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Abstract. We identify a class of feedforward nonlinear
systems that are linearizable by a diffeomorphic coor-
dinate change. This coordinate change has to satisfy
a set of partial differential equations (commonly seen
in feedback linearization) that are given in the paper.
For the class of linearizable feedforward systems we
present a control algorithm in the style of the Sepulchre-
Jankovic-Kokotovic/Mazenc-Praly integrator forward-
ing procedure where the need to solve a series of non-
linear ODE’s is eliminated and one has to analytically
compute only a series of integrals. The results of this
paper are further extended in a companion ACC’04
paper [Krstic, “Integrator forwarding control laws for
some classes of linearizable feedforward systems”].

1 Introduction

History and Summary of the Literature. In the
world of recursive control designs for nonlinear sys-
tems, two basic classes of systems are the most easily
recognizable—the systems with (strict-)feedbackstruc-
ture and the systems with (strict-)feedforward struc-
ture. The strict-feedback systems, which occupied the
attention of the nonlinear control community in the first
half of the 1990’s, are controlled usingbackstepping,
a method that employs aggressive controls1 necessary
to suppress finite escape instabilities inherent (in open
loop) to strict-feedback systems. In contrast, the strict-
feedforward systems, which were studied intensively in
the mid- and late-1990’s, can be only marginally unsta-
ble in open loop,2 and permit (and in many cases call
for) cautious controllers.

The theoretical foundation of how to exercise ‘caution’
in the design for feedforward systems was laid by Teel
in his 1992 dissertation [34], where he introduced the
technique of nested saturations whose parameters are
carefully selected to essentially achieve robustness of
linear controllers to nonlinearities (of superlinear and
other types). Soon after this first design, Teel [36] de-
veloped a series of results that, among other things, in-
terpreted and generalized [34] in the light of nonlinear
small gain techniques that he developed in [36].

1as measured by the growth of their nonlinearities
2with solutions growing only polynomially in time

The next major spurt of progress came with the paper of
Mazenc and Praly [20], which introduced a Lyapunov
approach for stabilization of feedforward systems. This
approach, initially conceived in March 1993, has its
roots that go further back to Praly’s designs for adap-
tive nonlinear control [24] and output feedback stabi-
lization [25] where he was designing forwarding like
coordinate changes involving a stable manifold that can
be written as a graph of a function. A related idea was
used by Sontag and Sussmann [31] for stabilization of
linear systems with saturated controls. Recently, Praly,
Ortega, and Kaliora [28] relaxed the conditions under
which such manifolds can be found.

Jankovic, Sepulchre, and Kokotovic [9] developed a
different Lyapunov solution to the problem of forward-
ing (and stabilization of a broad class of cascade sys-
tems), which, rather than a coordinate change or domi-
nation of (certain) ‘cross terms’ (as Mazenc and Praly),
employs an exact cross term in the Lyapunov function.
In [30] they presented an algorithmic, inverse optimal
design for a class of feedforward systems and provided
a detailed insight into the structure of the target system
in the forwarding recursion.

Further developments on feedforward systems have
gone in several directions. The nested saturation ideas
have been expanded upon by Arcak, Teel, and Koko-
tovic [2], Marconi and Isidori [15], and Xudong [39].
Implicit (or explicit) in the first three papers are ro-
bustness results with respect to certain classes of un-
modeled dynamics. The Lyapunov approach has been
developed further by Sepulchre, Jankovic, and Koko-
tovic [30, 29], Mazenc, Sepulchre, and Jankovic [23],
and Mazenc and Praly [22]. In [37] Teel designed
L2 stabilizing controllers for feedforward systems (L∞
disturbance attenuation, while impossible in general,
remains a problem of interest for subclasses of feed-
forward systems). Trajectory tracking, while hard to
achieve for arbitrary trajectories, has been solved un-
der reasonable conditions by Mazenc and Praly [21]
and Mazenc and Bowong [18]. Extensions to nonlinear
integrator chains have been proposed by Mazenc [16]
and Tsinias and Tzamtzi [38]. Even a generalization
to feedforward systems with exponentially unstable lin-
earizations has been reported by Grognard, Sepulchre,



and Bastin [6]. Discrete time feedforward systems have
also been studied, in a recent paper by Mazenc and
Nijmeijer [19]. Linear low-gain semi-global stabiliza-
tion of feedforward systems was proposed by Grog-
nard, Bastin, Sepulchre, and Praly [7]. Differential
geometric characterization of feedforward systems has
eluded researchers until recent major progress was re-
ported by Tall and Respondek [33]. Starting with Teel’s
original interest in the ball-and-beam problem [34] and
Mazenc and Praly’s design for the pendulum-cart prob-
lem [20], the research on forwarding has continuously
been driven by applications. The following papers on
forwarding are fully (or almost fully) dedicated to ap-
plications: Spong and Praly [32] (pole-cart), Barbu,
Sepulchre, Lin, and Kokotovic [3] (ball-and-beam),
Albouy and Praly [1] (spherical inverted pendulum),
Praly, Ortega, and Kaliora [28] (inverted pendulum with
disk inertia), and Mazenc and Bowong [17] (pendulum-
cart), and Praly [27] (satellite orbit transfer with weak
but continuous thrust). For tutorial coverage of for-
warding, the reader is referred to the book of Sepul-
chre, Jankovic, and Kokotovic [29] and to Praly’s tuto-
rial [27] (available from his web page). Some coverage
of forwarding is also available in the surveys by Coron,
Praly, and Teel [5] and Kokotovic and Arcak [11].

Contribution and Organization of the Present Pa-
per. The idea of exact forwarding coordinate trans-
formations as a Lyapunov avenue towards performance
improvement relative to the ‘cautious’ saturation-based
approaches first appeared in [20, Section IV]. How-
ever, it is not until the result of [30], which consid-
ers a special subclass of the systems studied in [20, 9],
that this idea crystalized into a conceptually transpar-
ent, elegant recursive procedure, which is easy to com-
pare with backstepping. Still, the crucial element that
remained lacking in the procedure was computability.
In principle, one has to solve (analytically) a series of
nonlinear systems and compute (again analytically) a
series of integrals. The present paper is dedicated to
providing closed-form solutions to these nonlinear sys-
tems and integrals. We start in Section 2 by review-
ing the Sepulchre-Jankovic-Kokotovic [30] design pro-
cedure. While it has been long believed that feedfor-
ward systems are “generically not feedback lineariz-
able,” in Section 3 we show that many of them are and
provide a parametrization of linearizable feedforward
systems. For those systems, the SJK procedure pro-
vides the needed change of coordinates, which is given
explicitly in Section 4. The coordinate change does not
require the solution of a series of nonlinear systems (as
in the general SJK procedure) but does require analyti-
cal computation of a series of integrals. To comply with
length restrictions, proofs are omitted.

For two important subclasses of linearizable feedfor-
ward systems, those integrals are calculated explicitly

in a companion paper [12], providing explicit formu-
lae for control laws, explicit closed-loop solutions, and
closed-loop bounds on control effort [12] expressed in
terms of initial conditions.

2 The Sepulchre-Jankovic-Kokotovic Algorithm

Consider the class ofstrict-feedforward systems

ẋi = xi+1 +ψi(xi+1)+φi(xi+1)u, i = 1,2, . . . ,n
(1)

where x j = [x j , x j+1, . . . ,xn]T , xn+1 = u, φn = 1,
∂ψi(0)

∂x j
= φi(0) = 0, ψn−1(xn)≡ 0, and

ψi(xi+1,0, . . . ,0) ≡ 0 (2)

for i = 1,2, . . . ,n−1, j = i +1, . . . ,n.

Relative to the class of systems in [30] we make a trade
of generality for conceptual clarity by requiring that the
drift term be of the formxi+1 +ψi(xi+1) with (2).

The control law for this class of systems is designed as
follows. Let

βn+1 = αn+1 = 0. (3)

For i = n,n−1, . . . ,2,1

zi = xi −βi+1 (4)

wi(xi+1) = φi −
n−1

∑
j=i+1

∂βi+1

∂x j
φ j −

∂βi+1

∂xn
(5)

αi(xi) = αi+1−wizi (6)

βi(xi) = −
Z ∞

0

[
ξ[i]

i (τ,xi)+ψi−1

(
ξ[i]

i
(τ,xi)

)
+φi−1

(
ξ[i]

i
(τ,xi)

)
αi

(
ξ[i]

i
(τ,xi)

)]
dτ , (7)

where the notation in the integrand of (7) refers to the
solutions of the (sub)system(s)

d
dτ

ξ[i]
j = ξ[i]

j+1 +ψ j

(
ξ[i]

j+1

)
+φ j

(
ξ[i]

j+1

)
αi

(
ξ[i]

i

)
(8)

for j = i, i +1, . . . ,n, at timeτ, starting from the initial
conditionxi . The control law is

u = α1 . (9)

It is important to first understand the meaning of the in-
tegral in (7). Clearly, the solutionξ

i
(τ,xi) is impossible

to obtain analytically in general. Dealing with this issue
is the main subject of this paper. Note that the last of the
βi ’s that need to be computed isβ2 (β1 is not defined).

The stability analysis of the closed-loop system is
straightforward. It is easy to verify that ˙zi =



wi

(
u+∑n

j=i+1w jzj

)
. Noting from (9) and (6) that

u =−∑n
i=1wizi , and taking the Lyapunov functionV =

1
2 ∑n

i=1z2
i , one obtains

V̇ =−1
2

n

∑
i=1

w2
i z2

i −
1
2

(
n

∑
i=1

ziwi

)2

. (10)

Theorem 1 [30] The feedback system (1), (9) is glob-
ally asymptotically stable at the origin.

The Lyapunov-function equipped SJK algorithm not
only shows good performance in simulations, this per-
formance can be quantified. This is already implicit in
the inverse optimality result in [30] foru∗ = 2α1, but is
actually true even foru = α1.

Theorem 2 The control effort for the feedback system
(1), (9) satisfies the following bound:

‖u‖L2 ≤
√

n

∑
j=1

(
x j(0)−β j+1(x j+1(0))

)2
. (11)

3 Linearizability of Feedforward Systems

The main interest in this paper is making the computa-
tion of the integral in (7) tractable. Towards that end, let
us start by noting that the system (8), which needs to be
solved analytically, can be written in thez-coordinates3

as

d
dτ

ζ[i]
j =−w2

j ζ
[i]
j −

j−1

∑
l=1

w jwl ζ
[i]
l , j = i, i +1, . . . ,n,

(12)
which is obtained witḣζ[i]

j = w jαi . Suppose now that
(somehow, miraculously,...) all of thewl ’s were equal
to 1 (for all x, rather than justwl (0) = 1). We would
have a lower triangular linear system

d
dτ

ζ[i]
j =−ζ[i]

j −
j−1

∑
l=1

ζ[i]
l , j = i, i +1, . . . ,n, (13)

which is easily solvable in closed form. Then, the only
difficulty remaining would be the integration with re-
spect toτ of the integral (7) (using an appropriate coor-
dinate change fromζ[i]

i
to ξ[i]

i
). Calculating the integral

3We point out that, analogous to (8), we useζ, a Greek version
of z, to denote the solution of thezi subsystem, under the controlαi ,
starting from initial conditionzi . It should be also self understood that

w j stands forw j

(
ξ[i]

j+1

)
, whereξ[i]

k = ζ[i]
k + βk+1

(
ξ[i]

k+1

)
, and so on

(i.e., expressingw j as a function ofζ[i]
j+1

).

is by no means trivial, but it is a much easier task than
solving the nonlinear ODE (8)andcalculating the inte-
gral.

Before we start exploring the conditions under which
one would get

wi(xi+1) = φi −
n−1

∑
j=i+1

∂βi+1

∂x j
φ j −

∂βi+1

∂xn
= 1, (14)

let us note another consequence of this. In this case,
the coordinate change, before applying the feedback,
would yield

ż=



0 1 1 · · · 1

0 0 1
...

... 0 0
...

...
...

...
... 1

0 · · · · · · 0 0


z+


1
1
...
1

u. (15)

We refer to this as the Teel [35] canonical form. This
is a completely controllable linear system. Hence the
systems that satisfy (14) are linearizable (into this form,
and, ultimately, into the Brunovsky form).

Thus, the exploration of analytical computability of
control laws for strict-feedforward systems that we un-
dertake in this paper amounts to a study of linearizabil-
ity. Clearly, merely checking the coordinate-free con-
ditions for linearizability [8] won’t get us any closer to
actually finding the control laws. Such a test would lead
to conditions on theφi ’s in the form of partial differen-
tial equations that they have to satisfy (these conditions
would arise from the involutivity test).

Up until now we have used the word “linearizable”
loosely. Next we make this notion precise.

Definition 1 If there exists a diffeomorphism

yi = xi −θi+1(xi+1) , i = 1, . . . ,n−1 (16)
yn = xn , (17)

where

θi(0) =
∂θi(0)

∂x j
= 0, i = 2, . . . ,n, j = i, . . . ,n,

(18)
transforming the strict-feedforward system (1) into a
system of the form

ẏi = yi+1 , i = 1,2, . . . ,n−1 (19)
ẏn = u (20)

the system (1) is said to bediffeomorphically equivalent
to a chain of integrators (DECI).



We point out that the term DECI does not reflect that
(16), (17) restrict the class of diffeomorphisims to a “tri-
angular” form. Next, we give sufficient conditions for
characterizing DECI strict-feedforward systems.

Theorem 3 All strict-feedforward systems (1) with
ψi(xi+1),φi(xi+1) that can be written as

φn−1(xn) = θ
′
n(xn) (21)

ψn−1(xn) = 0 (22)

φi(xi+1) =
n−1

∑
j=i+1

∂θi+1(xi+1)
∂x j

φ j(x j+1)

+
∂θi+1(xi+1)

∂xn
(23)

ψi(xi+1) =
n−1

∑
j=i+1

∂θi+1(xi+1)
∂x j

(
x j+1 +ψ j(x j+1)

)
−θi+2(xi+2) (24)

i = n−2, . . . ,1

using some C1 scalar-valued functionsθi(xi) satisfying
(18), are DECI.

Theorem 3 is neither a geometric test of linearizability,
nor a design tool. It is just aparametrizationof a sub-
class of strict-feedforward systems that are DECI.

For instance, all third-order strict-feedforward systems
of the form

ẋ1 = x2 +
∂θ2(x2,x3)

x2
x3−θ3(x3)

+
(

∂θ2(x2,x3)
x2

θ′3(x3)+
∂θ2(x2,x3)

x3

)
u(25)

ẋ2 = x3 +θ′3(x3)u (26)
ẋ3 = u (27)

are linearizable, where any two locally quadratic
C1 functions θ2(x2,x3) and θ3(x3) are the “parame-
ters.” Take, for instance,θ2(x2,x3) ≡ 0 andθ3(x3) =
cosh(x3)− 1, which is locally quadratic. We get that
the strict-feedforward system

ẋ1 = x2 +cosh(x3)−1 (28)
ẋ2 = x3 +sinh(x3)u (29)
ẋ3 = u (30)

is linearizable using the coordinate change

y1 = x1 , y2 = x2 +cosh(x3)−1, y3 = x3 . (31)

Unfortunately, there is no easy systematic way to ob-
tain this coordinate change (we know what it is because

we started withθ3(x3) = cosh(x3)−1 and constructed
the system). The only systematic way to arrive at it is
the SJK procedure. In the next section we show that
the SJK procedure greatly simplifies for DECI strict-
feedroward systems, and, in particular, directly leads
to (31) for (28)–(30) without having to solve nonlinear
ODEs of the form (8).

4 A Control Algorithm for All Linearizable
Feedforward Systems

For linearizable strict-feedforward systems we present
the following design algorithm. Let

βn+1 = αn+1 = 0. (32)

For i = n,n−1, . . . ,2,1

αi(xi) = −
n

∑
j=i

(
x j −β j+1(x j+1)

)
(33)

ξ[i]
n (τ,xi) = e−τ

n−i

∑
k=0

(−τ)k

k!

(
xn−k−βn−k+1(xn−k+1)

)
(34)

ξ[i]
j (τ,xi) = e−τ

j−i

∑
k=0

(−τ)k

k!

(
x j−k−β j−k+1(x j−k+1)

)
+β j+1

(
ξ[i]

j+1(τ,xi)
)

,

j = n−1, . . . , i +1, i (35)

βi(xi) = −
Z ∞

0

[
ξ[i]

i (τ,xi)+ψi−1

(
ξ[i]

i
(τ,xi)

)
(36)

+φi−1

(
ξ[i]

i
(τ,xi)

)
αi

(
ξ[i]

i
(τ,xi)

)]
dτ . (37)

The control law is
u = α1 . (38)

We stress that, due to linearizability, the ODEs (8)
are solved in closed form, and the only calculation
remaining is the integrals (37), which can be ob-
tained with symbolic software (coded in Mathemat-
ica or Maple/Matlab). This calculation is particularly
straightforward (and can be done, in principle, by hand)
when the nonlinearitiesψi(·),φi(·) are polynomial. In
that case, the following identity is useful:Z ∞

0
τpe−qτdτ =

p!
qp+1 , ∀p,q∈ N . (39)

Theorem 4 If the strict-feedforward plant (1) is DECI,
then the feedback system (1), (38) is globally asymptot-
ically stable at the origin.

Proof. One can verify that in the coordinates

zi = xi −βi+1(xi+1) (40)



the control system becomes (15), and under the feed-
back control (38), the resulting system is

ż=



−1 0 0 · · · 0

−1 −1 0
...

... −1 −1
...

...
...

...
... 0

−1 · · · · · · −1 −1


z. (41)

The rest of the proof is as in Theorem 1. �

As we indicated in Section 3, checking the geomet-
ric conditions for linearizability is easy, whereas actu-
ally constructing the linearizing coordinates is not. The
algorithm (33)–(37) constructs the coordinate change
into the (non-Brunovsky) Teel canonical form (15).
The next theorem gives the coordinate change into the
Brunovsky/chain-of-integrators form.

Theorem 5 If the strict-feedforward plant (1) is DECI,
it has a relative degree n with respect to the output

y1 =
n

∑
j=1

(
n−1
j −1

)
(−1) j−1(x j −β j+1(x j+1)

)
. (42)

Furthermore, the coordinate change (33)–(37), (40),
and

yi =
n

∑
j=i

(
n− i
j − i

)
(−1) j−izj , i = 1,2, . . . ,n (43)

converts system (1) into the chain of integrators (19)–
(20).

Inverse optimality, proved for the general case in [30],
becomes particularly meaningful in the linearizable
case.

Theorem 6 The control law

u∗ = 2α1(x) =−2
n

∑
j=1

(
x j −β j+1(x j+1)

)
, (44)

whereα1(x) is defined via (33)–(37), minimizes the cost
functional

J =
Z ∞

0

(
l(x(t))+u(t)2)dt (45)

along the solutions of (1), where

l(x) =
n

∑
j=1

(
x j −β j+1(x j+1)

)2
(46)

+

(
n

∑
j=1

(
x j −β j+1(x j+1)

))2

(47)

is a positive definite, radially unbounded function. Fur-
thermore, the control law (44) remains globally asymp-
totically stabilizing at the origin in the presence of input
unmodeled dynamics of the form

a(I +P ) , (48)

where a≥ 1
2 is a constant,Pu is the output of any

strictly passive nonlinear system4 with u as its input,
and I denotes the identity operator.

Proof. It follows from Theorem 2.8, Theorem 2.17, and
Corollary 2.18 in [13]. �

The main result of this section was a control algorithm
that eliminates the requirement to solve the ODEs (8)
and reduces the problem to calculating only the inte-
grals (37). In the companion paper [12] we present
algorithms that eliminate even the need to calculate
the integrals (37) for two subclasses of DECI strict-
feedforward systems.
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