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Abstract— The Akaike Information Criterion ( AIC)
is often used as a measure of model accuracy. The
∆AIC statistic is defined by the difference between
AIC values for two nested models. The∆AIC statistic
corresponding to a particular change detection problem
has been shown to detect extremely small changes
in a dynamic system as compared with traditional
change detection monitoring procedures. In this paper,
a theoretical analysis is developed that shows the∆AIC
is actually an optimal test for the detection of any
small changes in the characteristics of a process. It is
also shown that the change/no-change hypotheses are
nested. This result leads to a generalized likelihood
ratio test with optimal properties as well as the precise
large sample distribution for the test. A simulation of
a dynamic system with small changes demonstrates the
precision of the distribution theory as compared with
the empirical results.

I. OVERVIEW

The problem of detecting small changes in dynamic
systems is important in a number of applications. In some
systems, there is a change in the dynamics over time, such
as the occurrence of a small leak, a build up of soot
in a boiler, or valve fouling or stiction. These changes
may be small relative to the noise and disturbances in the
system, requiring a significant amount of data to detect
their presence. Although the changes in the relevant systems
parameters may be small, the potential consequences in
terms of economics, reliability, or safety may be very large.
In such cases, the accurate determination of the presence of
a change and the precise determination of the nature of such
a change can be critical.

The nature of this small change detection problem is quite
different than many detection and identification methods
currently under study in the literature. Many detection
methods focus on the rapid detection of large changes in
a process. By their nature, the detection of small changes
requires substantial amounts of data following the process
change, so that this is a class of problems distinct from
the rapid detection of large changes. One advantage in the
problem of detecting small changes is that the need to use

larger data sets facilitates the use of very powerful large
sample distribution theory. Such theory leads to an optimal
detection procedure for small changes in dynamic systems.
This will become apparent in the development of this paper.

The∆AIC statistic for the detection of changes or faults
in dynamic systems was developed by Larimore [1], and
compared with traditional failure detection methods such
as CUSUM and principal component analysis by Wang
et. al. [2]. Significant improvements in detection sensitivity
were achieved using the∆AIC statistic, in some cases by
a factor greater than 100. The∆AIC applies simply to
both static regression models as well as complex dynamic
systems. However, the major issue when using the∆AIC
has been the lack of a theory for the distribution of the
test statistic that is needed to determine the probability
of detection and false alarms. This paper addresses this
shortcoming.

To introduce the use of∆AIC for detecting a change,
suppose thatD1 andD2 are two data sets that are disjoint
and possibly noncontiguous. Of primary interest is deter-
mining if a change has occured between the data setsD1

andD2. The following two hypotheses are considered:
• No Change HypothesisHn: a single modelMn is valid

for the two data sets,D1 andD2.
• Change HypothesisHa: different models are required

for the two data sets,D1 and D2. These models are
assumed to be statistically independent and will be
denotedM1 andM2.

Each of the modelsM1, M2, and Mn is the result of
parameter estimation using the maximum likelihood (ML)
method. The ML method is used because of the optimal
properties of such models particularly concerning the use
of likelihood ratio (LR) tests and theAIC. We will also
refer to the no change hypothesis as the null hypothesis
Hn because it is to be tested for rejection against the
more general, alternative hypothesisHa as in the traditional
hypothesis testing terminology. It will be shown thatHn

is nested inHa, which means that the no change or null
hypothesisHn is a special case of the change, or alternative
hypothesisHa.

There are several approaches for comparing the two hy-
pothesesHn andHa. The traditional approach is to compute



the likelihood ratio statistic, while a closely related approach
is to compute the difference of theAIC values for the two
hypotheses. The similarities and differences between these
two approaches will be discussed in more detail in following
sections. TheAIC statistic is an asymptotically unbiased
estimator of the Kullback–Leibler information quantity and
is equal to two times the negative log of the maximized
likelihood function plus two times the number of estimated
parameters [3], [4]:

AIC = −2logL(Θ̂, Σ̂) + 2ν (1)

The first term is a measure of model fit while2ν can be
viewed as a penalty term that encourages the use of parsi-
monious models. For comparing two hypotheses using the
AIC, the values of theAIC for the respective hypotheses
are differenced. Thus the∆AIC statistic is defined as the
difference of theAICs for the hypothesesHa andHn,

∆AIC , AIC(Hn)−AIC(Ha)
= AIC(Mn)−AIC(M1)−AIC(M2) (2)

where the equality follows because theAIC for the change
hypothesisHa is simply the sum of the respectiveAICs,
from the independence of the modelsM1 andM2. Although
the∆AIC quantity is fundamental to comparisons ofAIC
for various hypotheses, the authors are not aware of it being
applied to the comparison of the hypotheses of no change
Hn and changeHa. Also we are not aware of it having
been shown that these hypotheses are nested as discussed
below.

In this paper, the∆AIC statistic is analyzed in some
depth to reveal the distribution theory for a number of
particular cases. The∆AIC is particularly attractive as a
statistic to test for changes and faults in dynamic systems:

• First, it will be shown that for a fixed order of the
various models, the∆AIC is a nested test of the null
hypothesisHn verses the alternative hypothesisHa of
a change in the process.

• The AIC is an estimate of the Kullback–Leibler
information that is a fundamental measure of model
approximation. It is a measure of model disparity
based on the fundamental principles of sufficiency and
repeated sampling [5]–[7].

• For fixed orders of the various models, the∆AIC
is a likelihood ratio test that has optimal statistical
properties as the sample size becomes large.

• Because∆AIC is a likelihood ratio test, for large
samples it is a uniformly most powerful invariant
test statistic for the detection of all possible changes
that might occur in the hypothesized model structure,
including changes in dynamics, input and output gains,
and disturbance characteristics described as a time
invariant linear system.

• In using a single test statistic for determining if a
change has occurred in any combination of the pa-
rameters, the generalized likelihood ratio (GLR) test

is optimal. Thus the GLR statistic provides an optimal
global test for any changes in the process.

In developing the distribution theory for the∆AIC
statistic, some of the extensive theory of likelihood ratio
tests will be utilized. The contribution of this paper is
in showing that the∆AIC statistic does indeed fit this
framework for the case of a fixed model order. Also we
develop some of the specific details for showing that the
problem of optimal change detection is indeed a nested
problem so that the generalized likelihood ratio testing
theory applies. It is hoped that a distribution theory for the
∆AIC will lead to a much greater use of it, because it is
now possible to calculate confidence limits for the detection
of process faults and changes.

In the development below, the multivariate regression
model is discussed in Section II and the no change hypoth-
esis is shown to be a special case of the model change
hypothesis. Thus, the hypotheses are nested. The gener-
alized likelihood ratio test and its asymptotic distribution
for the nested case are discussed in Section III. TheAIC
is developed in Section IV and related to the likelihood
ratio test to obtain the asymptotic distribution of the∆AIC
statistic for the nested case. A simulation of an ARX time–
series process is given in Section V, and the observed
distribution of the ∆AIC statistic is compared to the
theoretical distribution.

II. M ULTIVARIATE REGRESSION ANDNESTED

STRUCTURE

In this section, the change detection problem is developed
for the case of multivariate regression. It will lead to
the distribution theory for the large sample case for ML
estimators.

The multivariate regression model

yi = Θui + ei ; Σ = E(eie
T
i ) (3)

Y = ΘU + E (4)

over some specified set of measurements, for example
i = 1, . . . , N , will be considered below with several
variations. HereE is the population average or expectation
operation,Y is the (p × N) measurement matrix with
the ith measurements as thep-dimensional column vector
yi, and E is the (p × N) measurement error matrix with
ith measurement error vectorei. It is assumed thatei is
normally distributed, independent ofej for j 6= i, and has
covariance matrixΣ. The (p× q) matrix Θ is the unknown
parameter matrix, andU is the (q × N) regressor matrix
with the ith columnui. The dimensions ofΘ andU in the
discussion below will depend on the particular model under
consideration.

For the no change hypothesisHn, which is the null
hypothesis of a single model valid for both data setsD1

andD2, the subscript ”n” will be used. Thus the unknown
parameter matrixΘn is (p × q) , and the regressor matrix



Un is (q × N). The multivariate regression model for the
no change hypothesisHn is then

yi = Θnui + ei ; Σn = E(eie
T
i ) (5)

for i = 1, . . . , N .
Under the change, or alternative hypothesis,Ha, suppose

that the two data setsD1 and D2 are distributed indepen-
dently with samples(Y1, U1) and (Y2, U2) of sample sizes
N1 andN2 respectively withN = N1 + N2, and thatU in
Eq. 4 is correspondingly partitioned asU = (U1 U2). If the
(p × q) parameter matrixΘ is estimated separately asΘ1

andΘ2 for each of the data sets,D1 andD2 respectively,
then two independent regression models are obtained

yi = Θ1ui + ei ; Σ1 = E(eie
T
i ) (6)

for i = 1, . . . , N1 that is data setD1, and

yi = Θ2ui + ei ; Σ2 = E(eie
T
i ) (7)

for i = N1 + 1, . . . , N that is data setD2. Thus the model
for the alternative hypothesis is given in the form of (4) by,[

Y1 0
0 Y2

]
=

[
Θ1 0
0 Θ2

] [
U1 0
0 U2

]
+

[
E1 0
0 E2

]
(8)

and the parameter matrix for the modelMa can be repre-
sented as:

Θa =
[
Θ1 0
0 Θ2

]
(9)

Now it is shown that the no change hypothesisHn

is a special case of the change hypothesisHa when the
parameter matricesΘn, Θ1, and Θ2 all have the same
dimension,i.e. the model orders are all the same forMn,
M1, andM2. To show this, the log likelihood function for
Ha is expressed with the valuesΘn andΣn substituted for
Θ1,Θ2 andΣ1,Σ2, respectively. The resulting log likelihood
function is

log L(Y1|U1; Θ1 = Θn,Σ1 = Σn)
+ log L(Y2|U2; Θ2 = Θn,Σ2 = Σn)

=
N1

2
log |Σn|+

1
2

N1∑
i=1

(yi −Θnui)T Σ−1
n (yi −Θnui)

+
N2

2
log |Σn|+

1
2

N∑
i=N1+1

(yi −Θnui)T Σ−1
n (yi −Θnui)

=
N

2
log |Σn|+

1
2

N∑
i=1

(yi −Θnui)T Σ−1
n (yi −Θnui)

= log L(Y |U ; Θn,Σn) (10)

This function is precisely the log likelihood forHn.
From the above analysis, Theorem 1 follows:

Theorem 1. Nested Model Structure. If U = (U1, U2), so
the matrix dimensions ofΘn, Θ1, and Θ2 are identical,
then the parameters(Θn,Σn) under the no change
hypothesisHn lie in the subspace of the parameter space

(Θ1,Θ2,Σ1,Σ2) for the change hypothesisHa defined by
the constraints,Θ1 = Θ2 andΣ1 = Σ2.

The maximum likelihood estimators for the model (3)
obtained by maximization of the likelihood function are
developed in Anderson [8] as

Θ̂ = Y UT (UUT )−1 ; Σ̂ = (Y Y T−Θ̂UUT Θ̂T )/N (11)

For the case of the change modelMa that consists of model
M1 for datasetD1 and modelM2 for datasetD2, the log
likelihood function is as in (10) except that the parameter
values are not constrained to be the same for both datasets.
Then the two likelihood expressions for each dataset,D1

andD2, are maximized separately in maximizing the sum.
Thus there is no difficulty in considering a concatenation
of two models that involve separate parameters(Θ1,Σ1) or
(Θ2,Σ2) associated with the respective disjoint datasetsD1

andD2.
The ML estimators have the optimum statistical proper-

ties asymptotically in large samples under regularity condi-
tions of:

• Unbiased parameter estimates referred to as consistent
estimates.

• Minimum variance estimates referred to as efficient
estimators relative to the Cramer-Rao lower bound.

The ML estimators are used extensively below in both
the GLR tests that are also called maximum likelihood ratio
tests as well as in the computation of theAIC, which uses
the logarithm of the maximized likelihood function.

III. L IKELIHOOD RATIO TESTS

A traditional approach in statistics for testing nested
hypotheses as in Theorem 1 is to use generalized likelihood
ratio tests. We compare two models, modelMn under the
null hypothesisHn and modelMa under the alternative
hypothesisHa, identified from the same dataset of length
N , but allow for concatenated submodels as in Theorem
1. The models haveνn andνa parameters, respectively. In
this section, the null hypothesis modelMn is assumed to be
a subset of the alternative hypothesis modelMa. In other
words, modelMn is nestedin model Ma, and νn ≤ νa.
Let λ denote thegeneralized likelihood ratiothat is also
sometimes called the maximum likelihood ratio:

λ(Θ̂n, Θ̂a) ,
Ln(Θ̂n)
La(Θ̂a)

(12)

The maximized likelihood functionsLn(Θ̂n) and La(Θ̂a)
are for modelsMn andMa. In particular in the discussion,
the null hypothesisHn and the alternative hypothesisHa

are nested by Theorem 1. To satisfy the regularity conditions
for the asymptotic large sample results, we will consider
the situation where the sample sizesN1 and N2 increase
without bound in a fixed rational proportionr = nr/mr of
the formN1/N2 = r wherenr andmr are integers.

First consider the case that the null hypothesisHn is
true. The log likelihood ratio statistic, −2logλ(Θ̂n, Θ̂a),



can be used to test the null hypothesis that the additional
parameters in modelMa are not significantly different
from zero. Asymptotically for large sample size, the log
likelihood ratio statistic for the test of additional parameters
in nested models has been shown to follow aχ2 distribution
with νa − νn degrees of freedom [9].

Now consider the case where the null hypothesisHn is
false, i.e., a single model is not valid for both datasets. We
still require modelMn to be nested within modelMa, but
instead of testing that the additional parameters are zero,
we are testing if their estimated values are significant. Wald
[10] has shown that the log likelihood ratio statistic follows
a noncentralχ2 distribution if the additional model structure
is significant (that is, the null hypothesisHn is false). Let
χ2(νa − νn, δ2) denote a noncentralχ2 distribution with
νa − νn degrees of freedom andnoncentrality parameter
δ2. If the noncentrality parameterδ2 is nonzero, then the
probability of rejecting the null hypothesisHa is increased.
This will be illustrated in Section V with a simulation
example.

Asymptotically for large samples, GLR tests are uni-
formly most powerful invariant tests [11]. The invariance
property derives from the asymptotic property of ML es-
timators, that transformation of the data by scaling, rota-
tion, or translation of the data produces a corresponding
transformation on the parameter estimates to leave the
distributional properties unchanged. As a result for large
samples, such transformations on the data leave the GLR
statistic invariant so that decisions are not affected by these
transformations. This guarantees that among such invariant
tests, the GLR test is the optimal single test of all possible
changes that may potentially occur in the process. This
property guarantees that no other single invariant test has
lower probabilities of errors than the GLR test. In the next
section theAIC will be discussed. A derivation linking the
∆AIC statistic to GLR testing will be presented.

IV. A KAIKE INFORMATION CRITERION

In this section, the concept of theAIC is developed
starting with the Kullback–Leibler information. Unless oth-
erwise noted, the asymptotic large sample behavior of the
AIC will be primarily discussed.

A natural starting point for theAIC is the use of the
K–L information as the natural measure of model approx-
imation. Based on the fundamental statistical principles of
sufficiency and repeated sampling, it has been shown that
the K–L information gives the natural measure of statistical
model approximation [5]–[7]. This result applies to a very
general class of problems including finite sample size and
arbitrary probability distributions. In many of the papers of
Akaike, arguments involving entropy or information were
used, although no fundamental justification for the use of
information measures was given.

Adoption of the K–L information as the measure of
model approximation gives a very clear justification for the
AIC. The K–L information [4], [12] between the estimated

modelfΘ̂,Σ̂(x) and the true modelf∗(x) is given by:

I
(
f∗, fΘ̂,Σ̂

)
,

∫
f∗(x)log

f∗(x)
fΘ̂,Σ̂(x)

dx (13)

Asymptotically for large samples, theAIC is an unbiased
estimator of K–L information, so:

AIC , EΘ̂,Σ̂

[
I

(
f∗, fΘ̂,Σ̂

)]
(14)

where EΘ̂,Σ̂ is the expectation taken with respect to the

random variables (̂Θ, Σ̂) of estimated parameters.
The value of theAIC can be shown to be equal to two

times the negative log of the maximized likelihood function
plus two times the number of estimated parameters,ν [3],
[4]. Repeating Eq. 1:

AIC = −2logL(Θ̂, Σ̂) + 2ν (15)

The number of estimated parameters is equal to the number
pq of elements ofΘ plus the numberp(p + 1)/2 of unique
elements of the symmetric matrixΣ. Thus ν = pq +
p(p+1)/2. TheAIC value for a dataset ofN independent
observations and the regression model of Eq. 5 is:

AIC = N (log(2π) + 1)+N log|Σ̂|+2pq+p(p+1) (16)

Note that for the special case where the covariance matrix
has a known diagonal structure, only the diagonal elements
of Σ, need be estimated, andν = pq + p.

To compare two models, let theAIC values for models
Mn and Ma be denoted byAICn and AICa. We will
use the∆AIC statistic to compare these two models. The
∆AIC statistic, defined in Eq. 2 is:

∆AIC = AICn −AICa (17)

For a nested hypothesis test, the∆AIC can be related to the
GLR statistic. In the case of a nested model comparison,
the theoretical probability distribution of∆AIC depends
on whether the null hypothesis is true or false.

For the case where the null hypothesisHn is true, from
the GLR discussion it can be shown that the∆AIC statistic,
Eq. 2, follows a χ2(νa − νn) distribution shifted by a
constant,2(νa − νn), for regression models and maximum
likelihood estimation [4], [13]. Starting from the result of
Wilks [9],

−2 log λ(Θ̂n, Θ̂a) ∼ χ2(νa − νn) (18)

−2 log
Ln(Θ̂n)
La(Θ̂a)

∼ χ2(νa − νn) (19)

−2(log Ln(Θ̂n)− log La(Θ̂a)) ∼ χ2(νa − νn) (20)

To count parameters, the number of outputs,p, is always
fixed. In the simplest case of Theorem 1, each modelMn,
M1, or M2 has pq + p(p + 1)/2 parameters so that the
number of additional parameters inMa is
νa− νn = pq + p(p + 1)/2. In more general cases with the
models still nested,νa−νn = p(q1 +q2−qn)+p(p+1)/2.
In any nested case, using (15), (17), and (20) gives:



TABLE I
SIGNIFICANCE LEVEL FOR THETEST ∆AIC − 2(νa − νn) ≥ 0.

Degrees of freedom,νa − νn 1 2 3 4 5 8 11 16 20
Significance level,α 0.157 0.135 0.112 0.092 0.075 0.042 0.024 0.010 0.005

∆AIC + 2(νa − νn) ∼ χ2(νa − νn) (21)

For the case where the null hypothesisHn is false, using
the result of Wald [10] and taking expected values of Eq.
21 gives,

E[∆AIC] + 2(νa − νn) = E[χ2(νa − νn, δ2)] (22)

Using the fact that the expected value of a noncentralχ2

distribution,χ2(ν, δ2) is equal toν + δ2,

E[∆AIC] = −(νa − νn) + E[δ2] (23)

Or, solving for the expected value of the noncentrality
parameter,

E[δ2] = E[∆AIC] + (νa − νn) (24)

Thus an unbiased estimator of the noncentrality parameter
is [13]:

δ̂2 = ∆AIC + (νa − νn) (25)

The ∆AIC is a GLR test where the probability of
rejection α of the null hypothesis is a function of the
number of additional parameters. Because the test statistic
∆AIC − 2(νa − νn) is the GLR condition for rejecting
the null hypothesis, then under large sample theory, Table
I shows the probability,α, of rejecting the null hypothesis
Hn when it is true.α is also called the significance level
of the test.

The reason why theα level adjusts with the number of
additional parameters is because the shape of aχ2(ν) dis-
tribution changes when the number of degrees of freedom,
ν, increases. The automatic adjustment of theα level with
the number of additional parameters deals with one of the
major issues in using GLR tests with few or many additional
parameters: the need that it take into account the number
of additional parameters being estimated. Of course, by
choosing a criterion different from∆AIC−2(νa−νn) ≥ 0,
the α values in Table I can be changed.

Finally, we discuss a small sample version of theAIC
derived by Hurvich and Tsai [14]. The correctedAIC
value,AICc, is of particular use when the sample size is
small relative to the number of estimated parameters.AICc

is asymptotically equivalent toAIC for large samples,
and provides an asymptotically unbiased estimator of K–
L information. The small sample bias correction forAIC
usingN data points is:

AICc = −2logL(Θ̂, Σ̂)+2ν

(
N

N − ν − (p + 1)/2

)
(26)

The AICc has a small sample correction factor multiply-
ing the 2ν penalty term that appears in theAIC. This

factor approaches one for large samples. Asymptotically,
∆AICc → ∆AIC. The distribution of the likelihood ratio
(18) is much more complicated in the small sample case,
but the bias of theAIC is corrected as in theAICc.

In the above discussion, the nested case has been dis-
cussed for comparison with the GLR test. Further, theAIC
applies to the comparison of a multitude of hypotheses, not
just two as in the GLR test. In complex processes such
as dynamic systems, there are a multitude of models and
hypotheses because typically the state order or ARX order
is unknown and must be estimated from the data.

V. SIMULATION EXAMPLE

A simple simulation example is used to confirm the
theoretical result for the distribution of the∆AIC statistic.
The following ARX model was simulated by specifying
the input,u to be a zero–mean gaussian process with unit
variance:

y(t) = 0.2y(t− 1) + 0.1y(t− 2)− 0.7u(t) + 3u(t− 1)
+ 1.2u(t− 2)− 0.15u(t− 3) + e(t) (27)

The unmeasured noise,e(t) was a zero–mean gaussian
process with a variance of 0.1. One thousand sets of
two 500 point data series were generated (N1 = N2 =
500, N = 1000), and the∆AIC statistic was calculated as
described in Section IV, assuming the correct model order
is known. A histogram of the calculated∆AIC values and
the theoreticalχ2(8, 0) distribution are shown in Figure 1.
Next, the simulation was repeated, making a small change
of ±0.01 to each model parameter in Eq. 27 for the second
dataset. Using the same method to calculate the∆AIC
statistic, a new histogram was produced and is shown in
Figure 2. It is clear that the∆AIC statistic does not follow
the theoreticalχ2(8, 0) distribution when a small process
change is present for the second dataset. When a process
change occurs, the null hypothesis,Hn is false and the
∆AIC statistic follows aχ2(8, δ2) distribution, where an
estimate of the noncentrality parameter is given in Eq. 25,
δ̂2 = ∆AIC + (νa − νn).

VI. SUMMARY

The theoretical probability distribution of∆AIC has
been derived for the nested case based on mild assumptions.
It was shown that under suitable regularity conditions on
the estimated parameters, and assuming independence of
the two datasets,∆AIC follows a χ2 distribution, shifted
by 2(νa − νn), and with νa − νn degrees of freedom.
The ∆AIC can also be calculated for the case of two
noncontiguous datasets. In such a case, the comparison is
made between a model obtained from the entire dataset and
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Theoreticalχ2(8) Distribution When no Process Change
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Fig. 2. Histogram of Calculated∆AIC Values and The-
oreticalχ2(8) andχ2(8, δ2) Distributions When a Process
Change is Present.

from a model obtained by combining likelihood functions
for the two independent models for each subset of data. The
properties of∆AIC also are valid for the case of time–
series data, where the regressors consist of past process
inputs and outputs. A simple numerical simulation example
was used to show the distribution of the∆AIC statistic for
an ARX model. The simulation results agree closely with
the theoretical distributions.
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