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Abstract— The problem of optimally fitting controllers to
data is examined for the identification of a controller from
a given class of MIMO controllers used in model reference
adaptive control. The problem of identifying a MIMO con-
troller from this class is formulated. This formulation leads
to an optimization problem where a best 2nm× m matrix
of parameters is looked for. It is proved that the solution
to this problem can be given in terms of the solution of
an optimization problem where a best 2nm2 × 1 vector of
parameters is looked for, which has already been solved for
the SISO case. Simulations are provided for an example
which has appeared a few times in the model reference
adaptive control literature. The formulation and solution of
this problem illustrates a unifying link between the design of
model reference adaptive control for SISO and MIMO linear
systems.
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I. I NTRODUCTION

The design of model reference adaptive control for
MIMO linear systems has been considered in several works
for the past few years ([1],[2],[3],[4],[5]). However, dif-
ferently from what happens with SISO linear systems,
where we have “a parameter estimation perspective for
model reference adaptive control” [6], the identification step
for MIMO linear systems has been dealt with, in many
situations, through the application of arbitrary identification
algorithms.

In this work, we show that it is possible to deal with
MIMO controllers in a way analogous to the way SISO
controllers were dealt with in [7]. More, specifically, we
examine the problem of fitting controllers to data for one
class of MIMO controllers used in model reference adaptive
control.

In the fitting controllers to data approach we take advan-
tage of the the division of the adaptive control problem
in two parts according to [9]: an algebraic part and an
analytic part. From the analytic part we formulate our
class of candidate controllers. The analytic part, however
is substituted by an optimization problem where we try to
find the controller that fits a performance criterion in an
optimal way.

For the MIMO problem, the class of candidate controllers
and performance criterion are related to the algebraic part

of the multivariable adaptive control problem presented in
([3],[4],[5]).

The formulation of the problem of fitting MIMO con-
trollers to data leads to an optimization problem where a
best 2nm×m matrix of parameters is looked for. It is proved
that the solution to this problem can be given in terms of the
solution of an optimization problem where a best 2nm2×1
vector is looked for, which has already been solved for the
SISO case [7].

II. BASIC DEFINITIONS

The problem of optimally fitting controllers to data
was defined in [7] according to the Willems’ behavioral
approach to dynamical systems [8]. Two basic definitions of
the behavioral framework were used, namely the definition
of a mathematical model and the definition of a data set.

Definition 2.1: A mathematical model is a pair(U,B),
with U the universum — its elements are called outcomes
— andB ⊆ U the behavior.

Definition 2.2: A data set is a nonempty subsetD of U.

Using these two definitions, defining a controller as
a mathematical model, noticing that the intersection of
behaviors is a way of additional restrictions on a system,
an optimization problem was formulated with the goal of
finding a best controller from a given class.

Definition 2.3: A controller is a mathematical model.
Problem 2.1:Given a class of controllers{(U,Bc(θ)) |

θ ∈ Θ}, whereΘ is a set of parameter vectors, the perfor-
mance (cost) indexIτ , the operatorE , the time truncation
operatorPτ , τ ∈ R+, and a data setDτ ⊂ PτU, find the set
of parametersΘ∗ such that

Θ∗(τ) = argmin
θ∈Θ

Jτ(θ) (1)

where

Jτ(θ)
∆
= E ({Iτ(b) | b∈ Pτ(P−1

τ (Dτ)∩Bc(θ))}).

andE denotes either the mean, the max, or the expectation
operator andIτ is a functional

Iτ : Pτ(U) → R.

Let us notice thatP−1
τ (Dτ) gives all the information

consistent with the dataDτ . The expression(P−1
τ (Dτ))∩Bc

gives the behavior of the closed loop system.



III. E XAMINATION OF THE MIMO MRAC PROBLEM

The adaptive control problem is usually divided into
two parts [9], an algebraic part and an analytic part. The
algebraic part deals with a matching problem whereas the
analytic part deals with the updating of controller parame-
ters in such a way that the solution of the matching problem
is attained.

A. The Algebraic Part

An examination of the algebraic part of the MIMO
MRAC problem is useful for the specification of the class of
candidate controllers to be used and for the specification of
the model to be followed in the formulation of the problem
of fitting MIMO controllers to data.

For the MIMO MRAC ([3],[4],[5]), the “controller” struc-
ture is parameterized by a variableν which is an upper
bound on the maximum of the observability indices of
the plant. For the problem of fitting MIMO controllers to
data, on the other hand, since we do not have a priori
plant information, the class of candidate controllers will
be simply indexed by a parametern. The data will tell us
whether a given controller of this class corresponds to a
good or a bad match.

Regarding the model to be followed, for the multivariable
model reference control problem ([3],[4],[5]) the model to
be followed is given by a matrix

H(s) =











1
(s+a)r1 0 · ·

1
(s+a)r2−1

1
(s+a)r2 0 ·

· · · ·
· · · 1

(s+a)rm











.

where∂Hi j (s) < r i −1 anda is arbitrary, but fixed a priori.
The matrixH(s) corresponds to the Hermite normal form

of the plant P(s) ∈ ℜm×m, i.e. there exists a plantP(s) ∈
ℜm×m such that the following property is satisfied

P(s) = H(s)U(s),

with U(s) ∈ ℜm×m and lim
s→∞

U(s) = Kp.

For the fitting controllers to data problem, on the other
hand, we can specify the above model to be followed,
but the above statement should be modified to “. . .H(s)
corresponds to the Hermite normal formfor someplant
P(s) ∈ ℜm×m.”

B. The Analytic Part

For the fitting controllers to data problem, the analytic
part of the MIMO MRAC problem is substituted by an
optimization problem. The cost to be minimized is different
from the cost used in a fitting models to data problem, since
it takes in consideration the norm of the reference signal.
Notice that this is important in light of the fact that for the
MRAC problem, the equations that determine the control
law constitute a parameter relation between plant signals
and the reference signal. So, given plant data and a control

law, the reference input signal is thenimplicitly determined.
In particular, this means that any reference signal thusly
determined will in general depend on hypothesized control
law parameters. That is, a different reference signal is
associated, in general, with each candidate controller. The
cost to be considered will have the form

‖y−H[r]‖2
τ

‖r‖2
τ

, if ‖r‖τ 6= 0.

Notice that the size of the reference signal has not
been take in consideration in the MIMO MRAC, since a
perfect matching is expected due to the hypotheses imposed
on the plant. An explanatory reasoning could be that for
that case the optimal cost would be equal to zero and,
consequently, the size of the denominator in the above
expression would be irrelevant. Let us notice however, that
the cost function to be minimized is not convex, what might
lead to the existence of several local minima, which might
be a problem for gradient algorithms.

IV. PROBLEM FORMULATION

A. The System

PlantP
Bp

ControllerC
Bc

r(t) u(t) y(t)

Fig. 1. Feedback control system.

Consider the system in Figure 1. As in [7], we omit any
arrows on the block diagram in Figure 1. This illustrates
a departure from the usual input/output setting, from the
processor point of view. For the fitting controllers to data
problem which we are about to formulate,these remarks
indicate that we are interested in relations involving signals
instead of functions. More specifically, notice that relations
define sets and subsets, which may be used to define the
feasible region in an optimization problem. Let us notice,
however, that this does not preclude the a posteriori use of
an identified controller in an input/output setting.

B. The Universum

Let (r,y,u) ∈ U where U = R ×Y ×U = L nz
2e . Here

R = L nr
2e is the set of reference signals,Y = L

ny
2e and

U = L nu
2e are sets of plant signals, andnz = nr + ny + nu.

In this paper we focus on the casenr = ny = nu = m.

C. The Data Set

The plant information imposes restrictions only on the
past values of the signalsu and y. Thus the data set is
given by

Dτ = {(r,y,u) ∈ Pτ(U) | y = ydata,u = udata},
for some

(ydata,udata) ∈ Pτ(Y ×U ).



D. The Performance (Cost) Index

For the multivariable model reference control problem
([3],[4],[5]) the model to be followed is given by a matrix

H(s) =











1
(s+a)r1 0 · ·

1
(s+a)r2−1

1
(s+a)r2 0 ·

· · · ·
· · · 1

(s+a)rm











.

where∂Hi j (s) < r i −1 anda is arbitrary, but fixed a priori.
Before introducing our performance index, let us define

the norm to be used.
Definition 4.1: Given a constantσ > 0, we define

the exponentially-weighted truncatedL2 inner-products
< x,y >τ and norm‖x‖τ by

< x,y >τ
∆
=

∫ τ

0
e−2σ(τ−t)yT(t)x(t) dt (2)

‖x‖τ
∆
=
√

< x,x >τ . (3)

Definition 4.2: Let the performance (cost) index be given
by

Iτ((r,y,u))
∆
=







‖y−H[r]‖2
τ/‖r‖2

τ , if ‖r‖τ 6= 0
0, if ‖r‖τ +‖y‖τ = 0
∞, otherwise.

E. The Class of Candidate Controllers

The class of candidate controllers is similar to the one
used in multivariable model reference adaptive control
([3],[4],[5]) and also similar to the one used in the [9]
and [10] for the SISO case. In order to define the class
of candidate controllers, we first define a vector of filters as
in ([7],[11]). Notice that we define a vector of filters, and
not just a vector of time-domain filtered signals as in [9]
and [10]. Let us definev : L m

2e → L
m(n−1)
2e by

v̇(q) =









Λ 0 · 0
0 Λ · 0
· · · ·
0 0 · Λ









v(q)

+









l 0 · 0
0 l · 0
· · · ·
0 0 · l









q (4)

(v(q))(0) = 0 (5)

where(Λ, l) is an asymptotically stable system in control-
lable canonical form, with

λ (s) = det(sI−Λ) (6)

for some monic Hurwitz polynomialλ (s) of degreen−1.
Let us also define

w(u,y) = (uT ,vT(u),yT ,vT(y))T . (7)

The class of controllers considered is given by
{(U,Bc(θ)) | θ ∈ Θ}, where

Bc(θ) = {(r,y,u) | r = θ Tw(u,y)} and

Θ is the set of 2nm× m matrix of real-valued constant
parameters.

V. PROBLEM SOLUTION

A. The Set of Optimal Controllers

Theorem 5.1:The set of parameter matricesΘ∗(τ),

Θ∗(τ) = arg min
θ∈R2nm×m

E {Iτ(b) | b∈ Pτ(P
−1
τ (Dτ)∩Bc(θ))}

is given by

Θ∗(τ) =















[

θ ∗
1 · · θ ∗

m
]

| θ ∗ =









θ ∗
1

·
·

θ ∗
m









=

arg min
θ∈R2nm2

{θ T
A(τ)θ −2θ T

B(τ)+C(τ)

θ T
D(τ)θ

}
}

,

where

A(τ) =









A11(τ) A12(τ) · A1m(τ)
A21(τ) A22(τ) · A2m(τ)

· · · ·
Am1(τ) Am2(τ) · Amm(τ)









,

B(τ) =









B1(τ)
B2(τ)

·
Bm(τ)









,

D(τ) =









D11(τ) 0 · 0
0 D22(τ) · 0
· · · ·
0 0 · Dmm(τ)









,

with
A jl (τ) =

∫ τ

0
e−2σ(τ−t)

m

∑
i=max{ j,l}

Hi j [wdata](Hil [wdata])
Tdt,

B j(τ) =
∫ τ

0
e−2σ(τ−t)

m

∑
i= j

ydata,iHi j [wdata]dt,

C(τ) =
∫ τ

0
e−2σ(τ−t)yT

dataydatadt,

Di j (τ) =
∫ τ

0
e−2σ(τ−t)wdatawdata

Tdt for i = j,

= 0 otherwise, and

wdata = w(udata,ydata) (8)

provided that‖udata‖τ +‖ydata‖τ 6= 0.



Proof. Let us prove, first, thatPτ(P−1
τ (Dτ)∩Bc(θ)) is a

unitary set (i.e., it has one and only one point):

Dτ = {(r,y,u) ∈ Pτ(U) |
y = ydata,u = udata}

P−1
τ (Dτ) = {(r,y,u) ∈ U |

Pτ(y) = ydata,Pτ(u) = udata}
P−1

τ (Dτ)∩Bc(θ) = {(r,y,u) ∈ U |
M0[r] = θ Tw(u,y),

Pτ(y) = ydata,Pτ(u) = udata}
Pτ(P−1

τ (Dτ)∩Bc(θ)) = {(r,y,u) ∈ Pτ(U) |
M0[r] = θ Twdata,

y = ydata,u = udata}.

where wdata is defined by the equation(8) and by the
equations(4) to (5).

Thus Pτ(P−1
τ (Dτ)∩Bc(θ)) is a unitary set, which im-

plies that we can restrict ourselves to the problem of finding
the set of parametersΘ∗(τ) such that

Θ∗(τ) = argmin
θ∈Θ

{Iτ(b) | b∈ Pτ(P
−1
τ (Dτ)∩Bc(θ))}

= argmin
θ∈Θ

{‖ydata−H[θ Twdata]‖τ
2

‖θ Twdata‖τ
2 }. (9)

Let us defineθ1, . . . ,θm by

θ T =









θ T
1
·
·

θ T
m









.

Then

r = θ Twdata =









θ T
1 wdata

·
·

θ T
mwdata









and, consequently,

r =









∑m
j=1H1 j [θ T

j wdata]

·
·

∑m
j=1Hm j[θ T

j wdata]









,

(H[r])TH[r]

=
m

∑
i=1

m

∑
j=1

m

∑
l=1

Hi j [θ T
j wdata](Hil [θ T

l wdata])
T

=
m

∑
i=1

m

∑
j=1

m

∑
l=1

θ T
j Hi j [wdata](Hil [wdata])

Tθl

=
m

∑
j=1

m

∑
l=1

θ T
j (

m

∑
i=1

Hi j [wdata](Hil [wdata])
T)θl

=
m

∑
j=1

m

∑
l=1

θ T
j (

m

∑
i=max{ j,l}

Hi j [wdata](Hil [wdata])
T)θl ,

yT
dataH[r] =

m

∑
i=1

ydata,i

m

∑
j=1

Hi j [θ T
j wdata]

=
m

∑
j=1

θ T
j

m

∑
i=1

ydata,iHi j [wdata]

=
m

∑
j=1

θ T
j

m

∑
i= j

ydata,iHi j [wdata].

Let us define

θ ∆
=









θ1

·
·

θm









, andA(τ), B(τ), C(τ), D(τ),

as in the statement of the theorem. We can, then, state that
the following equality holds

‖ydata−H[θ Twdata]‖τ
2

‖θ Twdata‖τ
2 =

θ T
A(τ)θ −2θ T

B(τ)+C(τ)

θ T
D(τ)θ

.

From this equality and the expression 9, the thesis follows.
2

B. Matrices Properties

Property 5.1: The null space ofD(τ) is contained in the
null space ofA(τ) and in the null space ofBT(τ).
Proof. We have that

D(τ)θ = 0

⇒ D j j (τ)θ j = 0

⇒ θ T
j D j j (τ)θ j = 0

⇒ ‖θ T
j wdata‖τ

2
= 0

⇒ ‖Hi j [θ T
j wdata]‖τ

2
= 0

which implies that

A(τ)θ = 0 and

BT(τ)θ = 0.

2

Property 5.2: The matricesD(τ) and
[

A(τ) −B(τ)
−BT(τ) C(τ)

]

are symmetric and positive semi-definite.
Proof. A simple inspection reveals that these matrices are
symmetric. The positive semi-definiteness of these matrices
follows by observing that

[

θ
1

]T [

A(τ) −B(τ)
−BT(τ) C(τ)

][

θ
1

]

= ‖ydata−H[θ Twdata]‖τ
2 ≥ 0

θ TD(τ)θ =
m

∑
j=1

‖θ T
j wdata‖τ

2 ≥ 0



2

These properties together with the theorem proved imply
that the optimization problem derived from the problem
of fitting MIMO controllers to data can be reduced to an
optimization problem derived from a problem of fitting
SISO controllers to data. This problem is solved in [7].

VI. EXAMPLE

Let us choose

H(s) =

[ 1
s+1 0
0 1

s+1

]

,

as in ([3],[4],[5]). Let us also chooseΛ = −1, l = 1 and
σ = 0.01. The filter w defined in section IV-E is then
given byw(u,y) = (uT , 1

s+1[uT ],yT , 1
s+1[yT ])T and the class

of candidate controllers is given by{(U,Bc(θ)) | θ ∈ Θ},
whereBc(θ) = {(r,y,u) | r = θ Tw(u,y)} and θ is a 8×2
matrix of constant parameters inR. For purposes of this
simulation let “the true but unknown plant” be given by the
following noisy state space realization of the plant given in
([3],[4],[5])

ẋ = Apx+Bpu+0.01np

y = Cpx

where

Ap =

































0 1 0 0 0 0 0

0 0 1 0 0 0 0

−2 −3 −3 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 −2 −5 −6 −4

































,

Bp =

































0 0

0 0

1 0

0 0

0 0

0 0

0 1

































,

Cp =

[

0 1 1 −4 −7 −7 −2

1 0 0 1 3 3 1

]

.

np is a vector of uncorrelated normally distributed random
signals with mean zero, variance one and standard deviation
one. Let the reference signal

r(t) =

[

sin(5t)+sin(7t)+sin(10t)

sin(6t)+sin(8t)+sin(9t)

]

, ∀t ≥ 0.

as in ([3],[4],[5]). We obtain(ydata,udata) by closing the
loop with the initial controller associated to the matrix of
parameters

θ(0) =







































−4 0

0 −1/2

0 0

0 0

0 0

0 0

0 0

0 0







































([3],[4],[5]) and the initial plant state given byx = 0. Thus
we are able to use our theory to compute a new controller
parameterθ(t) based on the data available at any given time
t = τ. Controller adaptation is achieved by repeating this
operation periodically as timeτ evolves and(ydata,udata)
accumulates, in order to update the controller parameter
θ . Using this procedure to update the controller parameter
vector θ(t) every 2 seconds, starting at timeτ = 2, we
obtained the simulation results shown in figures 2 and 3,
whereym = H[r].

0 10 20 30 40 50 60 70 80 90 100
−0.6

−0.4

−0.2

0

0.2

0.4

time(seconds)

y−
y m

y(1)−y
m

(1)
y(2)−y

m
(2)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

time(seconds)

u

u(1)
u(2)

Fig. 2. Simulation Results

VII. C ONCLUDING REMARKS

The problem of fitting controllers to data was examined
for one class of MIMO controllers used in model reference
adaptive control ([3],[4],[5]). The formulation of the MIMO
problem lead to an optimization problem where a best
2nm×m matrix is looked for. The solution to this problem
was shown to be reduced to the solution of a problem
where a best 2nm2 × 1 vector is looked for, which is
solved in [7] when dealing with the identification of SISO
controllers.Thus the problem was solved and an algorithm
for fitting MIMO controllers to data was obtained. This
algorithm was applied to a noisy realization of a plant and
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Fig. 3. Simulation Results

a reference model which appeared in the model reference
adaptive control literature ([3],[4],[5]). Simulation results
were provided which illustrated the applicability of the
method. On the theoretical side, it was shown that the
formulation of the problem of optimally fitting controllersto
data illustrated a unifying link between the design of model
reference adaptive control for SISO linear systems and the
design of model reference adaptive control for MIMO linear
systems.
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