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Abstract— In this paper, we focus on the robust H∞ control
analysis and synthesis for uncertain switched linear systems.
It is shown that the quadratic stability of one associated
non-switched uncertain combination linear system implies the
feasibility of H∞ control problem for an uncertain switched
linear system. Then, the robust H∞ control synthesis via
switched state feedback is studied. A switched state feedback
controller is designed to quadratically stabilize the plant and
achieve a prescribed disturbance attenuation level γ for all
admissible uncertainties simultaneously. All the results in this
paper can be regarded as an extension of some existing results
for both switched and non-switched systems.

I. INTRODUCTION

As an important class of hybrid dynamic systems con-
sisting of a family of linear time-invariant subsystems and
a switching law specifying the switching among them,
switched linear systems have been studied by a large
number of papers (e.g., [1-19] and the references therein).
Switched systems and switching control have recently
gained a great deal of attention mainly because that many
real-world systems in, for example, chemical processes,
transportations, computer controlled systems and commu-
nication industries can be modelled as switched systems.
And they also have lots of applications in many other fields
[1-3]. It should be noted that some basic problems have
been outlined in [4] and for recent progress in the field of
switched systems, we refer to the survey papers of [4] and
[5].

There are some existing results concerning quadratic
stability of switched linear systems, see for instance [6-
10]. For switched linear systems, although there are lots
of papers concerning the stability, quadratic stabilization,
controllability and so on, few results are concerned with the
H∞ control problem. However, H∞ control is one of the
most active subfields of research in control theory and H∞
performance is also an extremely important performance. In
[11], Hespanha presented a method to compute the slow-
switching RMS gain of a switched linear system. The algo-
rithm proposed uses the fact that a given constant γ provides
an upper bound on the RMS gain whenever there is a sepa-
ration between all the stabilizing and all the antistabilizing
solutions to the algebraic Riccati equations of the systems
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being switched. Zhai et al. [12] investigated the distur-
bance attenuation properties of time-controlled switched
systems. They have showed that when all subsystems are
Hurwitz stable and achieve a disturbance attenuation level
γ0, the switched system achieves a weighted disturbance
attenuation level γ0, which approaches normal disturbance
attenuation if the average dwell time is sufficiently large.
Several other papers such as [13], [14] and [15] are also
dedicated to the study of H∞ related problems for some
kind of hybrid systems.

As to the study of disturbance attenuation of switched
systems, Hespanha [11] and Zhai et al. [12] have assumed
that at least one subsystem must be Hurwitz stable. How-
ever, it is well known that the stability analysis of switched
systems is complicated by the fact that there are switches
of discrete states. Even if each subsystem is stable, the
switched system will not necessarily be stable. Contrary,
switching between individually unstable subsystems does
not necessarily imply that the switched system is unstable
[16], [17]. In this paper, we do not take the assumption
made in [11] and [12] and focus on the following problem:

Is it possible for us to obtain a prescribed disturbance
attenuation level γ via an appropriately designed switching
rule when all subsystems are not Hurwitz stable ?

Here, we will show that the answer to this question is
YES. The example in section IV is used to verify this fact.
Moreover, the following two problems are also studied in
this paper. One is the disturbance attenuation for the case
that uncertainty enters state and input matrices of switched
linear systems, the other is the H∞ control synthesis
problem via switched state feedback for uncertain switched
systems.

Motivated by the above existing results on quadratic sta-
bilization and disturbance attenuation properties of switched
systems, we focuse on the robust H∞ control problem
of switched linear systems with uncertainties in both the
state and input matrices via designing a switching rule
and state feedback. It is assumed that the switching rule
r(x, t) used in this paper is state-dependent, which is also
utilized in some papers (e.g., [6], [7], [18] and [19]). Our
goal is to design switching rule r(x, t) and an associated
state feedback u = Kr(x,t)x such that the resulting closed-
loop system of uncertain switched systems is quadratically
stabilizable with a prescribed level of H∞ disturbance atten-
uation γ for all admissible uncertainties. First, the quadratic
stability of uncertain switched linear systems is analyzed.
Then, the disturbance attenuation property is investigated
by taking advantage of a min-projection strategy. We show



that for a given scalar γ > 0, the uncertain switched
system is quadratically stabilizable with an H∞ disturbance
attenuation level γ via switching if one associated uncertain
combination linear non-switched system is quadratically
stable. Finally, these results are extended to cope with the
switched state feedback H∞ control problem. All the results
in this paper can be regarded as an extension of some
existing results for both switched and non-switched systems.

II. QUADRATIC STABILIZATION WITH
DISTURBANCE ATTENUATION VIA

MIN-PROJECTION STRATEGY
In this section, we study quadratic stabilization with dis-

turbance attenuation for uncertain switched linear systems
only via switching.

Consider the following uncertain switched linear systems:
{

ẋ(t) = (Ar +∆Ar)x(t) +B1rw(t) + (B2r +∆B2r)u(t)
z(t) = Crx(t) +Dru(t)

(1)
where x(t) ∈ R

n is the state, u(t) ∈ R
p is the control

input, w(t) ∈ R
h is the exogenous input which belongs to

L2[0,∞), L2[0,∞) denotes the space of square integrable
functions on [0,∞), z(t) ∈ R

q is the controlled output.
The right continuous function r := r(x, t) : R

n × R
+ →

{1, 2, · · · , l} (denoted as l) is the switching signal to be
designed. Moreover, r = i implies that the i-th subsystem
is activated.

[∆Ai, ∆B2i] = EiΓ[F1i, F2i], ∀i ∈ l. (2)

Ai, B1i, B2i, Ci and Di are constant matrices of appropriate
dimensions that describe the nominal systems, Ei, F1i, F2i

are given matrices which characterize the structure of un-
certainty. Γ is the norm-bounded time-varying uncertainty,

Γ = Γ(t) ∈ {Γ(t) : Γ(t)TΓ(t) ≤ I,Γ(t) ∈ R
m×k, }.

There are several reasons for assuming that the system
uncertainty has the structure given in (2), which can be
found in [20]. Without loss of generality, the following
assumption is made for the sake of technical simplification.
We refer to [21] for detailed discussion of this assumption.

Assumption 1: DT
i [Ci, Di] = [0, I], i ∈ l.

Let us consider the following switched systems simplified
from (1): {

ẋ(t) = Arx(t) +B1rw(t)
z(t) = Crx(t)

(3)

Definition 1: The switched linear system (3) with w =
0 (i.e., the nominal system) is said to be quadratically
stabilizable via switching if there exist a positive definite
function V (x) = xTPx, a positive scalar ε and a switching
rule r(x, t) such that

d

dt
V (x) < −εxTx.

When there is uncertainty ∆Ar in the state matrix of (3),
the system reads

{
ẋ(t) = (Ar +∆Ar)x(t) +B1rw(t)
z(t) = Crx(t)

(4)

Definition 2: The uncertain switched system (4) with
w = 0 is said to be quadratically stabilizable via switch-
ing if there exist a positive definite function V (x) = xTPx,
a positive scalar ε and a switching rule r(x, t) such that

d

dt
V (x) < −εxTx

holds for all admissible uncertainty Γ. Similarly, the uncer-
tain switched linear system (1) is said to be quadratically
stabilizable via switched state feedback if there exist a
switching r(x, t) and an associated gain matrix Kr such that
with u = Krx, the resulting closed-loop nominal system
(w = 0) is quadratically stabilizable.

The following four Lemmas are important to develop the
main results.

Lemma 1: [22] Given any constant λ > 0 and any
matrices M,Γ, N of compatible dimensions, then

2xTMΓNx ≤ λxTMMTx+
1

λ
xTNTNx.

for ∀x ∈ R
n, where Γ is an uncertain matrix satisfying

ΓTΓ ≤ I.

We now recall a result relating the quadratic stability of
an autonomous non-switched uncertain linear system to a
certain small gain condition. Consider the uncertain system

ẋ(t) = (A+ EΓF )x(t) (5)

where A,E, F are given constant matrices of appropriate
dimensions and Γ is the uncertainty with ΓTΓ ≤ I.

Definition 3: [20] The system (5) is said to be quadrat-
ically stable if there exists a positive definite function
V (x) = xTPx and a constant ε > 0 such that, for any
admissible uncertainty Γ,

d

dt
V (x) < −εxTx.

Lemma 2: [20] The system (5) is quadratically stable if
and only if it satisfies the following conditions:
(a) A is a stable matrix,
(b) ‖F (sI −A)−1E‖∞ < 1.

We introduce a linear time-invariant (LTI) system

ẋ(t) = (Â+ Ê1Γ̂1F̂1)x(t), (6)

where Â :=
∑l

i=1 αiAi,
∑l

i=1 αi = 1, αi ≥ 0, Ê1 =

[
√
α1E1, · · · ,

√
αlEl], F̂1 = [

√
α1F

T
11, · · · ,

√
αlF

T
1l ]

T , Ei

and F1i, i ∈ l are matrices introduced in (2). Γ̂1 ∈ R
lm×lk

and Γ̂T1 Γ̂1 ≤ I. For simplicity of presentation, system (6) is
defined as uncertain combination linear systems (UCLS)
in what follows. Clearly, for each uncertain switched linear
system (4), there is a corresponding UCLS (6) except the
selection of αi, i ∈ l.

Lemma 3: System (4) is quadratically stabilizable via
switching if there exist nonnegative scalars α1, · · · , αl with∑l

i=1 αi = 1 such that UCLS (6) is quadratically stable.
Furthermore, a stabilizing switching rule can be taken as

r(x, t) = argmin
i∈l
{xT (AT

i P + PAi + λPEiE
T
i P

+ 1
λ
FT

1iF1i)x}, (7)



where P is the positive definite matrix associated with the
quadratic stability of UCLS (6) and λ > 0 is a constant
arbitrarily selected in advance.

Proof: By lemma 2, the quadratic stability of UCLS
(6) implies that Â is Hurwitz stable and

‖ 1√
λ
F̂1(sI − Â)−1

√
λÊ1‖∞ = ‖F̂1(sI − Â)−1Ê1‖∞ < 1.

It is well known that the above inequality is equivalent to
the following matrix Riccati inequality

ÂTP + PÂ+ λPÊ1Ê
T
1 P +

1

λ
F̂T

1 F̂1 < 0 (8)

and P is the positive definite matrix associated with the
quadratic stability of UCLS (6). By (8), there always exists
a positive scalar ε such that for ∀x ∈ R

n,

l∑

i=1

αimin
i∈l

{xT (AT

i P + PAi + λPEiE
T

i P +
1

λ
F

T

1iF1i)x}

≤
l∑

i=1

αix
T (AT

i P + PAi + λPEiE
T

i P +
1

λ
F

T

1iF1i)x

< −εxT
x. (9)

Define the Lyapunov function for systems (4) as follows:

V (x(t)) = xT (t)Px(t),

where P is the positive definite matrix satisfying (8).
Noticing that w = 0, then by Lemma 1, (9) and the
switching rule (7), for ∀x ∈ R

n, x 6= 0,
d

dt
V (x) = xT (AT

r P + PAr)x+ 2x
TPErΓF1rx

< −εxTx.

By definition 2, the uncertain switched system (4) with w =
0 is quadratically stabilizable via switching.

Lemma 4: The following two types of switching rules
are equivalent:
(a) r(x, t) = argmin

i∈l
{xTHix},

(b) r(x, t) = argmin
i∈l
{xT (Hi +H)x},

where Hi, i ∈ l are given symmetric matrices, H is a given
positive definite matrix.

Proof: By the fact that

xTHix ≥ xTHjx, i 6= j, ∀i, j ∈ l

if and only if

xT (Hi +H)x ≥ xT (Hj +H)x,

this lemma can be proved easily.
Definition 4: Given a constant γ > 0, the system (4) is

said to be quadratically stabilizable with H∞ disturbance
attenuation γ via switching if there exists a switching rule
r(x, t) such that under this switching, it satisfies
(1) the system (4) with w = 0 is quadratically stabilizabile
for all admissible uncertainties Γ,
(2) with zero-initial condition x(0) = 0, ‖z‖2 < γ‖w‖2

for all admissible uncertainties Γ and all nonzero w ∈
L2[0,∞).

Let us consider the following UCLS:

ẋ(t) = (Â+ Ê2Γ̂2F̂2)x(t) (10)

where Ê2 = [Ê1, γ−1 δ1B√
λ
I], δ1B = max

1≤i≤l
{σmax(B1i)},

σmax(·) denotes the maximum singular value, γ > 0 is
a scalar given in advance and λ > 0 is a constant scalar
which is selected arbitrarily. F̂2 = [F̂

T
1 ,

√
λδCI]

T , δC =
max
1≤i≤l

{σmax(Ci)}, Γ̂2 ∈ R
(lm+n)×(lk+n) and Γ̂T2 Γ̂2 ≤ I.

Â, Ê1, F̂1 are matrices defined in UCLS (6).
Theorem 1: Given a scalar γ > 0, system (4) is quadrat-

ically stabilizable with H∞ disturbance attenuation γ via
switching if there exist nonnegative scalars α1, · · · , αl with∑l

i=1 αi = 1, such that the UCLS (10) is quadratically
stable. Moreover, switching rule r(x, t) is taken as (7).

Proof: By Lemma 2, the quadratic stability of UCLS
(10) is equivalent to the following matrix Riccati inequality

ÂTP + PÂ+ λPÊ2Ê
T
2 P +

1

λ
F̂T

2 F̂2 < 0, (11)

where P is the positive definite matrix associated with the
quadratic stability of system (10). By (11)

ÂTP + PÂ+ λPÊ1Ê
T
1 P +

1

λ
F̂T

1 F̂1 < 0 (12)

l∑

i=1

αi[A
T
i P + PAi + λPEiE

T
i P +

1

λ
FT

1iF1i

+γ−2δ2
1BPP + δ2

CI] < 0. (13)

Define
V (x(t)) = xT (t)Px(t),

r(x, t) = argmin
i∈l
{xT (AT

i P + PAi + λPEiE
T
i P

+
1

λ
FT

1iF1i + γ−2δ2
1BPP + δ2

CI)x}, (14)

where P is the positive definite matrix satisfying (11). First
of all, if we denote

Hi := AT
i P + PAi + λPEiE

T
i P +

1

λ
FT

1iF1i,

H := γ−2δ2
1BPP + δ2

CI

then by Lemma 4, the switching rule (14) is equivalent to
the switching rule (7). Consequently, by (12) and the proof
of Lemma 3, it follows that systems (4) with w = 0 is
quadratically stabilizable via switching rule (7) (or (14)),
i.e., the first condition in Definition 4 is satisfied.
Secondly, let

J =

∫ ∞

0

(zT z − γ2wTw)dt.



Note that x(0) = 0, then by Lemma 1 and combining (13)
with switching rule (14), it follows that for ∀w ∈ L2[0,∞),

J =

∫
∞

0

[zT
z − γ

2
w

T
w +

d

dt
(xT

Px)]dt− x(∞)TPx(∞)

=

∫
∞

0

[xT (AT

r P + PAr + C
T

r Cr)x+ 2x
T
PErΓF1rx

+xT
γ
−2
PB1rB

T

1rPx

−(γ−1
B

T

1rPx− γw)T (γ−1
B

T

1rPx− γw)]dt

≤

∫
∞

0

[xT (AT

r P + PAr + λPErE
T

r P +
1

λ
F

T

1rF1r

+δ2CI + γ
−2
δ
2

1BPP )x]dt

< 0, (15)

that is, ‖z‖2 < γ‖w‖2 holds for ∀w ∈ L2[0,∞). This
concludes the proof.

Remark 1: The direct application of min-projection strat-
egy may result in sliding motions. We refer to [18] for
detailed discussion of how this behavior can be avoided.

III. ROBUST H∞ CONTROL VIA SWITCHED
STATE FEEDBACK

In this section, we investigate H∞ control problem for
systems (1) via switched state feedback.

The switched state feedback H∞ control problem
addressed in this section is as follows: for a given scalar
γ > 0, design switching rule r(x, t) and an associated
state feedback u = Krx such that the resulting closed-
loop system of (1) is quadratically stabilizable with H∞
disturbance attenuation γ for all admissible uncertainties.

The resulting closed-loop system of (1) can be written as
{

ẋ(t) = (Âr +∆Âr)x(t) +B1rw(t)

z(t) = Ĉrx(t)
(16)

where Âr := Ar + B2rKr, ∆Âr := ErΓF̂r, F̂r := F1r +
F2rKr, Ĉr := Cr +DrKr.

The non-switched state feedback H∞ control synthesis of
the following UCLS relates to the switched state feedback
H∞ control problem of uncertain switched system (1).
{

ẋ(t) = (Â+4Â)x(t) + B̂1ŵ(t) + (B̂2 +4B̂2)û(t)

ẑ(t) = Ĉx(t) + D̂û(t)
(17)

where 4Â := Ê1Γ̂1F̂1, 4B̂2 := Ê1Γ̂1F̂D, Â, Ê1, Γ̂1, F̂1

are matrices defined in UCLS (6), ŵ(t) ∈ L2[0,∞),
û(t) ∈ R

lp, ẑ(t) ∈ R
s and positive integer s satisfy

s ≥ n+ lp, B̂1 := γ−1δ1BIn×n, δ1B = max
1≤i≤l

{σmax(B1i)},
B̂2 := [

√
α1B21, · · · ,

√
αlB2l] ∈ R

n×lp, F̂D :=

diag{F21, · · · , F2l} ∈ R
lk×lp and Ĉ ∈ R

s×n, D̂ ∈ R
s×lp,

Ĉ =

[
δCIn×n
0

]
, D̂T [ Ĉ D̂ ] = [ 0 I ], (18)

δC = max
1≤i≤l

{σmax(Ci)}.
Note that it is always possible for us to select matrix D̂

such that (18) is satisfied.

Theorem 2: Given a scalar γ > 0, the switched state
feedback robust H∞ control of systems (1) is feasible if
there exist nonnegative scalars α1, · · · , αl with

∑l
i=1 αi =

1, such that the standard robust H∞ design problem for
UCLS (17) is solvable via non-switched state feedback.
Furthermore, the switching rule is taken as

r(x, t) = argmin
i∈l
{xTHix}, (19)

where

Hi = AT
i P + PAi + λPEiE

T
i P +

1

λ
FT

1iF1i

−(PB2i +
1

λ
FT

1iF2i)R
−2
i (PB2i +

1

λ
FT

1iF2i)
T ,

R2
i = I +

1

λ
FT

2iF2i, i ∈ l, (20)

P is the positive definite matrix associated with the
quadratic stability of closed-loop UCLS (17), λ > 0 is a
constant associated with the standard robust H∞ design
problem for UCLS (17) and the stabilizing controller for
each subsystem is designed by

Ki = −R−2
i (B

T
2iP +

1

λ
FT

2iF1i), i ∈ l. (21)
Proof: By Theorem 3.1 of [23], that the feasibility

of standard robust H∞ design problem via state feedback
for UCLS (17) is equivalent to the fact that there exists a
constant λ > 0 and a positive definite matrix P satisfying
the following matrix inequality

Â
T
P + PÂ+ P (B̂1B̂

T

1 + λÊ1Ê
T

1 )P +
1

λ
F̂

T

1 F̂1 + Ĉ
T
Ĉ

−(PB̂2 +
1

λ
F̂

T

1 F̂D)R̂
−2(PB̂2 +

1

λ
F̂

T

1 F̂D)
T
< 0, (22)

where

R̂2 = Ilp×lp + λ−1F̂T
D F̂D

= diag{I + λ−1FT
21F21, · · · , I + λ−1FT

2lF2l}.

(22) can be written as

ÂTP + PÂ+ λPÊ1Ê
T
1 P +

1

λ
F̂T

1 F̂1

+γ−2δ2
1BPP + δ2

CI

−(PB̂2 +
1

λ
F̂T

1 F̂D)R̂
−2(PB̂2 +

1

λ
F̂T

1 F̂D)
T < 0.(23)

Hence,

ÂTP + PÂ+ λPÊ1Ê
T
1 P +

1
λ
F̂T

1 F̂1

−(PB̂2 +
1
λ
F̂T

1 F̂D)R̂
−2(PB̂2 +

1
λ
F̂T

1 F̂D)
T < 0. (24)

Noticing that

R̂−2 = diag{(I + 1
λ
FT

21F21)
−1, · · · , (I + 1

λ
FT

2lF2l)
−1}.

= diag{R−2
1 , · · · , R−2

l }

and by simple computation, (24) implies that

l∑

i=1

αiHi < 0, (25)



where Hi(i ∈ l) are matrices defined in (20). Take

V (x) = xTPx,

where P > 0 is the matrix satisfying (22) and the switching
rule r(x, t) is taken as (19). By Lemma 4, (19) is equivalent
to the following switching rule

r(x, t) = argmin
i∈l
{xT (Hi +H)x}, (26)

where H = γ−2δ2
1BPP + δ2

CI. In subsequent arguments,
we shall first verify the quadratic stabilization of nominal
systems (w = 0) of (16). By Lemma 1, it follows that

d

dt
V (x(t))

≤ xT (AT
r P + PAr)x+ 2x

TPB2rKrx

+λxTPErE
T
r Px+

1

λ
xT F̂T

r F̂rx

≤ xT (AT
r P + PAr + λPErE

T
r P +

1

λ
FT

1rF1r)x

+xT [Kr +R−2
r (B

T
2rP +

1

λ
FT

2rF1r)]
TR2

r

[Kr +R−2
r (B

T
2rP +

1

λ
FT

2rF1r)]x

−xT [(PB2r +
1

λ
FT

1rF2r)R
−2
r

(PB2r +
1

λ
FT

1rF2r)
T ]x, (27)

where R2
r = I + 1

λ
FT

2rF2r. Hence, by (21) and (27)

d

dt
V (x)

≤ xT (AT
r P + PAr + λPErE

T
r P +

1

λ
FT

1rF1r)x

− xT [(PB2r +
1

λ
FT

1rF2r)R
−2
r (PB2r +

1

λ
FT

1rF2r)
T ]x

= xTHrx.

Combining (25) and (19) and following the similar argu-
ments as that in the proof of Lemma 3, we see that the
nominal system of (16) is quadratically stabilizable via
switching rule (19) (or, equivalently, (26)) along with the
state feedback gains given by (21).
Secondly, let

J =

∫ ∞

0

(zT z − γ2wTw)dt.

Then, by x(0) = 0, we have

J =

∫ ∞

0

[zT z − γ2wTw +
d

dt
(xTPx)]dt

−x(∞)TPx(∞)

=

∫ ∞

0

[xT (ÂT
r P + PÂr + P∆Âr +∆Â

T
r P

+ĈT
r Ĉr)x+ xT γ−2PB1rB

T
1rPx

−(γ−1BT
1rPx− γw)T (γ−1BT

1rPx− γw)]dt

≤
∫ ∞

0

{xT [AT
r P + PAr +KT

r B
T
2rP + PB2rKr]x

+xT [λPErE
T
r P +

1

λ
F̂T
r F̂r]x

+xT [CT
r Cr +KT

r Kr + γ−2PB1rB
T
1rP ]x}dt

≤
∫ ∞

0

{xT [AT
r P + PAr + PλErE

T
r P +

1

λ
FT

1rF1r

+γ−2δ2
1BPP + δ2

CI]x

+xT [Kr +R−2
r (B

T
2rP +

1

λ
FT

2rF1r)]
TR2

r

[Kr +R−2
r (B

T
2rP +

1

λ
FT

2rF1r)]x

−xT [(PB2r +
1

λ
FT

1rF2r)R
−2
r

(PB2r +
1

λ
FT

1rF2r)
T ]x}dt

=

∫ ∞

0

{xT [Hr +H]x

+xT [Kr +R−2
r (B

T
2rP +

1

λ
FT

2rF1r)]
TR2

r

[Kr +R−2
r (B

T
2rP +

1

λ
FT

2rF1r)]x}dt. (28)

Since

Kr = −R−2
r (B

T
2rP+

1

λ
FT

2rF1r), R
2
r = I+

1

λ
FT

2rF2r, (29)

and (23) means that
l∑

i=1

αi(Hi +H) < 0, (30)

where Hi and H are matrices defined in (20) and (26),
respectively, by switching rule (19) (equivalently (26)), (28)
and (30), it follows that

J < 0,

which implies that for all uncertainty Γ and w ∈ L2[0,∞)

‖z‖2 < γ‖w‖2.

This concludes the proof.

IV. NUMERICAL EXAMPLE

The goal of the follwing example is to illustrate that
although both the nominal subsystem matrices A1 and A2

are not Hurwitz stable, it is still possible for us to obtain
the H∞ performance of uncertain switched linear systems
(4) only via designing a switching rule.

Example 1: Consider the following system
{

ẋ(t) = (Ar +∆Ar)x(t) +B1rw(t)
z(t) = Crx(t)

(31)

r(t) : R+ → 2 = {1, 2}, ∆Ai = EiΓF1i,Γ
TΓ ≤ I,

A1 =

[
13 7
−3 −14

]
, E1 =

[
0.1414
0

]
, B11 =

[
1.5
0.3

]
,

F11 =
[
0.2828 0

]
, F12 =

[
0 0.7071

]
,

A2 =

[
−25 1.2
−5 2

]
, E2 =

[
0.4384
0.3960

]
, B12 =

[
3
0

]
.



Take α1 = α2 = 0.5, λ = 1 and the disturbance attenuation
level γ is given by γ = 1, it can be verified that the
following symmetric matrix

P =

[
0.7225 −0.0095
−0.0095 0.7418

]

is a positive definite matrix associated with the quadratic
stability of UCLS (6). By Theorem 1, system (31) is
quadratically stabilizable with the disturbance attenuation
level γ = 1 only via switching, where the switching regions
are described in Figure 1 and the switching rule can be

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x2

x1

S2

S2 

S1 

S1 

x1=0.5765x2 

x1=−0.7724x2 

Fig. 1. Switching regions

implemented as follows:

r(x, t) =

{
1, if x ∈ S1,
2, if x ∈ S2.

V. CONCLUSION

This paper has studied robust H∞ control problem via
switching and state feedback for switched linear systems
with uncertainties in both the state and input matrices.
Although the obtained results are only sufficient, they
provide us a new point of view on the quadratic stabilization
along with the disturbance attenuation of uncertain switched
linear systems. This is because a relationship between the
H∞ performance of uncertain switched systems and the
quadratic stability of an associated uncertain combination
linear systems (UCLS) is established. It should be noted that
a common switching rule should be designed to guarantee
the quadratic stability of nominal switched systems and the
H∞-norm bound constraint on disturbance attenuation for
all admissible uncertainties simultaneously. We present a
state dependent switching strategy in this paper to cope with
this problem. How to design other suitable switching rules
to better the performance of switched systems should be
further studied in the future work. Our results may present
a meaningful try to deal with the H∞ control problem for
switched systems.
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