and a high variance
could selectively excite the third-order sub-diagonal terms
and render the effects of the second-order off-diagonal terms
relatively insignificant. Thus, the identification algorithmfor
third-order Volterra models is as follows:
Identification Algorithm

First, the bias, linear, and nonlinear diagonal
parameters are estimated using a four-pulse, five-level,
4M + 4 length sequence. Next, a 57M length
tailored sequence is used to excite the system
and residuals are calculated by subtracting off the
bias, linear, and nonlinear diagonal contributions.



Third-order sub-diagonal coefficients are estimated
from these residuals. Finally the second and third
order off-diagonal terms can be estimated using a
cross-correlation technique building on the results
presented in [5].

2.2 Estimation of bias, linear, and nonlinear diagonal
parameters
The identification of the bias, linear, and nonlinear diagonal
parameters is carried out first in order to take advantage
of tailored input sequences that selectively excite these
parameters. Furthermore, since the diagonal parameters are
involved in the calculation of all of the other parameters,
an accurate estimate of the diagonal terms at the beginning
ensures better estimates for the subsequent parameters. Akin
to the results of [10], a 4M + 4 length deterministic input
sequence is used to estimate the bias, linear, and diagonal
parameters.

u(k) =











































γ1 k = 0
0 1 ≤ k ≤ M

−γ1 k = M +1
0 M +2 ≤ k ≤ 2M +1
γ2 k = 2M +2
0 2M +3 ≤ k ≤ 3M +2

−γ2 k = 3M +3
0 3M +4 ≤ k ≤ 4M +3

(6)

This sequence ensures that the contributions due to the
nonlinear sub-diagonal and off-diagonal terms are zero
identically, (u(k− i)u(k− j) = 0 ∀i 6= j (i, j ≤ M)). The
parameters γ1 and γ2 are selected such that γ2 > γ1. This is
done in order to facilitate sufficient excitation of the model
nonlinearities. In addition, the placement of the smaller pulse
before the larger pulse guarantees that any residual error
from the large pulse response does not corrupt the small
pulse output data. For a value of γ1 = 5.6 and γ2 = 56,
this sequence has a friendliness factor of 93%. Furthermore,

the value of the coefficient
(

m6 − m2
4

σ2
u

)

for this sequence is
712,570 which ensures sufficient excitation. Assuming

y(k) = ŷ(k)+ e(k) for k = 0, 1 , . . . , 4M +3

one can obtain estimates for the linear and diagonal kernels
that minimize the following sum-squared prediction error:

J =

4M+3
∑

k=0

e(k)2 =

4M+3
∑

k=0

{y(k)− ŷ(k)}2 (7)

In this equation e(k) is a zero-mean prediction error sequence
due to measurement errors in the data-set y(k) and any plant-
model mismatch, and ŷ(k) is the model prediction with the
input sequence given in (6). Applying the condition,

∂J
∂hn

= 0 n = 0,1,2,3. (8)

and simultaneously solving the equations for ∂J
∂h1

= 0 and
∂J
∂h3

= 0, estimators for the linear and the third-order diagonal

kernels are obtained. This is a departure from [5] where
the estimator h1(k) was calculated independently. Since
the current sequence identifies a third-order Volterra model,
the estimators for h1 and h3 are interdependent and must
be calculated simultaneously. After significant algebra, the
odd-order estimators are as follows:

h1(k) =
n1(k)

dodd(k)
(9)

n1(k) =
γ6

1 + γ6
2

γ4
1 + γ4

2

{ γ1

2(γ2
1 + γ2

2)
{y(k)− y(k +M+1)}

+
γ2

2(γ2
1 + γ2

2)
{y(k +2M +2)− y(k +3M+3)}

}

−γ4
1 + γ4

2

γ2
1 + γ2

2

{ γ3
1

2(γ4
1 + γ4

2)
{y(k)− y(k +M +1)}

+
γ3

2

2(γ4
1 + γ4

2)
{y(k +2M +2)− y(k +3M+3)}

}

dodd(k) =
γ6

1 + γ6
2

γ4
1 + γ4

2
− γ4

1 + γ4
2

γ2
1 + γ2

2

h3(k) =
n3(k)

dodd(k)
(10)

n3(k) =
{ γ3

1

2(γ4
1 + γ4

2)
− γ1

2(γ2
1 + γ2

2)

}

{y(k)− y(k +M+1)}

+
{ γ3

2

2(γ4
1 + γ4

2)
− γ2

2(γ2
1 + γ2

2)

}

{y(k +2M +2)

−y(k +3M +3)}

Similarly, solving for ∂J
∂h0

= 0 and ∂J
∂h2

= 0 simultaneously,
the bias term and the second-order diagonal kernel estimators
are obtained. These are given as:

h0 =
n0

d0
(11)

n0 =
γ2

1

2(γ4
1 + γ4

2)

M
∑

k=1

{y(k)+ y(k +M +1)}

+
γ2

2

2(γ4
1 + γ4

2)

M
∑

k=1

{y(k +2M +2)+ y(k +3M+3)}

− 1
2(γ2

1 + γ2
2)

4M+3
∑

k=0

y(k)

d0 = M
γ2

1 + γ2
2

γ4
1 + γ4

2
− 2M +2

γ2
1 + γ2

2

h2(k) =
γ2

1

2(γ4
1 + γ4

2)
{y(k)+ y(k +M +1)}

+
γ2

2

2(γ4
1 + γ4

2)
{y(k +2M+2)+ y(k +3M+3)}

−γ2
1 + γ2

2

γ4
1 + γ4

2
h0 (12)



0 10 20 30 40 50 60 70
−50

0

50

N
or

m
al

iz
ed

 In
iti

at
or

 
   

   
   

  C
on

c.
   

   
   

   
   

 

0 2 4 6 8
−50

0

50

Time (hrs)

N
or

m
al

iz
ed

 In
iti

at
or

 
   

   
   

  C
on

c.
   

   
   

   
   

 

Figure 1: Top — Input sequence used for sub-diagonal
identification. The levels used are λ1 = 11.2 and λ2 =
56. Bottom — Zoom of the plot over the first 8 hours to
show increasing pulse separation with time.

2.3 Estimation of sub-diagonal parameters
One CSRS input sequence which is plant-friendly in valve
usage ( f = 94%) is shown in Figure 1. A short length of the
sequence is also shown in order to highlight its behavior. For
this sequence the ratio given by (5) is 13,102 which ensures
selective excitation of the third-order sub-diagonal terms.
In order to derive the sub-diagonal estimator equations, an
approach similar to that used for the derivation of the bias,
linear, and the diagonal estimators is used. The calculation
here is shown for just one sub-unit of the sequence but
it can be generalized to the entire sequence length. The
only difference is that in subsequent sub-units of the input
sequence there is a gap between the two pulses. This gap
length increases by one with increasing sub-units, and it
is employed to ensure the tailored excitation of all of the
sub-diagonal parameters. The first sub-unit of the input
sequence is given as:

u(k) =



























λ1 k = 1
λ2 k = 2
0 3 ≤ k ≤ M +1

−λ2 k = M +2
−λ1 k = M +3

0 M +4 ≤ k ≤ 2M +2

(13)

Applying this to the system of interest and removing the bias,
linear, and nonlinear diagonal contributions, recovers the
residual z(k). The estimates for the third-order sub-diagonal
coefficients can be obtained by minimizing the following
sum-squared prediction error:

Jsd =

2M+2
∑

k=1

{z(k)− ẑ(k)}2 (14)

Solving for ∂Jsd
∂h3(i, j, j) = 0 and ∂Jsd

∂h3(i,i, j) = 0 simultaneously, the
estimators for the third-order sub-diagonals are as follows:

h3(i, j, j) =
α1

α2
1 −α2

2
z(k +2)+

α1

α2
2 −α2

2
z(k +M +3)

h3(i, i, j) =
−α2

α2
1 −α2

2
z(k +2)+

−α1

α2
1 −α2

2
z(k +M +3)

α1 = λ2
1λ2

α2 = λ2
2λ1

k = 1, 2, . . .M−1 (15)

This calculation is then carried out for the entire
length of the sequence, allowing the estimation of
h3(i, j, j) and h3(i, i, j) ∀ i, j such that 1 ≤ i, j ≤ M.

3 Case Study: A Polymerization Reactor

In order to test the effectiveness of the algorithm developed
in the previous section, the isothermal free-radical polymer-
ization of methyl-methacrylate using azo-bis-isobutyronitrile
as an initiator and toluene as a solvent [11] is treated as the
“real” system. A detailed description of the system has been
previously published [12]. The system equations are given
as,

ẋ1 = 60−10x1−2.45684x1
√

x2

ẋ2 = 80u−10.1022x2

ẋ3 = 0.0024121x1
√

x2 +0.112184x2−10x3 (16)
ẋ4 = 245.979x1

√
x2 −10x4

y =
x4

x3

In this system the output y is the number average molecular
weight (NAMW) of the polymer whereas the input u is the
initiator flow-rate. The nominal operating point is selected
as the mid-point of the operation range of the reactor and is
given in Table 1. The system was converted to deviation

Table 1: Nominal operating point
Variable Nominal Value Units

x10 5.12796 kmol/m3

x20 0.4791035 kmol/m3

x30 0.00623093 kmol/m3

x40 87.308673 kg/m3

u0 0.0605 m3/h
y0 14012 kg/kmol

form, and the input and output were scaled as in [5]:

v =
u−u0

0.001

ỹ =
y− y0

100
(17)

Carlemann linearization of the nonlinear system [9],
truncated to third-order terms returned the following bilinear
system in state-space form:

˙̃q = Aq̃+Nq̃v+Bv
ỹ = Cq̃ (18)

Here q̃ represents the states of the bilinear system. A plot of
the system response to step-changes of magnitude v = ±30
are shown in Figure 2. The corresponding system responses
from the second- and third-order Carlemann linearized
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Figure 2: Plot of the response to a step-change of ±30 in v (m3/h).
Nonlinear model (—), Carlemann linearized model
truncated to second-order (−−), Carlemann linearized
model truncated to the third-order (−·−)

models are also shown. Since the third-order Carlemann
linearized model captures the system response better than the
second-order model, all further analysis is carried out using
the third-order Carlemann linearized model.

Finally, the bilinear state-space system was discretized
using the fourth-order Runge-Kutta algorithm. A sampling
time (∆t) of 0.06 hr and model-memory M of 20, were
selected to allow comparison with [5]. From the discretized
equations, the Volterra kernels for the system were calculated
analytically [9]. A third-order Volterra model was thus
obtained, which is used to test the effectiveness of the
identification algorithm vis-a-vis the real system.

3.1 Results
The system output profiles, generated using the input
sequences for the linear, and nonlinear diagonal, and the
sub-diagonal estimation, were used to estimate the kernels
using the Algorithm from Section 2.1. Table 2 shows
the comparison of the identified kernel estimates with the
analytically derived kernels. Plots that show the comparison
of the identified and analytical second-order (Figure 3) and
third-order (Figure 4) diagonal kernels are also shown.

Table 2: Error summary for the identification results, with values
as sum-squared coefficient error.

Error Algorithm 1
Linear 3.69×10−6

2nd-Order Diagonal (4M +4) 1.47×10−7

2nd-Order Diagonal (2M +2) 9.16×10−8

3rd-Order Diagonal 1.22×10−10

3rd-Order Sub-diagonal 2.95×10−9

It is observed that the identification algorithm does an
excellent job of identifying the linear Volterra model kernels
as is evident from the low value of the sum-squared
coefficient error. The identification of the second-order
diagonal kernel was also carried out using only the latter half
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Figure 3: A comparison of the analytically calculated (− · −)
with the identified (2M+2 length) (−•−) second-order
diagonal kernel.
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Figure 4: A comparison of the analytically calculated (−·−) with
the identified (−•−) third-order diagonal kernel.

of the 4M + 4 sequence (i.e. the 2M + 2 length sequence
with pulses of magnitude ± 56). This second-order diagonal
kernel is shown in Figure 3. The improvement in this
result over that obtained from using the full sequence is
probably due to insufficient excitation of the second-order
diagonal kernel by the low-magnitude pulses. Although this
difference between the two values does not appear significant
at a first glance, any error at this stage is propagated into
the identification of the third-order sub-diagonal coefficients.
For the third-order diagonal kernels the identified kernel
captures the qualitative behavior, i.e. a parabolic dip
initially followed by a plateau. However, it does not
capture the “minimum” of this dip, quantitatively. As in
the second-order case, a re-evaluation of γ1 may improve
the accuracy of the estimator. For both the second- and
third-order kernels the saturation behavior with increasing i
is adequately represented.

The third-order sub-diagonal coefficients were identified
using the input sequence in Figure 1, with λ1 = 11.2 and
λ2 = 56. A mesh plot that shows a comparison of the
identified and analytical third-order sub-diagonal kernels is



shown in Figure 5. In this case as well, the qualitative
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Figure 5: Mesh plot of the analytical (left) and the identified
(right) third-order sub-diagonals.

behavior of the kernel is captured. Quantitatively, the
accuracy of the third-order sub-diagonal appears good, but
the graphical comparison in Figure 5 shows a systematic
error in the early (small index) coefficients. The kernel
error can be attributed to the quality of residuals that are
obtained from subtracting the contribution of the diagonal
kernels from the system output. Errors in the identification
of the nonlinear diagonal kernels are now magnified in
the calculation of the third-order sub-diagonal kernels. In
order to check if this was indeed the case, the identification
was done without using the residuals, i.e. by using the
output from the theoretical third-order sub-diagonal kernel
for identification. The sum-squared error obtained in this
case was 3.19×10−41, thereby confirming the validity of the
third-order sub-diagonal estimators in (15). It also highlights
the significant impact of errors in nonlinear diagonal kernel
estimation on the third-order sub-diagonal estimates.

4 Summary
In this work, the identification of a third-order Volterra
model was considered. Tailored input sequences were
designed based on the PEV expression and these sequences
adequately exploited the Volterra model structure. The
estimation of the bias, linear, and nonlinear diagonal
parameters was carried out using a four pulse sequence,
and the third-order sub-diagonal parameters were estimated
using a novel sequence designed to preferentially excite
the third-order sub-diagonal terms over the second-order
off-diagonal terms. Thus a systematic and rational approach
towards identification of third-order Volterra models was
presented using plant-friendly input sequences.

It is expected that improvements in input sequence design,
with respect to pulse magnitude and spacing, may lead
to improvements in diagonal kernel coefficient estimation.
Furthermore, it may be possible to shorten the sequence

length (and hence, time required) for sub-diagonal kernel
estimation. These topics, as well as a comparison to
cross-correlation techniques are areas of ongoing work.
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