
Decentralized Disturbance Attenuation for Large-Scale Nonlinear
Systems with Delayed State Interconnections

Yi Guo

Abstract— The problem of decentralized disturbance atten-
uation is considered for a new class of large-scale nonlinear
systems with delayed state interconnections. This class of large-
scale time-delay systems broadens most existing classes of
large-scale time-delay systems in that the uncertain intercon-
nections are bounded by general nonlinear functions instead
of linear or polynomial-type functions. It is shown that by
decentralized memoryless state feedback control, the closed-
loop system achieves internal global asymptotical stability in
the sense of Lyapunov and external stability in the sense
of L2 gain. Nonlinear Lyapunov-Krasovskii functionals are
constructed which renders the linear and polynomial-type
growth conditions on the interconnections as special cases.

Keywords: Large-scale systems, decentralized control, time-
delay, nonlinear control, backstepping.

I. INTRODUCTION

Decentralized control has received renewed interests dur-
ing the past years, motivated by its importance in applica-
tions to large complex engineering systems. Advances in
robust control and stability analysis for centralized systems
have been extended to large-scale interconnected systems.
The existence of time delay is frequently a source of insta-
bility, see [1], [2]. Among many contributions on time-delay
systems (see [3] for a review), robust H∞ control for linear
state-delayed systems were studied in [4] using the linear
matrix inequality method, and in [5] using backstepping
for systems with delay in control. Decentralized control
for large-scale time-delay interconnected systems has also
received considerable attention. In [6], [7], decentralized
stabilization for linear time-invariant large-scale systems
with time-delay was discussed. Large-scale linear time-
varying systems with delayed state perturbations in the
interconnections were considered in [8]. The authors in [9],
[10] consider the decentralized stabilization for nonlinear
large-scale systems including state delays in the intercon-
nections, where the interconnections are assumed to be
bounded by linear functions of states and/or delayed states
with matching conditions. It seems that for uncertain large-
scale time-delay interconnected systems, decentralized con-
trol results for strong interconnections beyond linear bounds
have not been reported yet in the control literatures.

In this paper, we extend our earlier result in [11] to
large-scale nonlinear systems with delayed state intercon-
nections. The class of large-scale time-delay systems under
consideration significantly broadens most existing classes
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of large-scale time-delay systems. Combining the recent
development in decentralized nonlinear control, we consider
a class of nonlinear systems in their decentralized diagonal
form. We design decentralized memoryless state feedback
controllers to solve the so-called “Problem of decentral-
ized H∞ almost disturbance decoupling”. On the basis
of dissipativity/Lyapunov-stability theory and Lyapunov-
Krasovskii functional, we prove the asymptotical stability
for the interconnected systems in the absence of distur-
bance; and in the case of disturbance attenuation, any
given L2 gain from the disturbance to the system output
is obtained. The notation used in this paper is standard and
is the same as in [11].

II. PROBLEM FORMULATION

We consider in this paper a class of large-scale
time-delay nonlinear systems S which are composed
of single-input single-output (SISO) subsystems Si(1 ≤
i ≤ N) as described in (1), where zi(t) =
[zi1(t), . . . , ziκ(t)] ∈ �κ, z(t) = [zT

1 (t), . . . , zT
N (t)]T ,

ξi(t) = [ξi1(t), . . . , ξi,n−κ(t)] ∈ �n−κ, and ξ(t) =
[ξT

1 (t), . . . , ξT
N (t)]T , z(t) and ξ(t) are the state vectors,

ui(t) ∈ � is the control input, ωi(t) ∈ �mi is the
disturbance input, yi(t) ∈ � is the to-be-controlled output;
the unknown functions γil, pil, (0 ≤ l ≤ n − κ) are
locally Lipschitz in states and piecewise continuous in t,
and γil(t, 0, 0, . . . , 0) = 0; hij(i, j = 1, 2, . . . , N) are the
time delays; Ai, Bi are constant matrices and

Ai =


0
... I(κ−1)×(κ−1)

0
0 0 . . . 0

 , Bi =
[

0(κ−1)×1

1

]
. (2)

The initial condition for zi-subsystem with time delays
is given by

zi(t0) = χi(t0), t0 ∈ [−hi, 0] (3)

where χi(t0) is a uniformly continuous function on [−hi, 0],
and hi is defined as: hi = max{hij , j = 1, 2, . . . , N}.

Remark 1: The class of systems (1) has been motivated
by several early papers in the nonlinear control literature
and also exists in large power systems (see [12], [13]).
Necessary and sufficient geometric conditions are given for
the non-delay time-invariant decentralized strict feedback
form in [14]. For systems having nonlinear zero dynamics,
similar results in the argument of integral-input-to-state
stability using output feedback were obtained in [15]. It



żi(t) = Aizi(t) +Bi [ξi1(t) + γi0(t, z1(t− hi1), . . . , zN (t− hiN )) + pi0(t, z1(t− hi1), . . . , zN (t− hiN ))ωi(t)]

ξ̇i1(t) = ξi2(t) + γi1(t, z1(t− hi1), . . . , zN (t− hiN ), ξi1(t)) + pi1(t, z1(t− hi1), . . . , zN (t− hiN ), ξi1(t))ωi(t)

ξ̇i2(t) = ξi3(t)+γi2(t, z1(t−hi1), . . . , zN (t−hiN ), ξi1(t), ξi2(t))+pi2(t, z1(t−hi1), . . . , zN (t−hiN ), ξi1(t), ξi2(t))ωi(t)

... (1)

ξ̇i,n−κ(t) = ui(t) + γi,n−κ(t, z1(t− hi1), . . . , zN (t− hiN ), ξi(t)) + pi,n−κ(t, z1(t− hi1), . . . , zN (t− hiN ), ξi(t))ωi(t)

yi(t) = zi1(t)

is worth noting that the structure of the interconnections
are broadened in (1) by: 1) removing the strict matching
conditions for all local and interconnecting uncertainties as
in [16], [9], [10]; 2) removing the linear or polynomial-type
growth conditions on the interconnections imposed in [14],
[9], [10].

The following assumptions will be used to restrict our
systems (1):

Assumption 1: There exist known smooth functions
ailj(·), bilj(·), ϕilj(·),Φilj(·), with ϕilj(0) = 0, Φilj(0) =
0, such that for each 0 ≤ l ≤ n − κ the uncertain
interconnections satisfy

|γil(t, z1(t− hi1), . . . , zN (t− hiN ), ξi1(t), . . . , ξil(t))
−γil(t, 0, . . . , 0, ξi1(t), . . . , ξil(t))|

≤
N∑

j=1

ailj(ξi1(t), . . . , ξil(t))ϕilj(|zj(t− hij)|), (4)

|pil(t, z1(t− hi1), . . . , zN (t− hiN ), ξi1(t), . . . , ξil(t))
−pil(t, 0, . . . , 0, ξi1(t), . . . , ξil(t))|

≤
N∑

j=1

bilj(ξi1(t), . . . , ξil(t))Φilj(|zj(t− hij)|). (5)

For the sake of simplicity, we let ai0j = bi0j = 1.
Assumption 2: There exist known smooth functions

ψil(·),Ψil(·), with ψil(0) = 0, such that for each 0 ≤ l ≤
n− κ,

|γil(t, 0, . . . , 0, ξi1(t), . . . , ξil(t))|
≤ ψil(|(ξi1(t), . . . , ξil(t))|), (6)

|pil(t, 0, . . . , 0, ξi1(t), . . . , ξil(t))|
≤ Ψil(|(ξi1(t), . . . , ξil(t))|). (7)

Since γi0(t, 0) = 0, we can take ψi0 ≡ 0; and Ψi0 is a
nonnegative constant.

We define our control problem as the following:
Problem of Decentralized H∞ Almost Disturbance

Decoupling: Find decentralized smooth memoryless state
feedback controllers ui(t) = ui(zi(t), ξi(t)) such that, for
any given positive constant µ, the closed-loop intercon-
nected system satisfies the following dissipation inequality∫ T

0

|y(t)|2dt ≤ µ

∫ T

0

|ω(t)|2dt+ ν(χ(t0), ξ(0)),

∀ω ∈ L2(0, T ), ∀T ≥ 0 (8)

where ν is a positive semidefinite function, (χ(t0), ξ(0))
denotes the initial conditions and

χ(t0) = [χT
1 (t0), χT

2 (t0), . . . , χT
N (t0)]T

with χi(t0), i = 1, 2, . . . , N are given in (3). Further-
more, the origin is globally uniformly asymptotically stable
(GUAS) if ω = 0.

III. DECENTRALIZED STATE FEEDBACK CONTROL

DESIGN

In the following, for the ease of presentation, we denote
the argument (z1(t − hi1), . . . , zN (t − hiN )) as zh. When
omitting the arguments, zi and ξi denote zi(t) and ξi(t)
respectively.

Step 0: We start by considering the zi(t)-subsystem with
ξi1(t) as the virtual control input (for i = 1, . . . , N ). Choose
the following Lyapunov-Krasovskii functional candidate:

V0(z) =
N∑

i=1

Wi (Fi(zi)) +
N∑

j=1

∫ t

t−hij

φij(|zj(s)|)ds

(9)

where Wi(·), φij(·) are both smooth K∞ function to be
chosen later, Fi(zi) = zT

i Pizi, and Pi is a positive definite
symmetric matrix solving the algebric Riccati equation:

AT
i Pi + PiAi − 2εiPiBiB

T
i Pi +Qi = 0 (10)

where εi is a positive constant and Qi is a positive definite
symmetric matrix.

Differentiating (9) along the solution of zi-subsystem,
and applying the interconnection bounds (4), (5) and (7),
we have

V̇0 =
N∑

i=1

∂Wi

∂Fi

2zT
i Pi · {Aizi +Bi [ξi1

+(γi0(t, zh) − γi0(t, 0))
+(pi0(t, zh) − pi0(t, 0))ωi + pi0(t, 0)ωi

]}
+

N∑
j=1

[φij(|zj(t)|) − φij(|zj(t− hij)|)]
 (11)



Repeatedly using the inequality 2ab ≤ a2+b2, (a, b ∈ �)
for the third to fifth terms in the above equation, we obtain

∂Wi

∂Fi
2zT

i PiBi(γi0(t, zh) − γi0(t, 0))

≤
∣∣∣∣∂Wi

∂Fi

∣∣∣∣2 · |zT
i PiBi|2

N∑
j=1

δj0

+
N∑

j=1

δ−1
j0 ϕ

2
i0j(|zj(t− hij)|) , (12)

∂Wi

∂Fi
2zT

i PiBi(pi0(t, zh) − pi0(t, 0))ωi

≤ 1
4τ2

i

∣∣∣∣∂Wi

∂Fi

∣∣∣∣4 · |zT
i PiBi|4

N∑
j=1

�j0

+
N∑

j=1

�−1
j0 Φi0j(|zj(t− hij)|)4 +Nτi|ωi|2, (13)

∂Wi

∂Fi
2zT

i PiBipi0(t, 0)ωi

≤ 1
d2i

∣∣∣∣∂Wi

∂Fi

∣∣∣∣2 |zT
i PiBi|2Ψ2

i0 + d2i|ωi|2 (14)

where d2i, δj0, �i0, τi are any positive constants.
Choose our virtual control ξi1 = ξ∗i1(zi) as

ξ∗i1(zi) = −
εiB

T
i Pizi +

1
2
∂Wi

∂Fi
(zT

i PiBi)

 N∑
j=1

δj0


+

1
8τ2

i

(
∂Wi

∂Fi

)3

(zT
i PiBi)3

 N∑
j=1

�j0


+

1
2d2i

∂Wi

∂Fi
(zT

i PiBi) Ψ2
i0

 (15)

Notice ξ∗i1(0) = 0.
When substituting (15) into (14), we get:

V̇0 ≤
N∑

i=1

∂Wi

∂Fi

(−zT
i Qizi

)
+

N∑
j=1

[φij(|zj |)]

+
N∑

j=1

[
δ−1
i0 ϕ

2
i0j(|zj(t− hij)|)

+�−1
j0 Φ4

i0j(|zj(t− hij)|) − φij(|zj(t− hij)|)
]

+ (Nτi + d2i)|ωi|2


�
=

N∑
i=1

−αi0(|zi|) +
N∑

j=1

βi0j(|zj |)

+
N∑

j=1

βh
i0j(|zj(t− hij)|) + γi0|ωi|2

 (16)

The choice of Wi, φij are left till the final stage of the
design problem. Note that the inequality (16) is only valid
when ξi1 = ξ∗i1; otherwise, additional terms must be
included. From here, we start our recursive backstepping
procedure.

Step 1: Augment the zi-subsystem with the ξi1-subsystem
(for i = 1, . . . , N ), and choose a storage function as

V1(z, ξ1) = V0(z) +
N∑

i=1

(ξi1 − ξ∗i1)
2 (17)

Denote

−ξ̇∗i1 = −∂ξ
∗
i1

∂zi
(Aizi +Biξi1)

−∂ξ
∗
i1

∂zi
Bi[γi0(t, z) + pi0(t, z)ωi]

�
= ϑi1(zi, ξi1) + σi0(zi)[γi0(t, zh) + pi0(t, zh)ωi]

Differentiating V1(z, ξ1) along the solutions of the
(zi, ξi1)-subsystem yields (18), where we denote ξ̃i1 =
ξi1 − ξ∗i1(zi) and σi1 = 1.

Since ξ∗i1(zi) is smooth and vanishes at the origin, there
exists a smooth function ζ̃i(zi) such that

|ξi1| ≤ ζ̃i(zi) ·
(
|ξ̃i1| + |zi|

)
. (19)

Applying the inequalities in Assumptions 1 and 2, and
after some calculations, we have:

2ξ̃i1γi1(t, 0, ξi1)

≤ 2|ξ̃i1|2ψ̃i1(zi, ξi1) +
1
d1i

|ξ̃i1|2ψ̃2
i1(zi, ξi1) + d1i|zi|2,

(20)

2ξ̃i1
1∑

k=0

σik pik(t, 0, ξi1)ωi

≤ 1
d2i

|ξ̃i1|2
[

1∑
k=0

σikΨik(|ξik|)
]2

+ d2i|ωi|2 , (21)

2ξ̃i1
1∑

k=0

σik [γik(t, zh, ξi1) − γik(t, 0, ξi1)]

≤ |ξ̃i1|2
1∑

k=0

|σik|2
N∑

j=1

δjka
2
ikj(ξi1)

+
1∑

k=0

N∑
j=1

δ−1
jk ϕ

2
ikj(|zj(t− hij)|) , (22)

2ξ̃i1
1∑

k=0

σik [pik(t, zh, ξi1) − pik(t, 0, ξi1)]ωi

≤ 1
4τ2

i

|ξ̃i1|4
1∑

k=0

|σik|4
N∑

j=1

�jkb
4
ikj(ξi1)

+
1∑

k=0

N∑
j=1

�−1
jk Φ4

ikj(|zj(t− hij)|) + 2Nτi|ωi|2, (23)



V̇1 ≤
N∑

i=1

−αi0(|zi|) +
N∑

j=1

βi0j(|zj |) +
N∑

j=1

βh
i0j(|zj(t− hij)|) + γi0|ωi|2 + 2ξ̃i1

{
ξi2 +

(
∂Wi

∂Fi
zT
i PiBi + ϑi1

)

+
1∑

k=0

σik [γik(t, zh, ξi1)−γik(t, 0, ξi1)]+
1∑

k=0

σik [pik(t, zh, ξi1)−pik(t, 0, ξi1)]ωi +γi1(t, 0, ξi1) +
1∑

k=0

σikpik(t, 0, ξi1)ωi

}
(18)

where ci1 is a positive constant, d1i, di2, δik, �ik, ci1 are
positive constants, and ψ̃i1 is a smooth nonnegative func-
tion.

Choose the virtual controller ξi2 = ξ∗i2 as in (24).
Substitute (20)-(23) into (18). After simplifications, we

obtain

V̇1 ≤
N∑

i=1

−αi1(|zi|) − Ci11ξ̃
2
i1 +

N∑
j=1

βi0j(|zj |)

+
N∑

j=1

βh
i1j(|zj(t− hij)|) + γi1|ωi|2

 (25)

where αi1(|zi|), βh
i1j(|zj(t−hij)|), γi1, Ci11 are appropriate

functions and constants.
Note that the inequality (25) is only valid when ξi2 = ξ∗i2,

as in the standard backstepping design process.
From Step 2, we can establish the following Claim. The

proof of the Claim is not difficult using the same approach
as in [11], and is omitted here due to space limitations.
Claim: Given any index 2 ≤ ι ≤ n − κ, for the system
Siι, i = 1, . . . , N

żi = Aizi +Bi

[
ξi1 + γi0(t, zh) + pi0(t, zh)ωi

]
ξ̇i1 = ξi2 + γi1(t, zh, ξi1) + pi1(t, zh, ξi1)ωi

...

ξ̇iι = ξi,ι+1 + γiι(t, zh, ξi1, . . . , ξiι)

+piι(t, zh, ξi1, . . . , ξiι)ωi

(26)
there exist ι+ 1 smooth functions

ξ∗ik = ξ∗ik(zi, ξi1, . . . , ξi,k−1),

ξ∗ik(0, 0, . . . , 0) = 0, 1 ≤ k ≤ ι+ 1

such that in new coordinates

z̃i = zi, ξ̃ik = ξik − ξ∗ik(zi, ξi1, . . . , ξi,k−1),

1 ≤ k ≤ ι

the storage function

Vι = V0 +
N∑

i=1

ι∑
k=1

ξ̃2ik (27)

has time derivative, with ξi,ι+1 = ξ∗i,ι+1, satisfying the
dissipation inequality

V̇ι ≤
N∑

i=1

−αiι(|zi|) −
ι∑

k=1

Ciιk ξ̃
2
ik +

N∑
j=1

[βi0j(|zj |)

+βh
iιj(|zj(t− hij)|)

]
+ γiι|ωi|2

}
(28)

where

αiι(|zi|) = αi,ι−1(|zi|) − d1i|zi|2 , (29)

βh
iιj(|zj(t− hij)|) = βi,ι−1,j(|zj(t− hij)|)

+
ι∑

k=0

{
δ−1
jk ϕ

2
ikj(|zj(t− hij)|)

+�−1
jk Φ4

ikj(|zj(t− hij)|)
}
, (30)

γiι = γi,ι−1 + (ι+ 1)Nτi + d2i , (31)

Ciιk =
{
Ci,ι−1,k − d3i for k = 1, . . . , ι− 1

cik for k = ι
.(32)

IV. MAIN RESULT

The following theorem states our main result:
Theorem 1: Under Assumptions 1 and 2, the Problem

of Decentralized H∞ Almost Disturbance Decoupling is
solvable for system (1).

Proof: As shown by the Claim, at the last step, a
decentralized memoryless state feedback control

ui(t) = ξ∗i,n−κ+1(zi(t), ξi(t)) (33)

is iteratively built. For the closed-loop system S, for V =
Vn−κ, we have

V̇ ≤
N∑

i=1

{
−αi(|zi|) −

n−κ∑
l=1

Cilξ̃
2
il

+
N∑

j=1

[
βi0j(|zj |) + βh

ij(|zj(t− hij)|)
]
+ γi|ωi|2


(34)

To eliminate the term βh
ij(|zj(t − hij)|), we choose the

design function φij in (9) as:

φij(|s|) =
n−κ∑
l=0

{
(n− κ− l + 1)δ−1

jl ϕ
2
ilj(|s|)

+(n− κ− l + 1)�−1
jl Φ4

ilj(|s|)
}

(35)



ξ∗i2 = −1
2

{
ci1ξ̃i1 +

∂Wi

∂Fi
2zT

i PiBi + 2ϑi1 + 2ξ̃i1ψ̃i1(zi, ξi1) +
1
d1i

ξ̃i1ψ̃
2
i1(zi, ξi1)

+
1
d2i

ξ̃i1

[
1∑

k=0

σikΨi1(|ξik|)
]2

+ ξ̃i1

1∑
k=0

σ2
ik

N∑
j=1

δjka
2
ikj(ξi1) +

1
4τ2

i

ξ̃3i1

1∑
k=0

σ4
ik

N∑
j=1

�jkb
4
ikj(ξi1)

 (24)

Since ϕilj(·),Φilj(·) are smooth functions and vanish
at origin, there exists smooth nondecreasing functions
ϕ̃jli(|zi|), Φ̃jli(|zi|) such that

ϕjli(|zi|) ≤ |zi|ϕ̃jli(|zi|) , (36)

Φjli(|zi|) ≤ |zi|Φ̃jli(|zi|) . (37)

Now we can choose our design function Wi in (15).
Notice that

|zi| ≤
√
Fi(zi) + 1
λmin(Pi)

�
= ηi(Fi) (38)

where the functions ηi are smooth positive functions.
Construct the derivative of Wi as

∂Wi

∂Fi
= ki +

1
λmin(Qi)

N∑
j=1

n−κ∑
l=0

(n− κ− l + 1)δ−1
il

· [ϕ̃jli ◦ ηi(Fi)]
2 +

Fi

λmin(Qi) · λmin(Pi)

·
N∑

j=1

n−κ∑
l=0

(n− κ− l + 1)�−1
il

[
Φ̃jli ◦ ηi(Fi)

]4
(39)

where k,
is are positive constants. It can be checked that by

the above construction and Wi(0) = 0, Wi is a smooth K∞
function.

In view of the above, we can check that
N∑

i=1

∂Wi

∂Fi
zT
i Qizi ≥

N∑
i=1

kiλmin(Qi)|zi|2

+
N∑

i=1

N∑
j=1

βi0j(|zj |) (40)

Therefore, we obtain

N∑
i=1

−αi(|zi|) +
N∑

j=1

βi0j(|zj |)
 ≤

N∑
i=1

(−Di|zi|2
)
(41)

where Di = kiλmin(Qi) − (n − κ)d1i. Choose the design
parameter d1i as

d1i <
kiλmin(Qi)
n− κ

(42)

so that Di > 0.
Choose the design parameter d3i as

d3i < min
1≤l≤n−κ−1

{
cil

n− κ− l

}
(43)

so that Cil > 0.
Therefore we obtain:

V̇ ≤
N∑

i=1

{
−Di|zi|2 −

n−κ∑
l=1

Cilξ̃
2
il + γi|ωi|2

}
, (44)

and it follows

V̇ ≤
N∑

i=1

{−Di|zi1|2 + γi|ωi|2
}
. (45)

Taking the integral along time t, the L2 gain from ω to
y of the closed-loop system is obtained as∫ T

0

|y(t)|2dt ≤ µ

∫ T

0

|w(t)|2dt+ ν(z(t0), ξ(0)) (46)

where
µ = min

1≤i≤N
{γi}/ max

1≤i≤N
{Di},

ν(z(t0), ξ(0)) =

{
N∑

i=1

zi(0)TPizi(0)

+
N∑

j=1

∫ 0

−hij

φij(|zj(s)|)ds+
n−κ∑
l=1

ξ̃2il(0)

 / max
1≤i≤N

{Di}.

(47)
In the absence of the disturbance, i.e. when ωi = 0, from

(44), we have

V̇ ≤
N∑

i=1

{
−Di|zi|2 −

n−κ∑
l=1

Cilξ̃
2
il

}
�
= −Va(z, ξ) ≤ 0

(48)
From (9) and (27), V (z, ξ) is a continuously differen-

tiable, positive definite and radially unbounded function
and its derivative is negative definite. From the Lyapunov
stability theorems for equations with bounded delays ([1,
page 103]), we obtain the GUAS of the closed-loop system
when ωi = 0.

Remark 2: As an extension to the result in [11], the
nett energy dissipation for the interconnected system S
is obtained by constructing decentralized memoryless state
feedback control laws to dominate other subsystem inter-
actions by the subsystem stability margins. This is done
by choosing the Lyapunov/storage function as the sum of
subsystem Lyapunov-Krasovskii functionals. The novelty
of handling nonlinear bounds of interconnections is the
careful selection of the nonlinear storage function Wi, as
adopted in [11], [16]. The results render the linear ([6], [8],
[7]) and polynomial-type ([14]) growth conditions on the
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Fig. 1. Output of the closed-loop system

interconnections as special cases where Wi is chosen to be
linear and higher-order polynomial respectively.

V. AN ILLUSTRATIVE EXAMPLE

We consider the following interconnected time-delay
system composed of two subsystems:

S1 :


ż11(t) = z12(t)
ż12(t) = ξ11(t) + sin(2t)z21(t− 2.0)
·e(z21(t−2.0)) + (1 + z11(t− 1.0)z21(t))ω1(t)

ξ̇11(t) = u1(t) + ξ11(t)z21(t)ω1(t)
y1(t) = z11(t)

S2 :


ż21(t) = ξ21(t) + z11(t)z12(t− 1.0) sin(z21(t))

+ω2(t)
ξ̇21(t) = u2(t) + ω2(t)
y2(t) = z21(t)

The initial conditions for the two subsystems are as
follows:

[z11(t), z12(t), ξ11(t)]T = [2.0, 0.5, 1.0]T , t ∈ [−2.0, 0];
[z21(t), ξ21(t)]T = [−3.0, 1.7]T , t ∈ [−2.0, 0].

It can be checked that system S is in form (1) and satisfies
Assumptions 1 and 2. We choose the design parameters
ε1 = 1, ε2 = 1, Q1 = 2I,Q2 = 2 to get

P1 =
[

2.8284 1.0000
1.0000 1.4142

]
, P2 = 1.

Other parameters are chosen as follows, for i, l = 1, 2,

ki = 8, δil = �il = 0.1, τi = 1, ci = 0.1, d2i = 2.

Construct the control law following that described in
Steps 0 and 1 in Section 3. The system output is shown
in Figure 1 which demonstrate a satisfactory disturbance
attenuation performance of our closed-loop system. The
disturbances applied are ω1 = ω2 = sin(t).

VI. CONCLUSIONS

We considered a class of large-scale nonlinear systems
with delayed-state interconnections in this paper. The prob-
lem of decentralized H∞ almost disturbance decoupling

has been solved for such systems. Decentralized memo-
ryless state feedback control laws are constructed itera-
tively applying backstepping. The results broaden the large-
scale delay systems in previous literatures to nonlinear
systems with uncertain interconnections to be time-varying
and bounded by general nonlinear functions. Nonlinear
Lyapunov-Krasovskii functionals are constructed to prove
the internal global asymptotical stability in the sense of
Lyapunov and external stability in the sense of L2 gain.
Simulations of a two-subsystem example show a satisfac-
tory performance. The results are expected to be applied
to practical decentralized control problems of large-scale
nonlinear systems with delayed state perturbations in the
interconnections.
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