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ABSTRACT

A decentralized adaptive output feedback control design
is proposed for large-scale interconnected systems. It is
assumed that all the controllers share prior information
about the system reference models. A linearly parameterized
neural network is introduced for each subsystem to partially
cancel the effect of the interconnections on tracking per-
formance. Boundedness of error signals is shown through
Lyapunov’s direct method.

I. I NTRODUCTION

With the advent of complex engineering systems, inter-
est in design of decentralized controllers has especially
increased. The problem can be briefly formulated as a
control design for a system composed of severaldynam-
ically interconnected subsystems, such that the output of
each subsystem has to track a prescpecified reference tra-
jectory, while no communication is allowed between the
controllers. The problem was first introduced in [1] for
weakly interconnected subsystems having regulated outputs
with relative degree 1 or 2. In [2] a framework for model
reference adaptive control has been developed under re-
strictive assumptions, like positive definiteness of an M-
matrix involving unknown constants, relative degrees of
outputs being one or two, and matched uncertainties. These
conditions were further relaxed in [3]–[10]. A detailed
review of the cited literature one can find in [11].

Here we formulate and solve the problem of decen-
tralized adaptive output feedback control for a class of
nonlinear subsystems with known relative degrees, subject
to unknown interconnections with known upper bound.
We depart from attempting to obtain global results, and
restrict the synthesis approach to a domain over which the
interconnections and nonlinearities can be approximated by
a linearly parameterized neural network. Similar attempts
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of incorporating neural networks into decentralized adaptive
control have have been reported in [12], [13] for design of
state feedback controllers. Following [14]–[16], we assume
that the desired trajectories are known to all the controllers,
i.e. the controllers share prior information about their goals,
and we develop anadaptive output feedback synthesis
approach that achieves ultimate boundedness of tracking
errors. As in [14], [15], we will say that the controllers
are engaged inimplicit cooperation. While most of the
existing results in decentralized control literature relyon
the definition of a robust controller for dominating the in-
terconnections, we show through Lyapunov’s direct method
that a linearly parameterized neural network, operating over
reference model states, canpartially cancel the intercon-
nection effects. Ultimate boundedness of error signals is
shown using Lyapunov’s direct method. This paper should
be viewed as the extension of adaptive output feedback
control approach developed in [17] for centralized control
to a decentralized setup, using the viewpoint of [14], [16]
for definition of implicit cooperation.

The paper is organized as follows. In Section II we
state the problem formulation and assumptions about the
subsystem dynamics. In Section III we present the approach
and define the error dynamics. In Section IV, we define the
adaptive controller for each subsystem and derive associated
bounds. Section V has a proof on ultimate boundedness
of error signals of the large-scale system. In Section
VI, we illustrate the theoretical results on non-minimum
phase system like three inverted pendulums. Throughout the
manuscript bold symbols are used for column vectors, small
letters for scalars, capital letters for matrices,|| · || denotes
2-norm unless otherwise noted.

II. SYSTEM DESCRIPTION ANDPROBLEM

FORMULATION

Let the large-scale system be composed ofm stabilizable
nonlinear single-input single-output (SISO) subsystems,
represented in the following normal form:

ẋi = Aixi + Bizi + bi [ui + fi(x1,z1, . . . ,xm,zm)]

żi = Cixi + Dizi + gi(x1,z1, . . . ,xm,zm) (1)

yi = cT
i xi , i = 1, · · · ,m,

where[xT
i zT

i ]T ∈ R
ri+(ni−ri) is the state vector of the re-

alization of theith subsystem in normal form,ri represent-
ing the relative degree,ui ∈ R andyi ∈ R are the control
and measurement of theith subsystem,fi : R

n1+···+nm →
R , gi : R

n1+···+nm → R
ni−ri are sufficiently smooth



unknown functions, representing the modeling errors and
interconnection effects, whileAi, Bi, bi, ci are matrices and
vectors corresponding to the normal realization:

Ai =







0 1 · · · 0
...

...
.. .

...
ai1 ai2 · · · airi






,

Bi =







0 · · · 0
...

. .. 0
ci1 · · · cini−ri







andbi = [ 0 · · · bi ]T , ci = [ 1 · · · 0 ]T .
Assumption 2.1: The functionsgi(x1,z1, . . . ,xm,zm)

are bounded for alli = 1, · · · ,m:

‖gi(·)‖ ≤

m
∑

j=1

αi

∥

∥

∥

[

xT
j zT

j

]T
∥

∥

∥
, αi > 0 (2)

Theobjective is to synthesizedecentralized adaptive output
feedback control lawsui, such thatyi(t) tracks a smooth
bounded reference trajectoryyli(t) with bounded errors
for all i = 1, · · · ,m, under the assumption that theith

controller knows thedesired states of all the subsystemsj =
1, · · · ,m, while having access only to its own measurement
yi(t).

As in [14]–[16], we introduce the following assumption.
Assumption 2.2: The signalsyli(t) are assumed to be

generated by the followingstable linear closed-loop ref-
erence models

ξ̇li = Āiξli + bri
yci

, yli = c̄T
i ξli (3)

consisting of an open loop system

ẋli = Aixli + Bizli + biuli

żli = Cixli + Dizli

yli = cT
i xli , i = 1, · · · ,m (4)

and a stabilizing dynamic compensator:

ẋci
= Aci

xci
+ bci

(yci
− yli)

uli = cT
ci

xci
+ dci

(yci
− yli) , i = 1, · · · ,m , (5)

where

Āi =





Ai − bidci
cT

i Bi bic
T
ci

Ci Di 0
−bci

cT
i 0 Aci



 (6)

ξli = [ xT
li

zT
li

xT
ci

]T , bri
=

[ bid
T
ci

0 bT
ci

]T , c̄i = [ cT
i 0 0 ]T , and yci

is a bounded input of interest to track. The matrices
Ai, Bi, bi, ci are assumed to correspond to the normal
realization, as defined in (2), so thatdimxli = dimxi,
anddim zli = dimzi. Notice that this choice of the open
loop system in (4) implies that the relative degree of
the ith open-loop reference model equals that of theith

open-loop subsystem. The following bounds are assumed
to be known

‖[ xT
li

zT
li

]T ‖ ≤ βi , i = 1, · · · ,m (7)
Remark 2.1: In [14], this problem formulation has been

addressed for linear subsystems, and, by a proper choice of
robustifying signal, it has been shown that global asymptotic
tracking can be achieved if the robustifying gain satisfies
a lower bound, depending upon the number of subsystems
and the apriori known bound on the interconnection effects.
In [15], these results have been extended to nonlinear
interconnections, modeled byknown nonlinear functions.
Moreover, output feedback has been formulated and solved
for the case of subsystems having regulated outputs with
relative degree1. Our approach is different in two perspec-
tives: i) we formulate the problem in output feedbackfor
arbitrary relative degree by extending the results of [17]
for centralized control, ii) we use anadaptive signal for
overcoming the effect of interconnections on the tracking
performance. On the other hand it should be understood
that, due to results in [18], one cannot expect global results
while using dynamic output feedback compensators with
the class of nonlinear systems presented here.

III. C ONTROLLER DESIGN, ERRORDYNAMICS

The control design for each of the subsystems will be
based on the logic of combining a linear controller, that
stabilizes the nominal linear model in the absence of inter-
connections, with a neural network (NN) that approximately
cancels the interconnection effects in the controllable range.
Towards this end, introduce the following control signal
ui = uci

− uadi
, whereuci

is the output of the following
dynamic compensator

η̇ci
= Aci

ηci
+ bci

(yci
− yi)

uci
= cT

ci
ηci

+ dci
(yci

− yi) , i = 1, · · · ,m , (8)

whereηci
∈ R

nci , Aci
, bci

, cci
, dci

are introduced in (5),
and the adaptive signaluadi

will be defined later. This
results in the following closed-loop subsystem dynamics:

ξ̇i = Āiξi + bri
yci

− b̄i(uadi
− fi) + ḡi (9)

yi = c̄T
i ξi , i = 1, · · · ,m , (10)

where ξi = [xT
i zT

i ηT
ci

]T , b̄i = [bT
i 0 0]T, ḡ

i
=

[0 gT

i
0]T. Following [15], define the error vectorEi =

ξli − ξi, and write the tracking error dynamics for theith

subsystem:

Ėi = ĀiEi + b̄i(uadi
− fi) − ḡi, ȳi = C̄iEi, (11)

whereC̄i =
[

c̄T
i I

]T
separates the signals available for

feedback.

IV. N EURAL NETWORK APPROXIMATION OF

NONLINEARITIES AND ADAPTIVE CONTROL

Following [19], given arbitraryε∗ > 0 and a continuous
function f(x) : R

n → R
m, defined on a compact set

x ∈ D ⊂ R
n, there exists a set of bounded constant



weights W , and a set of basis functionsφ(x), such that
the following representation holds∀x ∈ D: f(x) =
WT φ(x) + ε(x), ‖ε(x)‖ < ε∗. Thus, one can model the
interconnections

fi(x1,z1, · · · ,xm,zm) = W T
i φi(Y ) + εi(Y ) (12)

using the following input vector Y =
[xT

1 zT
1 · · · xT

m zT
m]T ∈ D ⊂ R

n1+···+nm and
a vector of the radial basis functionsφi(Y ) =
[φi1(Y ) · · · φiNi

(Y )]T , where Ni is the number
of basis functions to be used by theith subsystem,
φik

(Y ) = e−‖Y −Y ick
‖2/2σik , Y ick

is the vector of
centers of the basis functions used by theith subsystem,
having the same dimension asY , σik

specifies the
width of the kth basis function in theith subsystem,
and |εi| < ε∗i , ‖W i‖ ≤ W ∗

i . Since our interest is in
decentralized design, the states of other subsystems are
not available to individual controllers, therefore the input
vector Y cannot be used in designing adaptive elements.
Based on the assumption that the controllers share prior
information about their reference models, the adaptive
control signal for theith subsystem can be designed
following the same logic as in [15],

uadi
= Ŵ

T

i φi(Y l) (13)

where the vector Y l is defined as Y l =
[xT

l1
zT

l1
· · · xT

lm
zT

lm
]T having the states of all the

subsystems replaced by their corresponding reference states
when compared toY . Notice that due to boundedness of
reference model states there exists a setDl in the extended
space such thatY l ∈ Dl. The adaptive laws forŴ i are
similar to those in [20]:

˙̂
W i = −Fi[2φi(Y l)Ê

T

i Pib̄i + kiŴ i] (14)

in which Pi is the solution of the Lyapunov equation
ĀT

i Pi + PiĀi = −Qi for someQi > 0, and Fi, ki > 0
are adaptation gains, whilêEi propagates according to the
following dynamics:

˙̂
Ei = ĀiÊi + Ki (ȳi − ŷi) , ŷi = C̄iÊi, (15)

whereKi is a gain matrix, and should be chosen such that
Āi − KiC̄i is asymptotically stable, whilei = 1, · · · ,m.
Let Ãi = Āi − KiC̄i, Ẽi = Ei − Êi, i = 1, · · · ,m.
Then

˙̃
Ei = ÃiẼi + b̄i(uadi

− fi) − ḡi, i = 1, · · · ,m (16)

We immediately note that for arbitrary positive definite
Q̃i > 0 there exists a unique solutioñPi = P̃T

i > 0 such
that ÃT

i P̃i + P̃iÃi = −Q̃i. The error dynamics in (11) can
be expressed as:

Ėi = ĀiEi + b̄i

[

Ŵ
T

i φi(Y l) − W T
i φi(Y ) − εi

]

− ḡi

ȳi = C̄iEi. (17)

Through several algebraic manipulations and, using the
mean value theorem, one can obtain

uadi
− fi = W̃

T

i φi(Y l) + W T
i φ′

i(Y
∗)Ỹ − εi (18)

where Ỹ = [x̃T
1 z̃T

1 · · · x̃T
m z̃T

m]T is comprised of the
tracking errors of all the subsystems (x̃i = xli − xi, z̃i =
zli − zi), φ′

i(Y
∗) is the bounded derivative of the basis

function in an intermediate pointY ∗ = Y l + (1 − λ)Y ,
0 < λ < 1, andW̃ i , Ŵ i − W i is the parameter error
vector. From the definition ofEj and Ỹ it follows that

‖Ỹ ‖ ≤

j=m
∑

j=1

‖Ej‖ (19)

V. STABILITY ANALYSIS

In this section we show through Lyapunov’s
direct method that the error signalsEi, Ẽi, W̃ i,
i = 1, · · · ,m, are ultimately bounded. To
this end, introduce the composite error vector

ζ
∆
=

[

ET
1 · · · ET

m Ẽ
T

1 · · · Ẽ
T

m W̃
T

1 · · · W̃
T

m

]T

∈

R
2(n1+···+nm) × R

N1+···+Nm , and consider the following
positive definite function V (ζ)

∆
= ζT Tζ, where

T = blockdiag[P1 · · · Pm P̃1 · · · P̃m
1
2F−1

1 · · · 1
2F−1

m ].
Further, notice that the RBF network approximation
can be defined over arbitrarily large compact setD.
Based on the definition of the compact setDl, and the
boundedness ofxci

and ηci
, in the subspace of the

error variables consider the following compact setΩE of
possible initial errors:ΩE =

{

[

ET
1 · · · ET

m

]T
∈

R
n1+···+nm : Y ∈ D, Y l ∈ Dl, xc ∈ Dxc

, ηc ∈ Dηc

}

.
In the expanded space of the error variable
ζ ∈ R

2(n1+···+nm) × R
N1+···+Nm , consider the largest

level set of

V (ζ) = ζT Tζ (20)

corresponding to[ ET
1 · · · ET

m ]T ∈ ΩE and introduce
the largest ball that lies inside this level set:

BR = {ζ | ‖ζ‖ ≤ R} (21)

Let α be the minimum value ofV (ζ) = ζT Tζ on the
boundary ofBR:

α
∆
= min

‖ζ‖=R
V (ζ) = R2λmin(T ) (22)

whereλmin(T ) is introduced for the minimum eigenvalue
of T . Introduce the set

Ωα
∆
= {ζ ∈ BR | V (ζ) ≤ α} (23)

Assumption 5.1: Let

R > γ
√

λmax(T )/λmin(T ) (24)

whereλmax(T ) is introduced for the maximum eigenvalue

of T , while γ = max

(

√

ω
λmin(D) ,

√

ω
λmin(D̃)

,
√

ω
λmin(Λ)

)

,



in which D
∆
= diag

[

θ1 · · · θm

]

, θi = λmin(Qi) −

2mαiλmax(Pi) − (mφ∗
i + 1)‖Pib̄i‖ −

∑j=m
j=1 (2‖Pj b̄j‖ +

Θj)φ
∗
j − αi

(

λmax(Pi) + λmax(P̃i)
)

> 0, D̃
∆
=

diag
[

θ̃1 · · · θ̃m

]

, θ̃i = λmin(Q̃i)−2mαiλmax(P̃i)−

(mφ∗
i + 1)

(

‖Pib̄i‖ + µi

)

− µi‖φi(Y l)‖ > 0, Λ
∆
=

diag
[

λ1 · · · λm

]

, λi = ki

2 − µi‖φi(Y l)‖ > 0,

ω
∆
=

∑m
i=1(

ki

2 (W ∗
i )2+(2‖Pib̄i‖+µi)(ε

∗
i )

2+αi(λmax(Pi)+

λmax(P̃i))
∑j=m

j=1 β2
j ), φ∗

i , W ∗
i ‖φ

′
i(Y

∗)‖, µi , ‖P̃ib̄i +

Pib̄i‖.
Theorem 5.1: Let Assumptions 2.1, 2.2 and 5.1 hold.

If the initial errors lie in Ωα, defined in (23), then all
the signalsEi, Ẽi, W̃ i, i = 1, · · · ,m, in the closed loop
system are ultimately bounded.
Proof. Consider the following Lyapunov function candidate
for each of the subsystems:

Vi(Ei, Ẽi, W̃ i) = ET
i PiEi + Ẽ

T

i P̃iẼi +
1

2
W̃

T

i F−1
i W̃ i

Substituting the adaptive laws from (14) implies:

V̇i = −ET
i QiEi − Ẽ

T

i Q̃iẼi

+2Ê
T

i Pib̄i

[

W T
i φ′

i(Y
∗)Ỹ − εi

]

+ 2ET
i Piḡi

+2Ẽ
T

i (P̃ib̄i + Pib̄i)
[

W̃
T

i φi(Y l)

+W T
i φ′

i(Y
∗)Ỹ − εi

]

+ 2Ẽ
T

i P̃iḡi − ki

[

W̃ iŴ i

]

Notice that using the bound in (7), the upperbound in (2)
can be represented:

‖gi‖ ≤

j=m
∑

j=1

αi[‖Ej‖ + βj ] (25)

Then using (19), the following upper bound can be derived:

V̇i ≤ −λmin(Qi)‖Ei‖
2 − λmin(Q̃i)‖Ẽi‖

2

+2
(

‖Ẽi‖ + ‖Ei‖
)

‖Pib̄i‖
[

φ∗
i

∑j=m
j=1 ‖Ej‖ + ε∗i

]

+2αiλmax(Pi)‖Ei‖
∑j=m

j=1 [‖Ej‖ + βj ]

+2‖Ẽi‖µi

[

‖W̃ i‖‖φi(Y l)‖ + φ∗
i

∑j=m
j=1 ‖Ej‖ + ε∗i

]

+2αiλmax(P̃i)‖Ẽi‖
∑j=m

j=1 [‖Ej‖ + βj ] − ki

[

W̃ iŴ i

]

Completing the squares twice and regroupong, the following
upper bound can be derived:

V̇i ≤ −
(

λmin(Qi) − 2mαiλmax(Pi) − (mφ∗
i

+1)‖Pib̄i‖
)

‖Ei‖
2 −

(

λmin(Q̃i) − 2mαiλmax(P̃i)

−(mφ∗
i + 1)

(

‖Pib̄i‖ + µi

)

− µi‖φi(Y l)‖
)

‖Ẽi‖
2

−
(

ki

2 − µi‖φi(Y l)‖
)

‖W̃ i‖
2 +

∑j=m
j=1

[

(2‖Pib̄i‖

+µi)φ
∗
i + αi

(

λmax(Pi) + λmax(P̃i)
) ]

‖Ej‖
2

+ki

2 (W ∗
i )2 +

(

2‖Pib̄i‖ + µi

)

(ε∗i )
2

+αi

(

λmax(Pi) + λmax(P̃i)
)

∑j=m
j=1 β2

j

Now introduce the following Lyapunov function for the
whole system:

V̇ =

m
∑

i=1

V̇i (26)

Then, using the notations from Assumption 5.1, the upper
bound reduces to:

V̇ =
∑m

i=1 V̇i ≤
∑m

i=1

[

−
(

λmin(Qi) − 2mαiλmax(Pi)

−(mφ∗
i + 1)‖Pib̄i‖

)

‖Ei‖
2 − θ̃i‖Ẽi‖

2

−λi‖W̃ i‖
2 +

∑j=m
j=1

[

(2‖Pib̄i‖ + µi)φ
∗
i

+αi

(

λmax(Pi) + λmax(P̃i)
) ]

‖Ej‖
2
]

+ ω

Regrouping, this can be written:

V̇ =

m
∑

i=1

V̇i ≤ (27)

m
∑

i=1

[

− θi‖Ei‖
2 − θ̃i‖Ẽi‖

2 − λi‖W̃ i‖
2
]

+ ω

Following an argument similar to that in [12],
define the vectorsE

∆
=

[

‖E1‖ · · · ‖Em‖
]T

,

Ẽ
∆
=

[

‖Ẽ1‖ · · · ‖Ẽm‖
]T

, W̃
∆
=

[

‖W̃ 1‖ · · · ‖W̃ m‖
]T

. Then the expression in
(27) can be put into the following form:

V̇ ≤ −ET DE − Ẽ
T
D̃Ẽ − W̃

T
ΛW̃ + ω

The following upper bound

V̇ ≤ −λmin(D)‖E‖2 − λmin(D̃)‖Ẽ‖2

−λmin(Λ)‖W̃ ‖2 + ω

implies that either of the following conditions

‖E‖ >

√

ω

λmin(D)
∥

∥

∥
Ẽ

∥

∥

∥
>

√

ω

λmin(D̃)

‖W̃ ‖ >

√

ω

λmin(Λ)

will render V̇ < 0 outside the compact set

Bγ = {ζ | ‖ζ‖ ≤ γ} (28)

Let Γ be the maximum value of the functionV (ζ) on the
boundary ofBγ :

Γ
∆
= max

‖ζ‖=γ
V = γ2λmax(T ) (29)

Assumption 5.1 ensures

Ωγ , {ζ| V = Γ} ⊂ Ωα (30)



Thus, if the initial errorζ0 = ζ(0) belongs toΩα, then
there exists a time instanttζ(ζ0), such thatζ(t) will enter
the setΩγ at tζ and remain inside it for allt > tζ . This
implies ultimate boundedness ofζ, completing the proof.

Remark 5.1: The results obtained above can be ex-
tended to the case where the modeling errors also de-
pend upon the control signal, i.e. in (1) one can have
fi(ui,x1,z1, . . . ,xm,zm), subject to∂fi/∂ui 6= 0. Notice
then that the adaptive signal will be introduced to cancel a
function fi(ui(uadi

(·), ·) of itself. To avoid this algebraic
loop, one way of implementing this is to use a one step
delayed value of the control signalui(t − d), whered > 0
is sufficiently small.

Remark 5.2: Assumption 5.1 may be interpreted as plac-
ing both upper and lower bounds on the adaptation gains.
Let γ̄

∆
= max(λmax(Fi)), γ

∆
= min(λmin(Fi)), λ̄

∆
=

max(λmax(Pi), λmax(P̃i)), λ
∆
= min(λmin(Pi), λmin(P̃i)),

i = 1, · · · ,m. Then an upper bound for the adaptation gains
results when2λ̄γ > 1 and2λγ̄ > 1, for which the relation
in (24) reduces tōγ < R2/(2γ2λ̄). A lower bound for
the adaptation gains results when2λ̄γ < 1 and 2λγ̄ < 1,
for which the relation in (24) reduces toγ > γ2/(2R2λ).
Notice that the upper bound for the adaptation gain has
R in the numerator, while the lower bound hasR in the
denominator. Therefore,R can be selected sufficiently large
to ensure thatγ < γ̄.

VI. SIMULATIONS

We consider three inverted pendulums mounted on carts,
as depicted in Figure 1. The carts are connected by springs

1u 2u

2q

k

c

Im,

1x 2x

MM

1q

Im,

M

3q

Im,

k

c

3u

3x

Fig. 1. Three inverted pendulums on three carts

and dampers. In each subsystem, we assume that the posi-
tion of the cart(xi) and the angle of the pendulum(θi) are
measured and the cart is regulated by input forces(ui). The
equations of motion for the system are described as follows:

(M + m)ẍ1 + mlpθ̈1 cos θ1 − mlpθ̇
2
1 sin θ1 = u1 + s1

mlp cos θ1ẍ1 + (I + ml2p)θ̈1 − mglp sin θ1 = 0

(M + m)ẍ2 + mlpθ̈2 cos θ2 − mlpθ̇
2
2 sin θ2 = u2 − s1 + s2

mlp cos θ2ẍ2 + (I + ml2p)θ̈2 − mglp sin θ2 = 0

(M + m)ẍ3 + mlpθ̈3 cos θ3 − mlpθ̇
2
3 sin θ3 = u3 − s2

mlp cos θ3ẍ3 + (I + ml2p)θ̈3 − mglp sin θ3 = 0

whereu1, u2, u3 are input forces to the carts(N),M is the
mass of the cart (kg),m is the mass of the rod(kg),lp
is the distance from the pivot on the cart to the center
of gravity of the rod(half of full length)(m),I(= 1

3ml2p)
is the moment of inertia of the rod with respect to its
center of mass (kg·m2), g is the gravitational acceleration
(kg·m/sec2), k is the spring constant (N/m),c is the damping
constant (N·sec/m),s1 = k(x2 − x1) + c(ẋ2 − ẋ1), s2 =
k(x3 − x2) + c(ẋ3 − ẋ2) are interconnection forces due
to springs and dampers. The parameter values are:M =
0.9,m = 0.18, lp = 0.305, g = 9.8, k = 1, c = 2 × 10−5.
Our control objective is to regulate the displacements of
the cartsxi while balancing the inverted rods on the carts
without velocity measurements. The open loop subsystem
in (4) is derived after the dynamics are first linearized with
respect to equilibrium positionxi = θi = 0, and then put
into a normal form by the transformation:xli1

= xi, xli2
=

ẋi, zli1
= θi, zli2

= ẋi

lp
+ θ̇i. The linear subsystems, for

i = 1, 2, 3, is described by the following system matrices:

Ai =

[

0 1
0 0

]

, Bi =

[

0 0
− m̂

M̂
0

]

, bi =

[

0
1
M̂

]

Ci =

[

0 − 1
lp

0 0

]

, Di =

[

0 1
g
lp

0

]

, ci =

[

1
0

]

(31)

The constantsM̂ = 0.815, m̂ = 0.21 represent parameter
estimates forM,m respectively. Further, in this linear
model, the inverted rod is treated as a lumped mass located
on its center of mass, i.e.,I = 0. Putting each subsys-
tem into normal form leads to the following modelling
errors and interconnection effects defined in (1):fi =

M̂
M+m(1−3/4 cos θ2

i
)
(ui + mlpθ̇

2
i sin θi −

3
4mg sin θi cos θi +

τi)+ m̂gθi −ui, gi =

[

− cos θi

lp
xi2 −

1
3 θ̇i + 1

lp
xi2

g
lp

sin θi −
1
lp

xi2 θ̇i sin θi −
g
lp

θi

]

whereτ1 = s1, τ2 = −s1 + s2, τ3 = −s2. The τi terms
imply that the spring and the damper are not considered in
the open loop model. The termui means that the modelling
error also depends on the control signal as in Remark 5.1.
Note that the interconnections between the two carts and
the modelling errors contain velocity terms which are not
measured. This implies that the existing adaptive output
feedback approaches in the decentralized control literature,
such as the ones developed in [8], [21] and many others,
although establishing global results, cannot be applied.
Moreover, regulation ofxi using ui to the carts renders
the control problemnonminimum phase -linearization of
each subsystem about vertical-up position leads to unstable
zero

√

g
L . These issues make the control problem even

more challenging. The dynamic compensator in (8) for each
subsystem is designed as a LQG controller based on the
open loop model in (31), in which two measured outputs
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xi, θi are available for control design. The error observer in
(15) is designed to have the smallest eigenvalue ofÃi equal
approximately five times the smallest eigenvalue ofĀi.
The basis functions have the following structure for three
subsystems:φik

(Y l) = e−‖Y l−Y ick
‖2/2σik , σik

= 1, i =
1, 2, 3, k = 1, . . . , Ni, whereN1 = N3 = 7, N2 = 9. The
centersY ick

are randomly selected over a grid of possible
values for the vectorY l. All of the NN inputs are nor-
malized using an estimate for their maximum values. Since
the dynamics of the first and third carts are coupled only
through the dynamics of the middle cart, and the modelling
error contains a control signal, we choose the NN input vec-
tors as:Y T

l1 = [u1 xl11
xl12

zl11
zl12

xl21
xl22

0 0 0 0 0 0]T ,
Y T

l2 = [u2 xl11
xl12

0 0 xl21
xl22

zl21
zl22

xl31
xl32

0 0]T ,
Y T

l3 = [u3 0 0 0 0 xl21
xl22

0 0 xl31
xl32

zl31
zl32

]T , where
Y li represents the NN input vector for the ith subsystem.
Adaptation gains are chosen as:Fi = 0.5I, ki = 0.05.
Figure 2 compares output tracking performances when the
reference commandyci

, i = 1, 2, 3 is a square wave signal
of magnitude 0.15m and 0.05 Hz. The pendulum angles
are shown in Figure 3. The initial conditions are:x1(0) =
ẋ1(0) = 0, θ1(0) = −30o, θ̇1(0) = −10o/sec, x2(0) =
ẋ2(0) = 0, θ2(0) = 30o, θ̇2(0) = 10o/sec, x3(0) =
ẋ3(0) = 0, θ3(0) = 20o, θ̇2(0) = −10o/sec. Without
adaptive control compensation, the system goes unstable.
When each control is augmented with an adaptive term, the
three carts are in synchronous motion with the pendulums
balanced, implying implicit cooperation for output tracking.

VII. C ONCLUSIONS

A methodology is presented for adaptive output feedback
decentralized control design under the assumption that the
reference trajectories are known to all subsystems. A lin-
early parameterized neural network is used to model the in-
terconnection effects on-line. Boundedness of error signals
is shown using Lyapunov’s direct method. The methodology
is applicable to non-minimum phase subsystems.
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