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Abstract— This paper analyses a variable reconstruction
technique for identifying a faulty sensor. The reconstruction is
associated with the application of principal component analysis
(PCA) and attempts to remove “fault information” from the
sensor reading. It is shown that the reconstruction (i) affects
the geometry of the PCA decomposition (ii) leads to changes
in the covariance matrix of the sensor readings and (iii) alters
the determination of PCA based monitoring statistics in terms
of their confidence limits. These changes must be incorporated
into the monitoring scheme, as false alarms may otherwise be
encountered. Consequently, an improved reconstruction based
fault diagnosis is proposed here.

I. I NTRODUCTION

Sensors provide vital information about the current state
of the operation of a large-scale process, which is required
for process control, optimization or monitoring. It is there-
fore essential to detect abnormal sensor readings, such as
sensor bias, failure, drift or precision degradation.

MacGregor et al. [1] highlighted that the processes, com-
monly found in the chemical and manufacturing industry,
frequently produced large sets of highly correlated process
variables. This has led to the development of statistical
modelling techniques that are collectively referred to as
multivariate statistical process control (MSPC) [2], [3].

One of the most popular MSPC methods is PCA. Detec-
ting abnormal sensor readings relies on PCA based moni-
toring statistics. Dunia et al. [4] proposed a reconstruction
approach for identifying which sensor produced “faulty”
readings. This utilized the linear relationships between the
different sensors to predict, for example, the reading of
one sensor from the readings of the others. Therefore, by
predicting the sensor that produced an incorrect reading, the
“fault information” can be removed from this sensor. The
monitoring statistics were assumed to show an in-statistical-
control situation after the reading of the “faulty” sensor had
been reconstructed.

This paper provides a thorough geometric and mathe-
matical analysis of this technique, which reveals that re-
constructing a sensor reading leads to changes in the PCA
decomposition that describe the relationships between the
sensors. More precisely, the PCA model plane, describing
the linear combinations among the sensors, remains un-
changed although the base vectors, which span the model
plane, change their orientation. Furthermore, the dimension
of the residual subspace that, representing the direction of
the residuals of the PCA model, reduces by one.

Since the model plane and the residual subspace are
spanned by eigenvectors of the covariance matrix of the
sensor readings, it is shown here that the above changes
can be described by the influence of the reconstructed
sensor readings upon this covariance matrix. The alteration
of the covariance matrix also implies that either the PCA
based monitoring statistics or their confidence limits are
affected by this reconstruction. If this effect is not removed
from these statistics, it is demonstrated that an “out-of-
statistical-control” situation may remain even if the “fault
information” is correctly removed from the sensor. An im-
proved technique is then introduced, which incorporates the
alterations caused by the reconstruction upon the covariance
matrix.

The paper is divided into the following sections. A brief
review of PCA is given prior to a discussion of how to
detect faulty sensors and how to identify which sensor
reading is “faulty” using the reconstruction technique. Then,
a geometric analysis of the reconstruction technique is
given, which is followed by a description of the influence
of the reconstruction upon the covariance matrix and the
monitoring statistics and their confidence limits. Finally,
an application study is presented to (i) demonstrate the
“out-of-statistical” situation may be noticeable after the
“correct” sensor reading has been reconstructed and (ii)
show that removing the influence of the reconstruction
from the covariance matrix and the monitoring statistics
overcomes this deficiency.

II. PRINCIPAL COMPONENTANALYSIS

The application of PCA involves the construction of a
reduced set of score variables that represents linear com-
binations of a set of sensor readings. The values of these
variables are given by:

t = P
T
z, (1)

wheret ∈ R
n is the vector ofn score variables,P ∈ R

N×n

is a transformation matrix with column vectors as the first
n dominant eigenvectors of the correlation matrixSZZ =

1

K−1
Z

T
Z ∈ R

N×N . This is established using a reference
data set,ZT =

[
z1 z2 . . . zK

]
with K being the

number of mean-centered and scaled sensor readings,z ∈

R
N is the vector of the(N > n) sensor readings. The

mismatch error between the measured and predicted sensor



readings is:

e = z − Pt =
[
IN − PP

T
]
z. (2)

The application of PCA divides the sensor readings into a
model plane and a residual subspace. The model plane is
spanned by the firstn dominant eigenvectors ofSZZ and
describes the linear combinations of the sensor readings. In
contrast, the residual subspace is spanned by the remaining
(N − n) eigenvectors ofSZZ and represents the mismatch
error of the PCA prediction of the sensor readings.

III. FAULT DETECTION USING UNIVARIATE STATISTICS

Two univariate statistics, denoted by T2 and Q, can be
established using the values of the score variables,t, and
the mismatch errore:

T 2 = t
T
Λt =

n∑

i=1

t2i
λi

and

Q = e
T
e =

N∑

j=1

e2
j . (3)

Here Λ is a diagonal matrix containing then largest
eigenvaluesλi of SZZ in descending order,ti is the ith

score andej is the jth residual error. Each of the above
statistics can be plotted against time and the confidence
limit for the T2 statistics is given by:

T 2
n,K,α =

n (K − 1)

K − n
Fn,K−n,α, (4)

where α is the confidence, typically 95% or 99%, and
Fn,K−n,α is the value representing the confidence limit of
a F-distribution. The confidence limit for the Q statistic can
be calculated as follows:

Qα = θ1

(
cα

√
2θ2h

2
0

θ1

+
θ2h0 (h0 − 1)

θ2
1

+ 1

) 1
h0

, (5)

whereθ1 =
m∑

i=n+1

λi, θ2 =
m∑

i=n+1

λ2
i , θ3 =

m∑
i=n+1

λ3
i , h0 =

1 − 2θ1θ3

3θ2
and the variablecα is based on the inverse error

function, evaluated for a confidenceα [5].

IV. FAULT DIAGNOSIS USING VARIABLE

RECONSTRUCTION

The reconstruction of a “faulty” sensor reading is based
on the prediction of the sensor readings,ẑ using the PCA
model:

ẑ = Pt = PP
T
z = Cz, (6)

whereC = PP
T . More precisely, given that theith sensor

is “faulty”, the prediction of theith sensor replaces the
recorded reading of this sensor to filter out the “faulty”
information. Using the elements of theith row of C, cij

the prediction of theith sensor reading is equal to:

z̃i =

N∑

j=1 6=i

cij

1 − cii

zj (7)

where z̃i is the reconstructed reading of theith sensor
zi. Geometrically, the reconstruction process shifts the data
point, representing the values of the sensor readings in anN

dimensional space, along the direction of theith variable.
After z̃i replaceszi to form the vector of sensor readings

z̃, theT 2 andQ statistics can be computed. This is followed
by updating of the on-line monitoring charts. If the “faulty”
sensor has been correctly identified, it is assumed that
the monitoring statistics show an “in-statistical-control”
situation. However, it is explained in this paper that the
“out-of-statistical-control” situation may still remaineven
if the “faulty” sensor has been reconstructed.

V. GEOMETRIC ANALYSIS OF RECONSTRUCTIONBASED

FAULT DIAGNOSIS

The geometrical properties of the reconstruction tech-
nique proposed by Dunia et al. [4] are now analysed. The
distance of a shift of the data point to the model plane can
be described by Theorem 1.

Theorem 1: The reconstruction of theith sensor reading
results in a shift of the data point along the direction of the
ith variable in theN -dimensional space. This leads to a
minimization of the distance between the model plane and
the shifted data point.
A proof of Theorem 1 is given in Appendix A. Given that
a data pointz is described in aN dimensional space, the
reconstruction ofzi to form z̃ results in a projection ofz
onto a(N −1)-dimensional plane, as described in Theorem
2.

Theorem 2: The reconstruction ofzi is equivalent to the
projection ofz onto a(N−1)-dimensional plane (subspace)
Π along the direction of theith variable. This plane is
spanned by the following base vectors:

Π =










1
0
...
0

ci1

1−cii

0
...
0
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ci2

1−cii
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ci(i+1)

1−cii

1
...
0





, · · · ,





0
0
...
0

ciN
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0
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. (8)

Note that this plane includes the model plane and the resi-
dual subspace. A proof of Theorem 2 is given in Appendix
B.



VI. RECONSTRUCTION OF THECOVARIANCE MATRIX

The last section highlighted that reconstructing theith

sensor reading gives rise to a description of each data point
by a (N − 1)-dimensional subspace rather than the original
N -dimensional one.

Since the model plane and the residual subspace are
spanned by the eigenvectors ofSZZ , it is imperative to
analyze the influence of the variable reconstruction upon
the covariance matrix. This allows the influence of the
reconstruction upon the model plane and the residual sub-
space to be analyzed. The next subsection discusses how
to determine the “reconstructed covariance matrix”, which
is followed by an evaluation of the changes in the model
plane and the residual subspace.

A. Calculation of the Reconstructed Covariance Matrix

The reconstruction of theith sensor reading requires the
ith row and theith column of SZZ to be recalculated as
follows:

is̃ik =

N∑

a=1 6=i

cia

1 − cii

ska. (9)

In (9) is̃ik are the non-diagonal elements of theith row
and theith column of reconstruction of̃SZZ , iS̃ZZ . The
ith diagonal element ofiS̃ZZ is given by:

is̃ii =

N∑

a=1 6=i

c2
ia

(1 − cii)2
saa (10)

+ 2

N−1∑

a=1 6=i

N∑

b=a+1 6=i

ciacib

(1 − cii)2

Remark 1: The rank ofiS̃ZZ is N −1, as theith row or
column is linearly dependent on the remainingN − 1 rows
or columns.

B. Changes in the Model Plane

Pearson [6] showed that the squared length of the residual
vector, between a set of data points of dimensionN and
a given model plane of dimensionn, is minimized if the
model plane is spanned by the first-n dominant eigenvectors
of the covariance matrix which is established on the basis
of this set of data points.

Theorems 1 and 2 show that the projections of a set of
data points ontoΠ leads to a minimum distance between
the projected points and the model plane. This gives rise to
the following Lemma:

Lemma 1: The reconstruction of theith sensor reading
does not influence the orientation of the model plane.
The above lemma follows from [6].

Remark 2: The fact that the orientation of the model
plane is not affected by the reconstruction procedure does
not imply that the orientation of the firstn dominant
eigenvectors remain unchanged.
The above remark is a result of the changes that the
reconstruction procedure imposes onSZZ . Moreover, the
dominant eigenvalues ofiS̃ZZ may also change.

Remark 3: Since the dominant eigenvectors ofiS̃ZZ

may be different from those ofSZZ implies that (i) the
directions for which the score variables have maximum
variance may change and (ii) the variance of each score
variable may change.

C. Changes of the Residual Subspace

As shown in Section V, the reconstruction results in a
shift of a data point along theith variable so that the squared
length of the error vector is minimal (Theorem 1). Since
the reconstruction procedure is, in fact, a projection ofz

onto Π, which is of dimension(N − 1) (Theorem 2), it
follows that the dimension of the residual subspace is(N −

n − 1), because the dimension of the model plane remains
unchanged.

Since the model plane is assumed to describe the linear
relationships between the sensors, the eigenvalues of the
discarded eigenvectors represent the variance of the measu-
rement uncertainty of the sensor reading. Given thatiS̃ZZ

has rank(N − 1), one eigenvalue is equal to zero. The
measurement uncertainty of each sensor reading is assumed
to be represented by normally distributed, independently
and identically distributed (i.i.d.) sequences. This implies
that the nonzero eigenvalues of the discarded eigenvectors
are equivalent.

Remark 4: The squared length of the error vector is equal
to the scaled sum of the “discarded” eigenvalues. This
implies that the squared length of the error vector after
reconstruction is smaller, or equal to the length of the error
vector of the unreconstructed data point.

VII. A DAPTATION OF THE CONFIDENCEL IMITS

Subsection VI-C highlighted that a change in the model
plane and residual subspace arise, as a consequence of the
reconstruction procedure. These changes can be described
by iS̃ZZ and may lead to a different set of eigenvalue and
eigenvectors. Given the definition of theT 2 and Q statis-
tics, which are determined using the eigenvector-eigenvalue
decomposition ofiS̃ZZ , it is necessary to account for such
changes, if the reconstruction procedure has been applied.

If the ith sensor reading is to be reconstructed, the
following steps must be carried out to incorporate the
influence of the reconstruction upon the model plane and
the residual subspace: (i) reconstruct the covariance matrix
by applying (9) and (10), (ii) calculate the eigenvalues
and eigenvectors ofiS̃ZZ , (iii) calculate theT 2 statistic
using the retained eigenvectors and eigenvalues ofiS̃ZZ ,
i.e. t̃ = P̃

T
z̃ and T̃ 2 = t̃

T
Λ̃

−1
t̃ , (iv) compute theQ

statistic using:̃e = z̃ − P̃t̃ and (v) estimate the corrected
confidence limits for theQ statistic by reapplying (5) using
the “discarded” eigenvalues ofiS̃ZZ .

VIII. E XAMPLE

A simulation study is used to demonstrate that the ap-
plication of the conventional reconstruction technique by
Dunia et al. [4] may present an “out-of-statistical-control”



situation even if the “faulty” sensor is correctly identified.
The improved reconstruction technique, introduced in Sec-
tion 7 is shown to correct this anomalous situation.

The simulation dataZ involves 10 sensors of which any
5 are linearly independent upon the remaining 5 ones. A
reference data set containing 500 samples was generated
as follows: 500 samples of 5 normally distributed random
variablesx of zero mean were simulated and the elements
of z were determined as linear combinations ofx. After sca-
ling z to unit variance, normally distributed i.i.d sequences
of variance 0.05 were superimposed onz to represent the
measurement uncertainty.

The retained eigenvectors,P, and eigenvalues,λ, of SZZ

were computed to be:

λT =
(

4.44 0.77 0.54 0.37 0.12
)

(11)

P =





−0.34 0.03 −0.18 0.27 −0.33
−0.34 0.15 0.15 −0.21 0.31
−0.33 0.14 −0.07 −0.53 0.12
−0.27 −0.70 −0.17 0.16 0.26
−0.30 0.59 0.06 0.32 −0.10
−0.33 −0.09 −0.21 0.42 0.26
−0.31 −0.29 0.34 −0.41 −0.37
−0.32 −0.12 0.48 0.26 −0.39
−0.30 0.08 −0.69 −0.23 −0.30
−0.34 0.14 0.22 −0.04 0.51





.

The discarded eigenvalues are equal to0.05. The second
sensor reading of the reference data set was first recons-
tructed using the technique by Dunia et al. [4] then by,
applying the improved reconstruction technique discussed
in Section VII. The influence of the reconstruction upon
the retained eigenvectors,̃P, and eigenvalues,̃λ, is shown
below.

λ̃T =
(

4.53 1.01 0.57 0.42 0.17
)

(12)

P̃ =





−0.34 0.01 0.20 −0.18 0.38
−0.33 −0.18 −0.13 0.10 −0.36
−0.32 −0.22 0.01 0.48 −0.21
−0.29 0.75 0.04 −0.03 −0.14
−0.28 −0.52 0.12 −0.41 0.09
−0.34 0.24 0.26 −0.37 −0.16
−0.31 0.07 −0.49 0.42 0.31
−0.31 0.02 −0.47 −0.29 0.41
−0.29 −0.04 0.61 0.40 0.29
−0.34 −0.11 −0.15 −0.10 −0.53





.

As expected, the effect of the reconstruction of the second
sensor slightly increases the values of the retained eigenva-
lues and produces a different set of eigenvectors. TheT 2

and Q statistics for the reconstructed data pointsz̃ of the
reference set are shown in Fig. 1 using the conventional
reconstruction technique by Dunia et al. [4] and in Fig. 2
for the proposed improved reconstruction technique.

The T 2 and Q statistics that were obtained using the
technique by Dunia et al. [4] represent an “out-of-statistical-
control” situation for theT 2 statistic and suggest that
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Fig. 1. T2 and Q statistic after variable reconstruction based onto the
technique proposed by Dunia et al. [4]
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Fig. 2. T2 and Q statistic with adapted confidence limits after a proposed
variable reconstruction

the confidence limit of theQ statistic appears to be too
large. Using the improved reconstruction technique, the “in-
statistical-control” situation is noticeable for theT 2 statistic
and the confidence limit of theQ statistic is also much
smaller. Consequently, this reconstruction of the second
variable has shown that the technique by Dunia et al. [4]
may run into difficulties, whilst the proposed technique
successfully removes the deficiency.

IX. CONCLUSIONS

The mathematical and geometric properties of the propo-
sed variable reconstruction technique by Dunia et al. [4], for
identifying sensor faults, were analyzed. This revealed that
the reconstruction results in shifting a data point along the
variable that is to be reconstructed in a multidimensional



space of dimensionN . It was further shown that the
reconstruction is, in fact, a projection along the direction
of the reconstructed variable onto a(N − 1)-dimensional
plane.

The reconstruction itself gives rise to changes in the
model plane and the residual subspace, which can be
described by incorporating the influence of the reconstruc-
tion procedure upon the covariance matrix of the sensor
readings. However, the changes in this matrix also im-
ply that the monitoring statistics are also affected by the
reconstruction procedure. Since it is assumed that after
a “faulty” sensor has been reconstructed, the monitoring
statistics show the “in-statistical-control” situation,it is
important to incorporate the effect of the reconstruction for
determining these statistics. Otherwise an “out-of-statistical-
control” situation may arise as was shown by a simulation
study that involved a total of 10 sensors. This application
study also demonstrated that by incorporating the influence
of the effect of the reconstruction upon these statistics, the
“in-statistical-control” situation prevailed.

APPENDIX

Following the reconstruction technique of Dunia et al.
[4] the reconstruction of theith variable is analyzed and
it is shown for theN dimensional case that a minimal
distance is determined by applying this projection. Where
the prediction error is equal tõe = [I − C] z̃, and

z̃=

(
z1 · · · zi−1

N∑
a=1 6=i

αaza zi+1 · · · zN

)
. (13)

The squared distance of the prediction error using the
reconstructed data point̃z is given by:

ẽ
T
ẽ = z̃ [I−C] z̃T (14)

=




N∑

a=1 6=i

αaza




2

(1 − cii)−2
N∑

a=1 6=i

N∑

j=1 6=i

αacjizazj +u,

whereu is a remaining term which not depends onα and
therefore is neglected. The derivatives forαo with o ∈

(1 . . . N) ∧ o 6= i are determined as

∂f

∂αo

=2 (1 − cii)zo

N∑

a=1 6=i

αaza−2zo

N∑

a=1 6=i

caiza (15)

and set to be equal to zero:

(1 − cii)

N∑

a=1 6=i

αa −

N∑

a=1 6=i

cai = 0. (16)

This leads to

αa =
cia

1 − cii

for a = 1 . . . N ∧ a 6= i. (17)

Based on this, the prediction error of the projected points
has to be smaller or equal to the original prediction error.

To show that the reconstruction of theith sensor reading
is, in fact, a projection ofz onto a (N − 1)-dimensional
subspace, the computation ofz̃ can be revisited:

z̃=





z1

...
zi−1

N∑
a=1 6=i

cia

1−cii

za

zi+1

...
zN





. (18)

The projection plane is therefore described by the following
(N − 1) base vectors:
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