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Abstract. We are dealing with structured residuals, 
generated for fault detection and isolation in static linear 
systems by partial PC models. Structured design is 
combined with sensitivity optimization, using a max-min 
criterion applied to the fault-to-noise response ratio in the 
residual.  A graphic representation of the optimization 
problem is given, together with illustrative examples. 

 

1. INTRODUCTION 

In model-based fault detection and diagnosis, residuals are 
generated, using the plant observations and the model, that 
are nominally zero in the absence of faults (Willsky, 1976). 
The model may be explicit, obtained from first principles or 
systems identification (Gertler, 1998), or implicit, obtained 
by principal component transformation (Kourti and 
MacGregor, 1995). For fault isolation, these residuals are 
enhanced, usually by a transformation. One of the main 
enhancement techniques, structured residuals, involves 
residuals that selectively  respond to subsets of faults 
(Gertler and Singer, 1990). Such residuals may be 
generated by algebraic transformation, or by a direct 
technique. In the principal component framework, the 
direct approach involves structured partial PC models 
(Gertler and McAvoy, 1997).  Alternative fault isolation 
techniques, in the PCA framework, involve contribution 
charts (Kourti and MacGregor, 1995) and statistical 
distance and angle measures (Raich and Cinar, 1997). 

It has been proposed recently (Qin and Li, 1999) that 
structured design be combined with optimization for fault 
sensitivity. In this paper, this idea is extended in two 
respects: 

(i) instead of an average sensitivity measure, 
proposed in (Qin and Li, 1999), we apply a max-min 
criterion (see also Xu and Kwan, 2003) to the fault-
response to noise-response ratio; 

(ii) we apply the combined approach to partial PC 
models where the computation of the optimum is 
relatively straightforward. 

2. BACKGROUND 

2.1. System Description 

Consider a k-input-m-output linear static system: 

y0(t) = A u0(t)                         (1) 

where u0(t) =  [u1
0(t)  u2

0(t) …  uk
0(t)]T represents the true 

inputs, y0(t) =  [y1
0(t)  y2

0(t) …  ym
0(t)]T represents the true 

outputs, and A is the m × k system parameter matrix. A full 
model can be written as:  

B x0(t) = 0                                          (2) 

where B = [−A  I], which is m × (k + m), and x0(t) is the 
combination of u0(t) and y0(t): 
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With faults ∆x(t) = [∆uT(t)  ∆yT(t)]T   =   [∆u1(t)  ∆u2(t) …  
∆uk(t)  ∆y1(t)  ∆y2(t) …  ∆ym(t)]T present in the system, the 
observed variables can be expressed as: 

x(t) = x0(t) + ∆x(t)                                (4) 

Apply the model (2) to the observed variables: 

   B[x(t) − ∆x(t)] = 0  ⇒ B x (t) = B ∆x(t) = o(t)        (5) 

where o(t) is the set of primary residuals which are 
computed from the observations but depend only on the 
faults. Enhanced residuals are then obtained by some 
transformation: 

r(t) = Wo(t) =   W B ∆x(t)                         (6) 

 

2.2. Structured Residual Design 

Structured residuals are so designed that each residual 
responds to a distinctive subset of faults and is insensitive 
to the others. When a particular fault occurs, some of the 
residuals do respond and others do not. Then the pattern of 
the response set, the Boolean fault code, is characteristic of 
the specific fault.  

With structured residuals, threshold testing is implemented 
separately on each component of the residual set. The 
outcome of the test applied to residual ri(t) is a binary 
variable εi(t) so that: 

mailto:jgertler@gmu.edu


     
⎩
⎨
⎧

≥
<

=
ii

ii
i ktrif

ktrif
t

)(1
)(0

)(ε       i = 1…n          (7) 

The vector  ε = [ε1     ε2    …  εn]T  is the fault signature or 
fault code. Now fault isolation is the comparison of the 
actually obtained code to a pre-defined set of codes.  

A structure is “isolating” if each column is different and 
“strongly isolating” if the columns stay different from valid 
columns when 1s are turned into 0s. Strong isolation is best 
achieved by column canonical structures, in which each 
fault code has the same number of 0s, each in a different 
pattern. Table 1 is a column canonical structure for four 
faults ∆x1 , ∆x2 , ∆x3 , ∆x4 and four residuals r1 ,  r2 ,  r3 ,  r4 . 
Note that such structures are normally designed for single 
faults. 

 ∆x1 ∆x2 ∆x3 ∆x4
r1 0 0 1 1 
r2 1 0 0 1 
r3 1 1 0 0 
r4 0 1 1 0 

Table 1: A structured residual set 

When structured residuals are generated by Eq. (6), then the 
ith row of W,  is so designed that the zeros assigned for 
the ith row of the structure matrix be implemented, that is, 
the ith residual be decoupled from all faults which appear 
with 0s in that row. This requires that: 

T
iw

0Bw =#iT
i                   (8) 

where Bi#  contains those columns of the B matrix which 
belong to the faults assigned for zero response in the ith 
residual structure. On the other hand, the rest of matrix B, 
Bi, should satisfy:  
 

T
i

iT
i vBw =                   (9) 

where each element of the vector vi must be nonzero 
(Gertler and Singer, 1990; Gertler, 1998). Note that the 
elements of vi  are the gains for the fault responses. 

 

3. MAXIMIZED SENSITIVITY FOR 
STRUCTURED RESIDUALS 

When certain rank conditions on B are satisfied, the 
structured residual design based on Eqs. (8) and (9) can be 
obtained. However, some gains in the vector vi  may be very 
small, resulting in poor fault sensitivity. This calls for the 
inclusion of sensitivity considerations in the design. 

3.1. Maximizing the Number of Zero Responses 

The fundamental approach to structured residual design 
(Gertler, 1998) implies maximizing the number τ of zero 
elements in each column of the structure matrix. In a 
system containing m linear relations, we have: 

Max (τ)  =  m − 1               (10) 

Based on this consideration, canonical structures can be 
pre-defined in terms of the number of outputs, m, and the 
number ρ of faults (Gertler, 1998). 

This approach results in simple isolation schemes. Besides, 
a fault gain intentionally set to zero does not pose 
sensitivity problems. However, this design does not 
actively address the possible small nonzero gains. 

Recall Eq.(8),  the vector is 1 × m and the matrix BT
iw i#  is 

m × τ. By (10), we have: 

1 ≤ τ ≤ m − 1                   (11) 

If the rank of the matrix Bi# is also τ (full column rank), 
then the degree of freedom of the vector is m − τ. 
Obviously, with τ=m−1, the degree of freedom of vector 

is 1. That implies that   is unique, apart from 
normalization. Thus the vector  v

T
iw

T
iw T

iw
i  is fixed.  

In order to avoid very small gains in by 
manipulating , one should make its freedom greater than 
1. Hence, the number τ of zeros in the structure should be 
less than its possible maximum. 

T
iv

T
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3.2. Maximizing the Sum of Squared Nonzero Gains  

In the framework of optimally sensitive structured 
residuals, one would choose , the rows of the 
transformation matrix W, such that the residuals are 
insensitive to a certain subset of faults but “most sensitive” 
to the rest. A performance index proposed by  

T
iw

 Qin and Li (1999) involved the sum of squared nonzero 
gains:   
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The optimization is subject to: 
 

           (a) ;   (b) 0Bw =#iT
i 1=iw ;    (c) 1=lb .   

where i =  1, 2, …, n, with n being the number of the 
residuals,  is a 1 × (k + m) row vector of the matrix B, 
and l = 1, 2, …, m.  

T
lb

This approach employs the largest possible freedom, which 
is m−1. Correspondingly, the number of the designed zeros 
is τ=1.   

Qin and Li (1999) also provided a closed-form solution for 
Eq.(12). However, as pointed out in (Xu and Kwan, 2003), 
this approach only optimizes the sum of squared nonzero 
gains in each row; the magnitude of some gains may be still 
very small while the others are large.  



3.3. Max-Min Nonzero Gains 

Clearly, nonzero gains with extremely small magnitude 
should be avoided. This calls for a max-min criterion for 
optimization. That is,  is to be so chosen that, while 
satisfying Eqs.(8) and (9), the smallest element in is 
made as large as possible. This max-min criterion has been 
presented  by Xu and Kwan (2003) as follows:  

T
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The optimization is subject to: 
 

                (a) ;   (b) 0Bw =#iT
i 1=iw ;    (c) 1=lb .   

where vij are elements of the vector .   T
iv

Note that the above performance index does not consider 
the effect of the noise. Since  the test thresholds are 
determined by the magnitude of the noise-induced part of 
the residual, a more accurate optimization criterion should 
concern the fault-effect to noise-effect ratio in the residual. 
Thus, the max-min criterion can be revised as: 
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where 
iwσ is the standard deviation of the noise in the j-th 

transformed residual. 

 

4. PARTIAL PCA-BASED STRUCTURED 
RESIDUAL DESIGN 

4.1.  LPC Modeling 

The full model in Eq.(2) may be expanded as BX=0, where 
the matrix X contains N sets of process variables. X can be 
treated by Singular Value Decomposition (SVD): 

X = P ΣQT                    (15) 

or by eigenstructure decomposition: 
R  = QΛQT   where XXR T

N
1

=                   (16) 

The eigenvector matrix Q=[Q1    Q2] consists of the 
representation subspace Q1 and the residual subspace Q2. 
The number of the columns in the sub-matrix Q2 , which is 
a column-normalized matrix, is equal to the number of the 
linear relations (that is, the outputs) in the system. By the 
subspace theory, the rows of Q2 span the same subspace as 
those of BT. Thus, by a transformation, Q2 can be 
considered as an estimate of the real parameter matrix BT. 
This PCA-based modeling approach is referred to as the 
Last Principal Components (LPC) modeling. 

4.2. Partial PCA-based Structured Residuals 

Structured residuals may be generated by PCA without any 
algebraic transformation, using the idea of partial PCA 
models (Gertler and McAvoy, 1997). Partial PCA models, 
obtained directly from training data, describe the 

relationships among subsets of variables, according to a 
specific Boolean structure like Table 1. 

Consider the system as Eq.(2). It contains m equations and 
m + k variables. Apply a transformation  to it: T

iw

0Bxw =)(0 tT
i                  (17) 

With Eq.(8),  Eq. (17) becomes: 
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     (18) 
Define , then Eq.(18) is re-written as: iT

i
T
i Bwv =

0xv =)(0 ti
T
i                    (19) 

Here is a subset of x)(0 tix 0(t), containing at least k + 1 
elements. This procedure can also be regarded as using τ 
(which is at most m−1 according to Eq.(11))  original 
equations to eliminate τ variables. The model represented 
by Eq.(19) can be obtained directly by the LPC approach. 
In order to distinguish this approach from the previous 
ones, we introduce a new vector symbol to replace the 
vector : 

T
iq

T
iv

0xq =)(0 ti
T
i                (20) 

Note that the vector  is an eigenvector and, as such, it 
has been normalized.  

T
iq

Consider Eq.(20) with (4); a residual arises due to faults as: 

       ri(t) = qi
T xi(t) = qi

T [xi
0(t) + ∆xi(t)] = qi

T ∆xi(t) 

That is, the residual only responds to the faults  but 
is completely decoupled from all the other faults. Thus, this 
is a structured residual. Several partial PCA models, each in 
a different structure following a structure matrix, can be 
created to lead to a structured fault isolation scheme. 

)(tix∆

If one considers the design of maximizing the number of 
zeros, the smallest number, k+1, of the variables should be 
selected. As per the previous discussion, it implies a single 
linear relation among those k+1 variables. If one needs 
more freedom for manipulating vector , then more than 
k+1 variables need to be chosen. If   k+p ( 1 < p ≤ m − 1) 
variables are selected, there exist p linear relations among 
the k+p variables, and the vector has p degrees of 
freedom, that is, there are p independent normalized 
vectors  that satisfy Eq.(20). Obviously, they are a p basis 
in the (k+p)-dimensional space.  
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5. PARTIAL PCA-BASED MAX-MIN DESIGN 

The partial PCA-based structured residual design has some 
good features, such as freedom from algebraic 
transformation and normalization. We may enjoy these 
advantages also in the max-min optimization framework.  



We still consider the k-input-m-output linear static system 
shown in Eq.(2). As we discussed before, if any k+p (1< p 
≤ m − 1) selected variables are treated by LPC modeling, 
there will be p (close to) zero eigenvalues, which 
correspond to p linear relations. Accordingly, there is an 
eigenvector sub-matrix , which is (k+m)×p, associated 
with those eigenvalues. Any can be obtained as a linear 
combination of all the column vectors in , namely, 

α
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pQ i.  Thus, the max-min optimization criterion can be 

described as: 
 
 max[min(|νij |)] = max[min|Q2

(p)αji |)]               (21) 
     αi       j                        αi      j 
subject to: 
 

1)(
2 =i

p αQ                   (22) 

Here αi = [α1i, α2i ,… αpi]T  and  j = 1, 2, …, p.  

Since  is an eigenvector sub-matrix (its columns are 
eigenvectors), it has: 
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To satisfy Eq.(22), we have: 
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i αQQα                  (24) 

With Eq.(23), we obtain: 
1=i

T
i αα  or 1=iα                  (25) 

Thus, the constraint in Eq.(22) becomes Eq. (25), which is 
simpler than the former.  

Compared to the optimization criteria in Eqs.(12) and (13), 
this optimum criterion is much simpler since the constraints 
(a) and (c) of the previous cases have been implied in the 
partial PCA structured design.  

If the effect of the noise is taken account, the max-min 
criterion should follow Eq.(14). The standard deviation, σ i, 
of the transformed noise in  is quite straightforward 
in this framework, namely: 
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where {λk + j} are the last p (close to) zero eigenvalues. 
Thus, a more accurate max-min criterion is: 
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subject to Eq.(25).  

If the noise power is small, the max-min criterion (21) is a 
reasonable approximation for (27).  

The degrees of freedom may be chosen in the range of 
1≤p≤m-1, offering an additional level of optimization. 
When increasing the degrees of freedom, the search is 
moved to a higher dimensional subspace. However, it is not 
guaranteed that better optima may be found in higher 
dimensions, because of the constraints posed by the forced 
zero fault responses. Also, with various values of p, the 
number of possible residual structures, and the size of their 
subset needed for isolation, may also change; this makes 
this extension difficult to tract. 
 
Special case: 3 outputs. Next, we will consider a special 
situation with a  k-input 3-output linear system. Note that 3 
is the minimal number of outputs which can offer two 
options, maximized zero design (p=1) and one-freedom 
max-min optimization design (p=2).   

When p=2, α = [α1, α2]T and ,  which is 
(k+2)×2.  Define: 

2 1 2[=Q q q

          (28) 2 1 2 1 2 1 1 2[ ][ ]Tα α α α= = = +v Q α q q q q
For each element of the vector v, we have: 
 

    1 1 2 2j jv q qα α= + j ,   ( j = 1 ,2, …, k + 2 )          (29) 
Note that the constraint in Eq.(25) becomes: 
 

2 2
1 2 1α α+ =     (30) 

Define: 1 sin( )α θ= and  2 cos( )α θ=                   (31) 
With Eq.(29), we have: 
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q
v q q arctg

q
θ= + +            (32) 

Therefore, according to Eqs.(21) and (25), the max-min 
criterion becomes:
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θ  is set between -π/2 and π/2 for a complete search. For 
each row 

1 2[T ]j jq q=q j
 of Q2, (33) represents a distorted 

absolute sine function, each with the same period but 
different amplitudes and shifts. By visualizing those curves, 
one can easily search the max-min value.   

For an example in Figure 1, four curves are plotted in one 
picture. The thick line represents the overall minimal values 
along α1 (or θ ). We locate the maximal value, marked by 
“o”, along it. The four points at the optimal α1 (or θ ) on the 
respective curves are the absolute values of the fault-to-
noise ratios for a row.  



 
Figure 1: Max-min search based on a cluster of sine curves 

Note that this picture also provides information about the 
maximized zero design. Where one of the curves touches 
zero, the other three points (along the dotted lines) are the 
fault-to-noise ratios with the maximized zeros design. 
 

6. SIMULATION STUDY 

Two 1-input-3-output systems will be investigated in this 
section. This type of systems has the simplest structure 
allowing the max-min optimization design. Through the 
studies with these systems, the key idea and procedure of 
the above max-min optimization design will be 
demonstrated.  

The general format of such 1-input-3-output systems is: 

1

2

3

y a
y u b
y c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

y π u              (34) 

In the simulation, a sequence of 1000 data with Gaussian 
distribution has been utilized as the input. There is no noise 
in the system. 

Considering all the variable set [u,  y1,   y2,   y3], we may 
develop a maximized zeros structure as: 

r1:  1   1   0   0  

r2:  1   0   1   0 

r3:  1   0   0   1                                 (35) 

r4:  0   1   1   0 

r5:  0   1   0   1 

r6:  0   0   1   1 

and the four  “1”s structure, which allows one additional 
freedom to optimize sensitivity in the max-min sense, as: 

        q1:  1   1   1   0  

        q2:  1   1   0   1     (36) 

        q3:  1   0   1   1 

        q4:  0   1   1   1 

Note that replacing one “1” with “0” in a line of structure 
(36), which is equivalent to deleting one variable in the 
partial PCA model set, we obtain a new line that belongs to 

set (35). Every qi line is related to three rj lines, e.g q1 to r1, 
r2, r4.  
 
Case 1:  π = [1.5   7.5   6.0]T .  
The maximized zero design as per structure (35) results in 
the transformation matrix as follows:  
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0.78090.6247-00
0.242600.9701-0

00.19610.9806-0
0.1643000.9864-

00.132100.9912-
000.55450.8322-

)1(Q
.   

For each column, that is for each fault, the minimal gain 
magnitudes are: 
 

[0.8322   0.5545    0.1321   0.1643] 

The visualization of the max-min optimization search is 
shown in Figure 2. Each plot corresponds to a qi. Note that 
the intersections of a dashed line with the curves represent 
the magnitude of the elements in the row vectors of . 
The optimization results in: 

(1)Q
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0.287700.7973-0.5306-
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For each column, the minimal gain magnitudes are: 

           [0.5306   0.5771    0.2337    0.2877] 

Except for the first gain, the gain magnitudes in this design 
are greater than with the first design. The minimal value 
in , 0.1321, is smaller than the minimum in , 
0.2337. Accordingly, we choose as the final residual 
transformation matrix.  

(1)Q (2)Q
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Figure 2: Visualization of max-min search for Case 1 
model 
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Figure 3: Visualization of max-min search for Case 2 
model 

Case 2:  π = [1.5   1.6   1.0]T .  
Following the same procedure, we obtain:  
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0.84810.5299-00
0.832000.5548-0

00.68380.7297-0
0.7072000.7070-
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000.55490.8319-

)1(Q
 

The minimal gains for each column are: 

        [0.7070   0.5548    0.5299    0.7072] 

The optimization results in:  
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0.4760-0.74110.4735-0
0.5290-0.662200.5307-
0.5130-00.68610.5158-
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Now the minimal gains are: 

       [0.4747    0.4735     0.6622     0.4760] 

The max-min optimization search is shown in Figure 3. 
Except for the third gain, the magnitudes in the first design 
are greater than in the second. The minimal value in , 
0.5299, is greater than the minimum in , 0.4735. 
Accordingly, we choose  as the better design.  

(1)Q
(2)Q

(1)Q

 

7. CONCLUSION 

We have considered structured residuals, generated in static 
linear systems by partial principal component modeling. 
Structured design has been combined with optimization for 
fault sensitivity, by giving up zeros in the residual structure 
in order to gain additional design freedom for optimization. 
A max-min criterion has been applied to the fault-to-noise 
response ratio in the residual. While this approach makes a 
lot of practical sense, it also leads to a procedure easy to 

visualize and to execute, especially if the dimension of 
optimization is just one. 
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