
 
 

 

  
Abstract— A multiestimation scheme is presented to 

identify a partially unknown plant. Several reduced-
order linear nominal models of the plant are considered 
to compose the multiestimation scheme. Each reduced-
order nominal model is built as a parallel connection of 
first-order filters and contains some, but not all, natural 
modes, which are supposed known, of the true plant to 
be identified. The assumption that the elementary filters 
are of first-order is identical to assume that all poles are 
real and distinct, which is feasible in many practical 
situations. The assumption that the modes are known 
may work in an acceptable way when nominal values 
and a small range of uncertainty are known. A 
supervisor with a switching law selects the most 
appropriate estimation model of the plant at certain 
time instants according to a index related with the 
identification error of each estimator. In this way, a 
system identification scheme which incorporates model 
order reduction issues can be designed. 

I. INTRODUCTION 
YNAMICS of almost all real systems is non-linear and 
then their behaviour change abruptly according to the 

operation conditions, [1]. These operation conditions 
depend on the magnitude and type of the input signal 
applied to the system, particularly, on the frequency rank at 
which the input signal belongs to. As a consequence, in 
many industrial applications it is not reasonable to assume 
that the same plant model remains adequate as time 
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progresses. Models in which the environment and related 
parameters undergo abrupt change at certain time instants 
are found to be relevant in a much wider class of practical 
situations, [2]. In this sense, it is crucial to elucidate either 
the number of dominant modes to be considered for 
identification purposes or the method to be used in the 
identification process as for instance in [3] where the 
accuracies of three different identification methods are 
compared for the same example. Two of them are the so-
called empirical transfer function estimate (EFTE) and the 
experimental transfer function estimate which is a raw 
EFTE requiring smoothing. Another estimated is based on 
the implementation of a long Fourier transform and then 
using the spectral Daniell window. The obtained 
identification performance was found very different from 
one method to another one depending on the input 
frequency. This proves the importance of the selection of 
the identification method and, as a result, it is also foreseen 
the high dependence of the identification performance on 
the model and its order and relative degree. One of the 
fields where it is more relevant the order of the model used 
with respect to the dominant frequencies of the signal input 
applied is the design of controlled systems such as robots 
and space structures with structural flexibility, [4]. In such a 
type of problems the selection and placement of sensors and 
actuators is an important step. That selection and placement 
must be optimized according, for instance, to the key points 
in the flexible structure shape to measure the relevant 
modes. The modes in the response are very important, with 
respect to the associated gain, to non zero initial conditions 
but they all are not equally important at any input frequency 
and under zero initial conditions. 

In the present paper, the use of simplified models based 
on the input dominant frequencies is proposed. A method to 
integrate the on-line model order choice with the reference 
input spectrum is presented. The mechanism is to 
implement a switching rule between several estimators of 
different orders. The overall process is stated as an 
automatic task that does not require any on-line designer 
operation. The time intervals between consecutive switches 
are subject to a minimum residence time that guarantees 
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acceptable transient behaviour. The main idea behind the 
proposed scheme is that the model order reduction 
techniques may be addressed as linked with multiestimation 
techniques while taking into account the transient response 
generated from each particular reference input used. 

Therefore, the objective of this paper is to identify a 
reduced-order estimated model for a real plant under 
different operation points. The procedure to achieve this 
objective consists of a multiestimation scheme. Several 
estimation algorithms run in parallel and each of them 
estimates the parameters of each proposed nominal plant 
model. Each of these nominal models represents one of the 
possible operation points of the real plant. They can be of 
different orders and all of them are under-parameterized. In 
this way, a reduced-order estimated model can be obtained. 
The different nominal models are built as a parallel 
connection of first-order filters with poles belonging to the 
set of modes of the plant, which are supposed known. The 
numerators of those filters are unknown and then they have 
to be estimated by means of some estimation algorithms, 
each of them for each of the nominal models considered. In 
summary, all of the nominal models considered contain 
some of the modes, but potentially not all, of the real plant. 
A supervisor with a suitable switching law selects the 
estimation model that optimizes an appropriate cost 
function which depends on the error signal between the real 
output signal and the issued output from each estimated 
model. This process runs automatically as an identification 
scheme which issues an estimated and reduced-order model 
of a real plant under different signal inputs. This can be 
relevant for designing reduced-order controllers for certain 
mechanical systems as in [4]. There exists a considerable 
number of papers where the multiestimation technique have 
already used satisfactorily. For instance, in the area of 
adaptive control of, partially or fully, unknown linear 
plants, as in [5-8], the use of the multiestimation technique 
has been used to improve the output performance with 
respect to that obtained with a single estimation algorithm. 

II. PROBLEM STATEMENT 
The behaviour of a non-linear plant at any operation point 

can be described by means of the following time-varying 
difference equation, 
 

( ) 1 ( ) 1( ) ( )i i
k kA q y B q u− −=                     (1) 

 

where ku  and ky  are the input and output sequences, 

respectively, 1q−  is the one-step delay operator and i 
denotes a generic operating point of the plant, 

{ }1,  2,  ,  pi n∈ …  with pn  being the number of possible 

operation conditions of the plant. The orders of the time-
invariant polynomials ( )iA  and ( )iB  depend on the 
operating point of the plant. The possible transition from 

one operation point to another one can be produced by a 
change in the input signal applied to the plant. 

It is assumed that the plant modes are simple, stable and 
known. Then, the roots of the polynomials ( )iA , and then its 
coefficients, associated with each operation point are 
known. However, the parameters of the polynomials ( )iB  
will be unknown and then an estimation algorithm will be 
need to identify them. Moreover, each operation point can 
be nominally modeled as the parallel connection of strictly 
proper first-order filters, with poles belonging to the set of 
the modes of the plant, of unknown numerator factors. Each 
transfer function associated with each operation point does 
not include all the modes of the plant in order to obtain a 
reduced-order nominal model of the plant. In summary, the 
behaviour of the plant at the i-th operation point would be 
described by means of the transfer function, 
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where ( )i
ja  and ( )i

jα  for { }1,  2,  ,  ( )j n i∈ …  and 

{ }1,  2,  ,  pi n∈ …  are supposed known and unknown, 

respectively, with ( )n i  denoting the order of the nominal 
model at each plant operating condition and subject to the 
condition that 1 ( ) mn i n≤ <  where mn  is the number of 
plant modes. The following figure shows a scheme 
representation of the plant at the i-th operation point. 
 

 
Fig. 1.  Plant nominal model at the i-th operation point. 

 

The values of ( )i
jα  are considered constant or smoothly 

time-varying functions into a small rank in order to be 
available the use of estimation methods to identify time 
invariant plants. 

The main idea is to eliminate some of the modes of the 
plant to obtain a reduced-order model of the plant in the 
current operation point. The motivation is the fact that a full 
description of all modes of the plant can not be necessary 
for some input frequencies. i.e, the gain of some of the plant 
modes can be very small with respect to the gain of other 
ones for certain input frequencies and then such modes 
could be non considered in (2) under inputs belonging to 



 
 

 

this frequency rank. Then, pn  nominal models of the plant 
will be considered, one for each possible plant operating 
condition. Each of them does not contain at least one of the 
plant modes. Then, a multiestimation scheme identify on-
line the numerators of the terms of the pn  possible eqns. (2) 
and a supervisor chooses the model which better approach 
to the real plant. The obtained model will be which 
suppresses the mode or modes with minor gain for the 
applied input. The result is the automatically issue of a 
reduced-order estimated model of the plant for the 
operation condition associated with the applied input. 

III. MULTIESTIMATION SCHEME 
The motivation for the use of a multiestimation technique 

is to have several models which represent the plant 
behaviour. Each estimator works separately estimating the 
parameters of its associated model. The main idea is to 
know which of the estimated models is the best approach to 
the behaviour of the plant at each instant. Obviously, the 
model which better represent the plant behaviour will not be 
always the same since it will depend on the operation 
condition of the plant. i.e., if the plant is submitted to 
changes in its operation conditions, which can be produced 
by abrupt changes in the applied input, then the model 
which better approaches the plant behaviour will be 
different at different time intervals. This means that a 
different model can represent the plant behaviour at 
different time intervals. Then, it is necessary to make a 
comparison among all estimated models issued by the 
multiestimation scheme at certain time instants to know 
which is the most approximated to the plant in the current 
instant. For that, a index which measures the approximation 
of each estimated model to the plant is defined. Each of 
these indexes compares the true plant output ky  with the 
estimated one by the corresponding estimated model 

( ) ( )iH z  in the following way: 
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where ( )i
ky  is the output of the estimated model ( ) ( )iH z  and 

1λ <  is a forgetting factor introduced for giving more 
importance to the last samples. Obviously, the estimated 
model with the smallest value for the index ( )i

kJ  is the best 
approach to the true plant behaviour. 

The algorithms for the adaptation of the unknown 
parameters ( )i

jα  of the different estimation models can be of 
diverse types. All of them are based in the following 
scheme, 
 

 
 

Fig. 2.  Estimation scheme for a single algorithm. 
 

Note that one scheme of this kind is proposed for each of 
the possible { }1,  2,  ,  pi n∈ …  estimated models of the 

plant. All of them compose the parallel multiestimation 
scheme. 
 

A. Estimation Algorithms 
Two different types of estimation algorithms are 

proposed. 
 
1)  Algorithm 1 

A least-squares type estimation algorithm is considered 
for adapting the parameters ( )ˆ i

jα  for all 

{ }1,  2,  ,  ( )j n i∈ … . This algorithm is defined by, 
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is the identification error corresponding to the i-th 
estimation model at the k sample time instant. 
 
2) Algorithm 2 

This algorithm is of least-squares type too, but the 
parameters estimation is uncoupled with respect to the 
previous algorithm. This is obtained if the covariance 
matrix ( )i

kP  is diagonal. The estimates are given by, 
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for all { }1,  2,  ,  ( )j n i∈ …  with ( )
,0 0i

jp >  and where the 

scalars ( )
,
i

j kp  are the elements of the diagonal of ( )i
kP  and 
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corresponding to the i-th estimation model at the k sample 
time instant. 

IV. SIMULATIONS 
A discrete stable non-linear plant with three known modes 
1 0.5a = , 2 0.00001a =  and 3 0.9a = −  is considered. 

Therefore, the behaviour of the plant at a certain operating 
point can be described by, 
 

31 2( )
0.5 0.00001 0.9

H z
z z z

αα α
= + +

− − +
          (6) 

 

where 1α , 2α  and 3α  are unknown and they have to be 
estimated. 0.1 T s=  is the sampling time used. At least one 
of the terms of (6) is suppressed in order to obtain a 
reduced-order estimated model of the plant for each 
possible operating point. In this way, six possible reduced-
order nominal models can be obtained. However, a subset 
composed by only the three estimation models of second 
order is considered in the multiestimation scheme. Each one 
misses information about one of the simple plant modes. 
Namely, the three estimation models of two poles are: 

(4) (4)
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α α
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− −
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α α
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(6) (6)
(6) 2 3ˆ ˆ
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k kH z
z z

α α
= +

− +
               (7) 

 

The gains of each simple fraction of each reduced-order 
model of (7) are estimated by using any of the estimation 
algorithms 1 or 2 of Section III. Then, a supervisor selects 
the estimated model with the best approach to the plant 
behaviour from the multiestimation scheme at each certain 
time interval. Under other point of view, the simple fraction 
with the smallest influence in the plant behaviour is detected 
and suppressed by means of this strategy. 

All the estimation algorithms are initialized with 
( )
0ˆ 0.8i

jα = , with { }4,  5, 6i ∈  and { }1,  2, 3j ∈ , and 
( ) 16

0 210iP I= , where 2I  denotes the second order identity 
matrix. The estimates are updated at intervals of five 
sampling instants and the selection of the best estimated 
model by the supervisor is performed after each ten 
samples. The forgetting factor which appears in the quality 
index ( )i

kJ , for each estimated model, is 0.95 . 
 

A. Simulation 1 
The input applied to the plant is the sum of two sinusoidal 

signals of frequencies 0.0628 rad s  and 0.0698 rad s , 

namely, sin 0.1 sin
50 4 45k

k ku π π π   = + +   
   

. The behaviour 

of the plant subject to this input is given by (6) with the 
unknown values 0.45iα =  for { }1,  2, 3i ∈ . The three 

estimation models of (7) are included in the multiestimation 
scheme in order to obtain a reduced-order estimation model 
for the plant at this operation point. Therefore, two 
parameters are estimated in each estimation model. 
Algorithm 1 is used to estimate these parameters. Fig. 3 
displays the estimated output issued by the multiestimation 
scheme together with the true plant output. Fig. 4 shows the 
estimation model chosen by the supervisor during the 
simulation. The estimated output follows the true plant 
output with a good approach after a transient interval with a 
small tracking-error. The supervisor selects the three 
estimation models at different time intervals during the 
simulation and finally chooses the estimation model 

(4) ( )H z  which results the best reduced-order estimation 
model for the true plant at this operation point. 
 

 
Fig. 3.  Evolution of the estimated and true plant outputs. 

 

 
Fig. 4.  Reduced-order estimation model chosen by the supervisor. 

 

The reason of the final choice of the estimation model 
(4) ( )H z  by the supervisor is based in the frequency 

spectrum of the applied input. For that, the representation of 
the amplitude Bode diagram for each of the reduced-order 
estimation models is displayed in Fig. 5 supposed that 

( )ˆ 1i
jkα =  for all integer 0k ≥ , { }4,  5, 6i ∈  and 

{ }1,  2, 3j ∈ . This figure shows as the model (4) ( )H z  
posses the highest gain for the frequencies which 
characterizes the applied input. Consequently, it is finally 
chosen by the supervisor. Finally, Fig. 6 displays the 
evolution of the estimated parameters of the model 

y_est (solid), y (dotted) 



 
 

 

(4) ( )H z . They converge to constant values which do not 
coincide with the corresponding true values of (6) because 
the estimation model is of a reduced-order. 
 

 
Fig. 5.  Amplitude Bode diagram of the three estimation models for 

[ ]0 rad s ,  200 rad sω ∈ . 
 

 
Fig. 6.  Evolution of the estimates (4)

1α̂  and (4)
2α̂  of the reduced-order 

model (4) ( )H z . 
 

The convergence of the estimates to the true values would 
be possible if the gain of the suppressed plant mode were 
sufficiently small compared with the gains of the modes 
included in the reduced-order estimation model. This fact 
has been empirically corroborated with numerical 
simulations which have been omitted by space reasons. 
 

B. Simulation 2 
In this case Algorithm 2 is used in each reduced-order 

estimation model. The unknown values of (6) are 
1 2 0.45α α= =  and 3 0.01α = . The initialization for the 

estimation algorithms and the applied input are equal to 
those used for Simulation 1. The simulation results are 
displayed in the following figures. 
 

 
Fig. 7.  Evolution of the estimated and true plant outputs between  the 

samples 0 and 200. 
 

 
Fig. 8.  Evolution of the estimated and true plant outputs between  the 

samples 200 and 500. 
 

 
Fig. 9.  Reduced-order estimation model chosen by the supervisor. 

 

 
Fig. 10.  Evolution of the estimates (4)

1α̂  and (4)
2α̂  of the reduced-order 

model (4) ( )H z  between the samples 500 and 1000. 
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C. Simulation 3 

In this case, the values of iα , for { }1,  2,  3i ∈ , in (6) are 
slowly time-varying. The variation of these values are 
showed in the following figures, 
 

 
Fig. 11: Evolution of the values of iα  corresponding to the operating 

point of the true plant. 
 

Algorithm 1 is utilized to estimate the parameters of each 
of the three reduced-order estimation models of (7). The 
same initialization for the estimation algorithms that in the 
previous simulations is considered. Fig. 12 displays the 
estimated output and the true plant output and Fig. 13 shows 
the switching map between the reduced-order estimation 
models of the multiestimation scheme. This mapping is 
carried out by means of the supervisor action. 
 

 
Fig. 12.  Evolution of the estimated and true plant outputs during  the 

simulation. 
 

 
Fig. 13. Reduced-order estimation model chosen by the supervisor. 

 

Note that the selection of the estimation model by the 
supervisor does not converge to a particular model since the 
variation of the parameters iα  of (6) makes the operating 

point of the plant to change with the time. 

V. CONCLUSIONS 
A multiestimation scheme for obtaining a reduced-order 

estimated model for a stable real plant, possibly non-linear, 
at each different operating points has been presented. The 
modes of the plant to be identified are distinct and known. 
Each of the nominal estimation models suppressed at least 
one of the plant modes. The estimation algorithms which 
compose the multiestimation scheme run in parallel and 
estimate the gain associated with each mode included in its 
corresponding nominal model. The simulation results 
corroborate the achievable performance of obtaining 
distinct reduced-order models of the true plant at different 
operation points. However, the exact identification of the 
true plant parameters is only possible if the gain of the 
suppressed mode in the reduced-order estimation model 
chosen by the supervisor is sufficiently small with respect to 
the gains of the modes of the estimation model. This last 
feature can not be ensured since an a-priori knowledge of 
the gains of the plant modes is not available. However, the 
presented strategy lets to obtain a reduced-order estimation 
model of the true plant at certain operating point, which can 
be later used, for instance, to implement adaptive 
controllers to achieve certain control objectives. 
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