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ABSTRACT
In this paper, the application of disturbance

observers to suppress chaotic behavior in a class of single-
input single-output (SISO) nonlinear systems is studied. A
nonlinear system in this class has the property that its out-
put is equal to the summation of the output of a stable SISO
linear time-invariant system and a bounded disturbance.
The bounded disturbance captures the effects of all nonlin-
earities in the system. A disturbance observer is designed
to estimate the bounded disturbance (equivalently, the
effects of nonlinearities in the system) and cancel it subse-
quently. The disturbance observer is thus able to make the
nonlinear system behave linearly and, for instance, be free
of chaotic behavior. An example is given to show that
chaotic behavior due to a nonlinearity in a Duffing-type
system can be effectively suppressed by a disturbance
observer.

1. INTRODUCTION
Perhaps all natural and physical systems are gov-

erned by nonlinear laws of nature. The dynamics of most
of such systems can be mathematically represented by non-
linear differential or integral equations, which can be stud-
ied by analytical or numerical techniques. These tech-
niques, in many instances, can successfully explain certain
phenomena that are exclusive to nonlinear systems. One
such a phenomenon is chaotic behavior of systems.
Chaotic behavior can be considered as both desirable and
unwanted response of systems. For instance, chaotic sys-
tems can be used in secure communication systems to pro-
vide chaotic masking and modulation of transmitted mes-
sages; see, e.g., references [1-5]. In most engineering sys-
tems, however, chaotic behavior is unwanted and should be
suppressed. In the past decades, researchers have devised
techniques to control chaotic behavior in nonlinear systems;
see, e.g., references [1-3, 6-17] and the references therein.

In this paper, it is shown that an effective means of
suppressing the effects of nonlinearities, and consequently
possible chaotic behavior in a class of nonlinear systems is
the application of disturbance observers. Disturbance
observers are useful tools that were originally proposed in
references [18, 19] as means of estimating disturbances to
linear systems and canceling them subsequently. Later, the
theory of disturbance observers was advanced in reference

therein. It appears that disturbance observers are mostly
designed for linear systems. There are, however, some
works where the application of disturbance observers to
nonlinear systems is reported; see references [28-34]. The
present paper illustrates that disturbance observers can
make members of a certain class of nonlinear systems
behave linearly.

The organization of the paper is as follows. In Sec-
tion 2, the class of nonlinear systems to be studied is pre-
sented. A nonlinear system in this class has the property
that its output is equal to the summation of the output of a
stable single-input single-output (SISO) linear time-invari-
ant system and a bounded disturbance. The bounded distur-
bance captures the effects of all nonlinearities in the sys-
tem. In Section 3, a disturbance observer is designed to
estimate the effects of nonlinearities in a system in the class
under consideration (equivalently, the bounded disturbance)
and cancel them subsequently. Having the nonlinear effects
canceled, the system behaves linearly. In Section 4, an
example is given to show that chaotic behavior due to a
nonlinearity in a Duffing-type system can be effectively
suppressed by a disturbance observer.

2. NONLINEAR SYSTEMS
In this section, a class of SISO nonlinear systems is

introduced. A member of this class, depicted in Figure 1, is
represented by

N :







ẋ(t) = A x(t) + f (x(t), t) + b u(t) , x(0) = : x0 ,

y(t) = c x(t) ,

(1)

for all t ≥ 0 ,  where the state vector x(t) ∈ IRn , the initial
state vector x0 ∈ IRn , the input u(t) ∈ IR , the output
y(t) ∈ IR , the coefficient matrix A ∈ IRn x n , the input

(influence) vector b ∈ IRn , the output (readout) vector
c = [ c11 c12 . . . c1n ] ∈ IR1 x n , and the nonlinear func-

tion f : IRn x IR+ → IRn is given by

f (x(t), t) = [ f1(x(t), t) f2(x(t), t) . . . fn(x(t), t) ]T . (2)

It is assumed that:

A1) The matrix A is Hurwitz.

A2) The pairs (A, b) and (A, c) are, respectively,
completely controllable and completely observable.



A3) The nonlinear function f , though not exactly
known, is norm bounded. More precisely,

|| f ||∞ : =
1 ≤ i ≤ n
max

x ∈ IRn
sup

t ≥ 0
sup fi(x, t) ≤ k f < ∞ , (3)

where k f > 0  is a constant real number.

Suppose that the system N exhibits a behavior
exclusive to nonlinear systems, such as chaotic behavior.
Moreover, suppose that this behavior is deemed undesir-
able. Thus, the goal would be to suppress the nonlinear
behavior. This goal can be achieved by a disturbance
observer as it will be shown later.

Before presenting the design of disturbance observes,
some mathematical results are established.

From equations (1), it follows that the output of the
system N can be written as

y(s) = H(s) u(s) + c (sIn − A)−1 x0 + d(s) ,  (4)

where y(s) , u(s) , and d(s) are, respectively, the Laplace
transforms of y(. ) , u(. ) , and the time function

d(t) = c

t

0
∫ exp(A(t − τ )) f (x(τ ), τ ) dτ ∈ IR , (5)

for all t ≥ 0 , In denotes the n x n identity matrix, and

H(s) = c(sIn − A)−1 b . (6)

The time function t → d(t) has a useful property estab-
lished as follows. Since by assumption (A1), the matrix A
is Hurwitz, there exist constant real numbers M > 0  and
σ > 0 , such that

|| exp(At)||∞ ≤ M exp(− σ t) ,  (7)

for all t ≥ 0 (see, e.g., reference [35, p. 195]). Using
inequalities (3) and (7) in equation (5), it is concluded that
t → d(t) is a bounded function of time. More precisely,

||d ||∞ : =
t ≥ 0
sup d(t) ≤

n

j = 1
Σ c1 j M k f /σ < ∞ . (8)

From equations (4)-(6) and inequalities (7) and (8), it
is concluded that the output of the nonlinear system N is
equal to the summation of the output of the stable SISO lin-
ear time-invariant system

H :







ẋ(t) = A x(t) + b u(t) , x(0) = : x0 = x0 ,

yL(t) = c x(t) ,

(9)

and the bounded function of time d(t) for all t ≥ 0 ,
where the state vector x(t) ∈ IRn and the output
yL(t) ∈ IR . By assumption (A2), the representation of the

system H is minimal. The transfer function correspond-
ing to H is irreducible and is that given in equation (6).

A conclusion to be drawn is that the nonlinear system
N can be equivalently represented by the linear system in

Figure 2. This system is denoted by H+d and has a useful
property to be exploited in the next section.

3. LINEAR BEHAVIOR BY DISTURBANCE
OBSERVERS

Representing the nonlinear system N by the equiv-
alent linear system H+d in Figure 2 is of great advantage,
because the effects of nonlinearities in N appear as the
bounded disturbance d(. ) in H+d . Therefore, if one
seeks to suppress the effects of nonlinearities in N , then
one should design a control law that suppresses the effect of
d(. ) in H+d . The latter can be achieved by a disturbance

observer that estimates d(. ) and cancels it subsequently.
Therefore, the goal of this section is to design a disturbance
observer to make N behave linearly and, for instance, be
free of chaotic behavior.

A disturbance observer added to the system H+d is
shown in Figure 3. In this figure, Hn(s) represents the
nominal transfer function (mathematical model) corre-
sponding to H(s) in equation (6). In order to implement a
disturbance observer, the filter Q(s) is added to the system
to make Q(s) H−1

n (s) a realizable (at least a proper) trans-
fer function, because H−1

n (s) is often unrealizable. A suc-
cessful design of a disturbance observer crucially depends
on the design of Q(s) .  Due to its important role, the
design of Q(s) has been extensively studied; see, e.g., ref-
erences [19, 20, 24, 25]. It turns out that Q(s) should be a
low-pass filter of unity DC-gain. A typical form of Q(s)
is

Q(s) =

m − ρ

k = 1
Σ ak (τ s)k + 1

m

k = 1
Σ ak (τ s)k + 1

, (10)

where ρ is at least equal to the relative degree of Hn(s)
and ak > 0  and τ > 0  are constant real numbers.

From Figure 3, it is concluded that in the absence of
the measurement noise (w ≡ 0)

d
∼
(s) = [ H(s) − Hn(s) ] v(s) + c (sIn − A)−1 x0 + d(s) ,

(11a)

yDOB(s) = [ 1 + H(s) (1 − Q(s))−1 Q(s) H−1
n (s) ]−1

>< H(s) (1 − Q(s))−1 u(s)

+ [ 1 + H(s) (1 − Q(s))−1 Q(s) H−1
n (s) ]−1

>< [ c (sIn − A)−1 x0 + d(s) ] ,  (11b)

where the output of the system is denoted by yDOB to indi-
cate a disturbance observer is implemented. Several com-
ments regarding equations (11) are made:

(i) The filter Q(s) should be designed such that the
transfer function



[ 1 + H(s) (1 − Q(s))−1 Q(s) H−1
n (s) ]−1 , (12)

is stable.

(ii) By assumption (A1), the matrix A is Hurwitz.
Thus, when equation (11a) is considered in the time
domain, the effect of the initial state vector x0 in this
equation decays to zero. Moreover, H(s) ≈ Hn(s) .  Thus,
from equation (11a), it is concluded that d

∼
(. ) is an esti-

mate of the bounded disturbance d(. ) .

(iii) The filter Q(s) is a low pass filter of unity DC-
gain. Thus, from equation (11b), it follows that

yDOB(s) ≈ Hn(s) u(s) .  (13)

That is, the effect of the bounded disturbance d(. ) (as well
as the decaying effect of the initial state vector x0) in the
system in Figure 3 is suppressed, and the output of the sys-
tem is approximately equal to that of the linear nominal
system.

An implementation of the disturbance observer on
the system N is shown in Figure 4. The system in this fig-
ure is denoted by NDOB to indicate a disturbance observer
is added to N . The equivalence of NDOB and the system
in Figure 3 asserts that the effects of nonlinearities in
NDOB can be suppressed. That is, NDOB would behave

linearly.

Next, the performance of NDOB is examined.

4. EXAMPLE
In this section, an example is presented to illustrate

the efficacy of disturbance observers in suppressing the
effects of nonlinearities and possible chaotic behavior in a
nonlinear system in the class of systems considered in this
paper.

Consider a Duffing-type system represented by

ξ̈ (t) + 0. 1 ξ̇ (t) + ξ (t) − tan h(2ξ (t)) = 0. 5 cos t ,

ξ (0) = 0 , ξ̇ (0) = 0 ,  (14)

for all t ≥ 0 ,  where ξ (t) ∈ IR . Considering the first two
terms in the expansion tan h(2ξ ) = 2ξ − 8ξ 3/3 + . . . ,  the
system (14) should behave like a Duffing system (see, e.g.,
references [36-38]). This fact is shown in the following.

By letting x1(t) = ξ (t) and x2(t) = ξ̇ (t) for all
t ≥ 0 , the system (14) can be written as





ẋ1(t)

ẋ2(t)





=




0

− 1

1

− 0. 1









x1(t)

x2(t)





+




0

tan h(2x1(t))





+




0

1





0. 5 cos t ,




x1(0)

x2(0)





=




0

0





, (15a)

y(t) = [ 1  0 ]




x1(t)

x2(t)





. (15b)

It is straightforward to verify that assumptions (A1)-(A3)
hold for the system (15). The output the system (15) is
depicted in Figure 5 and is denoted by y . It is evident that
the system (15) exhibits a chaotic behavior typical of Duff-
ing systems. The output of the linear system H , that is,
the system (15) in the absence of the nonlinearity
tan h(2x1(. )) , is depicted in Figure 5 and is denoted by
yL . The steady-state of yL is the periodic function of

time t → 5 sin t , which is obtained by applying results
from the theory of linear oscillations.

The difference between y and yL is due to the non-
linearity in the system (15). It is now shown that the effect
of this nonlinearity, and consequently chaotic behavior, can
be effectively suppressed by a disturbance observer. It is
remarked that the control of chaotic behavior in Duffing
systems is of great interest; see, e.g., references [39-43].

The first step to the design of a disturbance observer
is to obtain the transfer function H(s) corresponding to
the system H . This transfer function is readily determined
from equation (6) and is given by

H(s) =
1

s2 + 0. 1 s + 1
. (16)

Having H(s) ,  a  disturbance observer is implemented on
the system (15). The resulting system is NDOB in Figure
4, where Hn(s) = H(s) , the system N is that in equations
(15), and

Q(s) =
700

s2 + 9s + 700
. (17)

The output of NDOB in the absence of the measure-
ment noise (w ≡ 0) is shown in Figure 5 and is denoted by
yDOB . It is evident that yDOB and yL almost overlap,

except that the former has a slightly larger amplitude. That
is, the disturbance observer has successfully suppressed the
effect of the nonlinearity in the system (15).

The effect of the measurement noise w(. ) on the
performance of the system NDOB is studied next. Let
w(. ) be a band-limited white noise. The output of the sys-

tem in the presence of w(. ) is depicted in Figure 6 and is
denoted by yDOB . This output is compared to that of the
system H , denoted by yL . It is evident that yDOB and
yL almost overlap, except that the former has a slightly

larger amplitude. That is, the disturbance observer is able
to suppress the effect of the nonlinearity in the system (15)
ev en in the presence of the measurement noise.

5. CONCLUSIONS
In this paper, the application of disturbance observers

to suppress chaotic behavior in a class of single-input sin-
gle-output nonlinear systems was studied. A nonlinear sys-
tem in this class has the property that the effects of all non-
linearities in the system can be captured in a bounded dis-
turbance. Knowing this fact, it was shown how a distur-
bance observer can be designed to estimate the bounded
disturbance (equivalently, the effects of nonlinearities in the



system) and cancel it subsequently. The disturbance
observer is thus able to make the nonlinear system behave
linearly and, for instance, be free of chaotic behavior. The
results of the paper were corroborated by using a distur-
bance observer to suppress chaotic behavior due to a non-
linearity in a Duffing-type system.

Three remarks are made regarding disturbance
observers applied to the class of nonlinear systems: (i) dis-
turbance observers are linear systems, but yet they are able
to suppress the effects of nonlinearities in the systems; (ii)
disturbance observers can suppress the effects of nonlinear-
ities that are not exactly known; (iii) the application of dis-
turbance observers is not exclusive to chaotic systems. If
nonlinearities in a system cause an undesirable behavior,
say limit cycle behavior, then disturbance observers can be
used to suppress such a behavior. For instance, flutter in
aircraft wings can be considered as limit cycle behavior.
Thus, disturbance observers can be used to suppress flutter;
work in this area is in progress and will be reported else-
where.
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