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Abstract— Reinforcement learning (RL) methods provide a
means for solving optimal control problems when accurate
models are unavailable. For many such problems, however, RL
alone is impractical and the associated learning problem must
be structured somehow to take advantage of prior knowledge.
In this paper we examine the use of such knowledge in the form
of a stable controller that generates control inputs in parallel
with an RL system. The controller acts as a supervisor that
not only teaches the RL system about favorable control actions
but also protects the learning system from risky behavior. We
demonstrate the approach with a simulated robotic arm and a
real seven-DOF manipulator.

I. INTRODUCTION

Reinforcement learning (RL) is an artificial intelligence
paradigm for optimal control. With origins in animal learning
research—especially trial-and-error learning—modern RL al-
gorithms are built upon well established mathematical models
for decision making and control. The primary advantage
of RL over more traditional optimal control techniques is
that accurate models, while useful for RL, are not required
for optimal performance. But like other forms of intelligent
control, RL has several drawbacks that limit its effectiveness
when put into practice with realistic control problems. In
particular, the time required for learning can be prohibitive,
and system behavior during learning can lead to unacceptable
risks. For this reason, in most large-scale applications RL
is used with simulated rather than real dynamic systems.
To overcome these difficulties, we propose a control frame-
work that combines RL with conventional methods. More
specifically, we use a stable, yet sub-optimal controller that
serves as a kind of supervisor for the RL component of the
framework.

Almost all RL methods that incorporate supervisory infor-
mation, e.g., [1]–[7], do so by modifying avalue function,
which is typically used to store a learned ranking of the
control actions available in a given state. The corresponding
control policy is then represented implicitly, usually as the
action with the best ranking for each state. The alternative
described in this paper involves anactor-critic architecture
for RL [8]. Actor-critic architectures differ from other value-
based methods in that separate data structures are used for
the control policy (the “actor”) and the value function (the
“critic”). The responsibility of the critic is to learn how the
actor’s behavior affects the performance objective, and this

information, in turn, is useful for the actor to learn how to
adjust its control policy toward optimality.

One important advantage of the actor-critic framework
is that the explicitly represented policy can be modified
directly by standard supervised learning methods. For in-
stance, backpropagation can be used to update the actor when
implemented as a multilayer artificial neural network. In any
case, the actor can change its behavior based on training data
provided by a supervisor, such as an easily designed con-
troller, without the need to calculate the associated values of
those data. The critic (or some other comparable mechanism)
is still required for optimization, whereas the supervisor helps
the actor achieve a level of proficiency whenever the critic
has a poor estimate of the value function. In the next section
we describe asupervisedactor-critic architecture where the
supervisor supplies not only error information for the actor
to learn from, but also control actions for the plant.

II. SUPERVISED ACTOR-CRITIC ARCHITECTURE

Figure 1 shows a schematic of the usual actor-critic
architecture [9] augmented by three major pathways for
incorporating supervisor information. Along the “shaping”
pathway, the supervisor supplies the critic a source of evalua-
tive feedback, orreward, in addition to the rewards normally
provided by the plant, orenvironment. Shaping essentially
simplifies the task of the learning system by making good
control actions easier to discriminate from bad ones. For
instance, the critic may receive favorable evaluations for
behavior which is only approximately correct given the
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Fig. 1. Actor-critic architecture and several pathways for supervisor
information.



original task. As the actor gains proficiency, the supervisor
then gradually withdraws the additional reward feedback to
shape the learned policy toward optimality for the true task.
With “nominal control” the supervisor sends control signals,
or actions, directly to the environment. For example, the
supervisor may override bad commands from the actor as
a way to ensure safety and to guarantee a minimum standard
of performance. And along the “exploration” pathway, the
supervisor provides the actor with hints about which actions
may or may not be promising for the current situation,
thereby altering the exploratory nature of the actor’s trial-
and-error learning. In this section, we focus on the latter two
pathways, and we examine the use of supervised learning
which offers a powerful counterpart to RL methods.

The combination of supervised learning with actor-critic
RL was first suggested by Clouse and Utgoff [10] and
independently by Benbrahim and Franklin [11]. Figure 2
shows our version of the supervised actor-critic architecture,
which differs from previous work in a key way described in
Section II-B. Taken together, the actor, the supervisor and
the gain scheduler form a “composite” actor that sends a
composite action to the environment. Note that we use “gain
scheduling” in a broad sense to mean the blending of two or
more sources of control actions, cf. [12]. The environment
responds to the composite action with a transition from the
current state,s, to the next state,s′. The environment also
provides an evaluation called the immediate reward,r. The
job of the critic is to observe states and rewards and to build
a value function,Vπ(s), that accounts for both immediate
and future rewards received under the composite policy,π.
This value function is defined recursively by the Bellman
equation,

Vπ(s) =
∑
s′∈S

Pr(s′|s,a){R(s′) + γVπ(s′)},

whereS is the set of admissible states,R(s′) is the expected
value ofr, γ ∈ [0, 1] is a factor that discounts the value of the
next state, and Pr(s′|s,a) is the probability of transitioning to
states′ after executing actiona = π(s).

For RL problems, the expected rewards and the state-
transition probabilities are typically unknown. Learning,
therefore, must proceed from samples, i.e., from observed
rewards and state transitions, and temporal-difference (TD)
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Fig. 2. The supervised actor-critic architecture.

methods [13] are commonly used to update the state-value
estimates, V(s), by an amount proportional to the TD error,
which is defined as

δ = r + γV(s′)− V(s).

Whenever the TD error is positive, the state of affairs is
better than expected and so one increases the estimated
value of states. Similarly, whenδ < 0, the action chosen
according toπ resulted in a situation worse than expected and
so one decreasesV(s). In short, TD methods improve past
estimates of the value function by using future—typically
more accurate—estimates ofV.

A. The Gain Scheduler

For the examples in Section III, the gain scheduler com-
putes the composite action,a, as simply a weighted sum of
the actions given by the component policies. In particular,

a← kaE + (1− k)aS,

whereaE is the actor’s exploratory action andaS is the super-
visor’s action, as given by policiesπE and πS, respectively.
(The supervisor’s actions are observable but its policy is
generally unknown.) We also denote byaA the actor’s greedy
action determined by the corresponding policy,πA. Typically,
πE is a copy ofπA modified to include an additive random
variable with zero mean. Thus, each exploratory action is
simply a noisy copy of the corresponding greedy action,
although we allow for the possibility of more sophisticated
exploration strategies.

The parameterk ∈ [0, 1] interpolates betweenπE andπS,
and thereforek determines the level of control, or autonomy,
on the part of the actor. In general, the value ofk varies
with state, although we drop the explicit dependence ons to
simplify notation. The parameterk also plays an important
role in modifying the actor’s policy, as described in more
detail below. We assume thatπA is given by a function
approximator with the parameter vectorw, and after each
state transition, those parameters are updated according to a
rule of the form

w← w + k∆wRL + (1− k)∆wSL, (1)

where ∆wRL and ∆wSL are the individual updates based
on RL and supervised learning, respectively. Thus,k also
interpolates between two styles of learning.

B. The Actor Update Equation

To make the reinforcement-based adjustment to the param-
eters ofπA we compute

∆wRL ← αδ(aE− aA)∇wπA(s), (2)

where α is a step-size parameter. When the TD error is
positive, this update will push the greedy policy evaluated
at s closer toaE, i.e., closer to the exploratory action which
led to a state with estimated value better than expected.



Similarly, when δ < 0, the update will pushπA(s) away
from aE and in subsequent visits to states the corresponding
exploratory policy will select this unfavorable action with
reduced probability.

To compute the supervised learning update,∆wSL, we seek
to minimize in each observed state the supervisory error

E =
1
2
[πS(s)− πA(s)]2.

Locally, this is accomplished by following a steepest descent
heuristic, i.e., by making an adjustment proportional to the
negative gradient of the error with respect tow:

∆wSL← −α∇wE(s).

Expanding the previous equation with the chain rule and
substituting the observed actions gives the usual kind of
gradient descent learning rule:

∆wSL← α(aS− aA)∇wπA(s). (3)

Finally, by substituting Eqs. (2) and (3) into Eq. (1) we obtain
the desired actor update equation:

w← w + α[kδ(aE− aA) + (1− k)(aS− aA)]∇wπA(s). (4)

Eq. (4) summarizes a steepest descent algorithm wherek
trades off between two sources of gradient information:
one from a performance surface based on the evaluation
signal and one from a quadratic error surface based on
the supervisory error. A complete algorithm was presented
in [14].

As mentioned above, the architecture shown in Fig-
ure 2 is similar to one suggested previously by Clouse and
Utgoff [10] and by Benbrahim and Franklin [11]. However,
our approach is novel in the following way: In the figure, we
show a direct connection from the supervisor to the actor,
whereas the supervisor in both [10] and [11] influences the
actor indirectly through its effects on the environment as
well as the TD error. Using our notation the corresponding
update equation for these other approaches, e.g., [11, Eq. (1)],
essentially becomes

w← w + α[kδ(aE− aA) + (1− k)δ(aS− aA)]∇wπA(s) (5)

= w + αδ[kaE + (1− k)aS− aA]∇wπA(s). (6)

The key attribute of Eq. (5) is that the TD error modulates the
supervisory error,aS−aA. This may be a desirable feature if
one “trusts” the critic more than the supervisor, in which case
one should view the supervisor as an additional source of
exploration. However, Eq. (5) may cause the steepest descent
algorithm to ascend the associated error surface, especially
early in the learning process when the critic has a poor
estimate of the true value function. Moreover, whenδ is
small, the actor loses the ability to learn from its supervisor,
whereas in Eq. (4) this ability depends primarily on the
interpolation parameter,k.

III. EXAMPLES

Previously, we demonstrated the benefits of our approach
with a ship steering task, i.e., with a standard problem from
the optimal control literature [14]. The examples in this paper
demonstrate that the style of control and learning used for
the ship steering task is also suitable for learning to exploit
the dynamics of a robotic arm. Each of these examples is a
targeting task where the supervisor is a stable controller that
brings the system to goal, although in a sub-optimal fashion.
Thus, the supervisor enables the composite actor in Figure 2
to solve the taskon the very first trial, and on every trial
while it improves, whereas the task is virtually impossible to
solve with RL alone.

The implementation of the learning algorithm was given
in [14], although several relevant details are repeated here.
In particular, we implemented both actor and critic by a
tile coding scheme, i.e., CMAC neural network [15], with
a total of 25 tilings, or layers, per CMAC. To make the
interaction between supervisor and actor dependent on state,
the interpolation parameter,k, was set according to a state-
visitation histogram, also implemented as a CMAC. During
each step of the learning process, the value ofk was set to the
CMAC output for the current state (initially 0) with values
cut off at a maximum ofk = 1, i.e., at full autonomy. At the
end of each trial, the weights from the “visited” histogram
tiles were incremented by a small amount. Thus, the gain
scheduler made a gradual shift from full supervision to full
autonomy as the actor and critic acquired enough control
knowledge to reach the goal reliably. A decay factor of 0.999
was also used to downgrade the weight of each CMAC tile;
in effect, autonomy “leaked away” from infrequently visited
regions of state space.

A. Simulated Robotic Arm

Our first example involves a simulated robotic arm that
was modeled as a two-link pendulum with each link having
length 0.5 m and mass 2.5 kg. The equations of motion [16]
were integrated numerically using Euler’s method with a
step size of 0.001 s. Actions from both actor and supervi-
sor were generated every 0.75 s and were represented as
two-dimensional velocity vectors with joint speed limits of
±0.5 rad/sec. The task was to move with minimum effort
from the initial configuration with joint angles of−90 and
0 degrees to the goal configuration with joint angles of 135
and 90 degrees. For this demonstration, effort was quantified
as the total integrated torque magnitude.

The supervisor in this example is a hand-crafted controller
that moves the arm at maximum speed directly toward the
goal in configuration space. Therefore, actions from the
supervisor always lie on a unit square centered at the origin,
whereas the actor is free to choose from the entire set
of admissible actions. In effect, the supervisor’s policy is
to follow a straight-line path to the goal—which is time-
optimal given the velocity constraints. Due to the dynamics



of the robot, however, straight-line paths are not necessarily
optimal with respect to other performance objectives, such
as minimum energy.

A lower-level control system was responsible for trans-
forming commanded velocities into motor torques for each
joint. This occurred with a control interval of 0.001 s and in
several stages: First, the commanded velocity was adjusted
to account for acceleration constraints that eliminate abrupt
changes in velocity, especially at the beginning and end of
movement. The adjusted velocity, along with the current
position, was then used to compute the desired position at
the end of the next control interval. Third, a proportional-
derivative (PD) controller converted this target position into
joint torques, but with a target velocity of zero rather than the
commanded velocity. And finally, a simplified model of the
arm was used to adjust the feedback-based torque to include
a feedforward term that compensates for gravity. This scheme
is intended to match the way some industrial manipulators
are controlled once given a higher-level movement command,
e.g., velocity as used here. Gravity compensation guarantees
stability of the lower-level controller [16], and the PD target
velocity of zero helps ensure that the arm will stop safely
given a communications failure with the higher level.

The above control scheme also holds an advantage for
learning. Essentially, the manipulator behaves in accordance
with a tracking controller—only the desired trajectory is
revealed gradually with each control decision from the higher
level. At this level, the manipulator behaves like an over-
damped, approximately first-order system, and so policies
need not account for the full state of the robot. That is, for
both actor and supervisor it suffices to use reduced policies
that map from positions to velocity commands, rather than
policies that map from positionsand velocities to acceler-
ation commands. As is common with tracking controllers,
this abstraction appears to cancel the dynamics we intend to
exploit. However, by designing an optimal control problem,
we allow the dynamics to influence the learning system by
way of the performance objective, i.e., through the reward
function.

For the RL version of this optimal control problem, the
objective was to maximize the total discounted reward,
with immediate rewards computed as the negative effort
accumulated over each 0.75 s decision interval. The discount
parameter in this example was set toγ = 1, i.e., no dis-
counting. Exploratory actions,aE, were Gaussian distributed
with a mean equal to the greedy action, except thataE was
clipped at the joint speed limits. The standard deviation of
the exploratory actions was initially 1.0 rad/sec, but this
value decayed exponentially toward zero by a factor of 0.999
after each trial. CMAC tiles were uniform with a width of
25 degrees along each input dimension; the actor CMAC was
initialized to zero whereas the critic CMAC was initialized
to −300 (a pessimistic estimate of total negative effort).

Figure 3(a) shows the configuration of the robot every
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Fig. 3. Simulated two-link arm after (a) no learning and (b,c) 5000 learning
trials. Configuration-space paths after learning are shown in white, and the
grayscale region indicates the level of autonomy from the state-visitation
histogram, with values ranging fromk = 0 (white) tok = 1 (black).

0.75 s along a straight-line path to the goal. The proximal
joint has more distance to cover and therefore moves at
maximum speed, while the distal joint moves at a proportion-
ately slower speed. The total effort for this fully supervised
policy is 258 Nm·s. Figures 3(b) and 3(c) show examples
of improved performance after 5000 trials of learning, with
a final cost of 229 and 228 Nm·s, respectively. In each of
the left-hand diagrams, the corresponding “spokes” from the
proximal link fall in roughly the same position, and so the
observed improvements are due to the way the distal joint
modulates its movement around the straight-line path, as
shown in the right-hand diagrams.

Figure 4 shows the effects of learning averaged over
25 runs. The value of the optimal policy for this task is
unknown, although the best observed solution has a cost
of 216 Nm·s. Most improvement happens within 400 trials
and the remainder of learning shows a drop in variability
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Fig. 4. Effects of learning for the simulated two-link arm averaged over
25 runs of 5000 trials each.

as the exploration policy “decays” toward the greedy control
policy. One difficulty with this example is the existence of
many locally optimal solutions to the task. This causes the
learning system to wander among satisfactory solutions, with
convergence to one of them only when forced to do so by
the reduced exploration.

B. Case Study With a Real Robot

To demonstrate that the methods in this paper are suitable
for real robots, we replicated the previous example with
a seven degree-of-freedom whole arm manipulator (WAM;
Barrett Technology Inc., Cambridge, MA). Figure 5 shows
a sequence of several postures as the WAM moves from the
start configuration (far left frame) to the goal configuration
(far right frame). As with the previous example the task was
formulated as a minimum-effort optimal control problem—
utilizing a stable tracking controller and a supervisor that
generates straight-line trajectories to the goal in configuration
space. The joint speed limits for this example were increased
to±0.75 rad/sec rather than±0.5 rad/sec as used above. The
learning algorithm was virtually identical to the one in the
previous example, although several parameter values were
modified to encourage reasonable improvement with very
few learning trials. For instance, the histogram increment
was increased slightly, thereby facilitating a faster transition

Fig. 5. Representative configurations of the WAM after learning.

to autonomous behavior. Also, the level of exploration did
not decay, but rather remained constant, andaE was Gaussian
distributed with a standard deviation of 0.25 rad/sec.

Figure 6 shows the effects of learning averaged over 5
runs. Performance worsens during the first 10 to 20 trials due
to the initialization of the actor’s policy. More specifically,
at the start of learning the actor’s policy maps all inputs to
the zero velocity vector, and so the actor cannot move the
robot until it has learned how to do so from its supervisor.
The drawback of this initialization scheme—along with a fast
transition to autonomous behavior—is that early in the learn-
ing process the supervisor’s commands become diminished
when blended with the actor’s near-zero commands. The
effect is slower movement of the manipulator and prolonged
effort while raising the arm against gravity. However, after
60 trials of learning the supervised actor-critic architecture
shows statistically significant improvement (p < 0.01) over
the supervisor alone. After 120 trials, the overall effect of
learning is approximately 20% reduced effort despite an
increased average movement time from 4.16 s to 4.34 s
(statistically significant withp < 0.05).

IV. CONCLUSIONS

The examples in Section III demonstrate a gradual
shift from full supervision to full autonomy—blending two
sources of actions and learning feedback. Much like the
examples by Clouse [1] and by Maclin and Shavlik [4], this
shift happens in a state-dependent way with the actor seeking
help from the supervisor in unfamiliar territory. Unlike these
other approaches, the actor also clones the supervisor’s
control policy very quickly over the visited states. This style
of learning is similar to methods that seed an RL system with
training data, e.g., [7], [17], although with the supervised
actor-critic architecture, the interpolation parameter allows
the seeding to happen in an incremental fashion at the same
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Fig. 6. Effects of learning for the WAM averaged over 5 runs of 120 trials
each.



time as trial-and-error learning.
One drawback of these methods for control of real robots

is the time needed for training. By most standards in the RL
literature, the supervised actor-critic architecture requires rel-
atively few trials, at least for the examples presented above.
However, some robot control problems may permit extremely
few learning trials, say 10 or 20. Clearly, in such cases we
should not expect optimality; instead we should strive for
methods that provide gains commensurate with the training
time. In any case, we might tolerate slow optimization if we
can deploy a learning robot with provable guarantees on the
worst-case performance. Recent work by Kretchmaret al. [5]
and by Perkins and Barto [6] demonstrates initial progress
in this regard.

Despite the challenges when we combine RL with super-
vised learning, we still reap benefits from both paradigms.
From actor-critic architectures we gain the ability to discover
behavior that optimizes performance. From supervised learn-
ing we gain a flexible way to incorporate prior knowledge.
In particular, the internal representations used by the actor
can be very different from those used by the supervisor.
The actor, for example, can be an artificial neural network,
while the supervisor can be expert knowledge encoded as
logical propositions, a conventional feedback controller as
demonstrated in this paper, or even a human supplying
actions that depend on an entirely different perception of
the environment’s state. Presumably the supervisor has a
certain proficiency at a given task, which the actor exploits
for improved performance throughout learning.
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