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Abstract— The paper presents stability analysis of a class
of pulse-width modulated (PWM) systems which incorporates
many different DC-DC converters. Two types of pulse-width
modulation (digital and analog control) are considered. A
procedure is developed for systematic search for Lyapunov
functions. The state space is partitioned in such a way
that stability is verified if a set of coupled Linear Matrix
Inequalities (LMIs) is feasible. Global stability is considered
as well as the computation of local regions of attraction.

I. INTRODUCTION

This paper introduces a class of of pulse-width modulated
(PWM) systems incorporating many different DC-DC con-
verters [8]. Sampled-data modeling is then used to derive a
systematic method for stability analysis. We consider two
different PWM techniques which we refer to as digital and
analog control respectively. The digital implementation has
some advantages over the more common analog technique
in that it is more reliable and less sensitive to aging and
parameter variations. The disadvantage is that it introduces
a time delay in the system since the duty ratio is calculated
based on the sampled output, see [7] for further practical
discussion on these issues.

Much of the reported analysis on DC-DC converters
is based on the averaging approach [5], [10]. However,
averaging is only an approximation of the low frequency
converter dynamics and it requires sufficiently high switch-
ing frequency to be accurate. Furthermore, even if the
averaged model is accurate, for many converter topologies
it will be highly nonlinear and difficult to analyze. See
for instance the example in Section V. In this paper the
analysis is based on a sampled-data model where we take
the switching frequency into account. Stability results are
then derived using a quasi-linearization approach which can
be applied to an arbitrary converter topology.

The literature on PWM systems is largely focused on ana-
log DC-DC converters where the switching is determined
using a comparator ramp function. Local stability results
for such systems based on linearization of sampled-data
models have appeared in e.g., [4], [11]. It has been shown
that complicated dynamical phenomena such as chaos and
various bifurcation phenomena can appear in some analog
converters, see e.g. [3]. To avoid such complications we
consider a class of analog converters where at most one
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switch take place during each period. Our previous results
on digital multi phase converters in [1] are in this paper
extended to this class of analog converters. Previously,
global stability criteria have been discussed in [12] but for
a class of converters where the switching frequency is not
fixed.

To derive stability criteria for a stationary, typically
periodic, solution of the PWM system we introduce an
equivalent sampled-data model, similar to what is done
in [9], [11]. By using quadratic Lyapunov functions we
state stability conditions that can be verified by checking
a set of coupled linear matrix inequalities (LMIs). We use
the structure of the feedback control to partition the state-
space and obtain different LMIs for different regions of
the partition. In some of the regions it is necessary to
sweep the duty rate over its domain of definition (typically
[0, 1]). This is analogous to the time axis sweep used to
compute quadratic surface Lyapunov function in [6], and
related results in [12], which has proven to be a powerful
approach for analysis of piecewise linear systems.

Criteria are presented for both global and local stability
and in the local case we provide an estimate of the region
of attraction.

II. A CLASS OF PWM SYSTEMS

In this section we introduce a class of PWM systems
which incorporates several DC-DC converter topologies of
practical interest. The systems of the class are of the form

ẋ(t) = (A0 + s(t)A1)x(t) + (B0 + s(t)B1) (1)

where x(t) ∈ Rn, Ai ∈ Rn×n, Bi ∈ Rn, i = 0, 1 and the
switching function s(t) takes values 0 and 1 only. Note that
the state vector x contains the states of both converter and
controller.

In DC-DC converters there are different ways of im-
plementing the switching and hence different switching
functions s(t). In this paper we consider two different ways
of controlling the switching - analog and digital control -
and develop corresponding sampled-data models.

The first switching technique considered is digital control
and the corresponding switching function is denoted sd(t).
In digital control the state is sampled at times kT, k ∈ N
to determine a duty ratio dk ∈ [0, 1] for each time interval
[kT, (k+1)T ]. The kth duty ratio is determined by feedback



according to

dk =











1, F (x(kT ) − xr) > 1

F (x(kT ) − xr), 0 ≤ F (x(kT ) − xr) ≤ 1

0, F (x(kT ) − xr) < 0

(2)

where xr denotes the reference trajectory of the state and
F is a vector.

For every time interval [kT, (k + 1)T ] the duty ratio
determines the portion of time the switch is on (sd(t) = 1)
and off (sd(t) = 0). More precisely

sd(t) =

{

1, t ∈ [kT, (k + dk)T )

0, t ∈ [(k + dk)T, (k + 1)T )
(3)

The second switching technique considered in the paper
is analog control and the corresponding switching function
is denoted sa(t). In analog control, the output u(t) of a feed-
back controller is monitored continuously and compared to
a periodic ramp function. The system switches when the
trajectory crosses the ramp. The most basic model of the
switching function is the following

s(t) =

{

1, u(t) − 1
T

mod(t, T ) > 0

0, u(t) − 1
T

mod(t, T ) ≤ 0
(4)

where u(t) = F (x(t) − xr) is the feedback and mod(·, ·)
denotes the modulo function. However, as was noted in the
introduction, analog converters have been known to exhibit
chaotic behavior [3]. In this paper we avoid this phenomena
by forcing there to be at most one switch in each time
period. This is a natural assumption if the frequency of the
ramp function is high compared to the control signal u(t).
Under this constraint, the switching signal sa(t) is described
in (11) - (13)

III. SAMPLED-DATA MODELING
In order to prove stability of periodic solutions to the

system (1) with switching functions sd(t) and sa(t) respec-
tively, we develop corresponding sampled-data models.

A. SAMPLED-DATA MODELING, DIGITAL CONTROL

Consider the system (1) with the switching function sd(t)
defined in (2) - (3). Over a time period [kT, (k + 1)T ]
with corresponding duty ratio dk ∈ [0, 1] the state evolves
according to

ẋ =

{

(A0 +A1)x+ (B0 +B1) , t ∈ [kT, (k + dk)T )

A0x+B0, t ∈ [(k + dk)T, (k + 1)T )

(5)

The solutions on the two intervals are stacked to yield a
discrete-time dynamic system. Using the notation xk =
x(kT ) we write

xk+1 = Φ̄(dk)xk + Γ̄(dk) (6)

where the matrices Φ̄(·) and Γ̄(·) are found in the appendix.
We assume that there exists a T-periodic solution x0(t)

to the system in (1)-(3). For the sampled-data model

this means that the point x0(0) is stationary, i.e xk =
x0(0) ∀ k ∈ N. We write x0 = x0(0) and denote the
corresponding stationary duty ratio d0 = F (x0 − xr).
The stationary point (x0, d0) can be found by solving the
following set of nonlinear equations

x0 = Φ̄(d0)x0 + Γ̄(d0)

d0 = F (x0 − xr)
(7)

To prove either local or global stability of the discrete-time
system we consider the deviation ∆xk = xk − x0 from the
fixed point. For ease of notation we write yk = ∆xk and
note that the error dynamics satisfy

yk+1 = Φ(dk)yk + Γ(dk) (8a)

dk = d0 + ψ(Fyk) (8b)

where ψ(·) is the saturation

ψ(Fy) =











−d0, Fy < −d0

Fy, −d0 ≤ Fy ≤ 1 − d0

1 − d0, Fy > 1 − d0

and

Φ(d) = Φ̄(d) (9)

Γ(d) = (Φ̄(d) − Φ̄(d0))x0 + Γ̄(d) − Γ̄(d0) (10)

Note that (y, d) = (0, d0) is a stationary point of the error
model (8). If (0, d0) is an exponentially stable equilibrium
of (8) then the limit cycle x0(t) is exponentially stable.
Whether or not (y, d) = (0, d0) is a unique stationary
point of (8) is a question of great importance to any further
stability analysis. A necessary condition for uniqueness is
given in [1].

B. SAMPLED-DATA MODELING, ANALOG CONTROL

Consider the system (1) with the switching function sa(t)
described above. The duty ratio dk is no longer calculated at
time kT . Instead it is determined during the corresponding
time interval when the controller output crosses the ramp
function. Nevertheless, having forced the system to switch
at most once per time interval, we can write dk as a function
of x(kT ). This means the analog switching function sa(t)
can be written in the same form as the digital one and we
can develop a sampled-data model analogous to the one
above. We write

sa(t) =

{

1, t ∈ [kT, (k + dk)T )

0, t ∈ [(k + dk)T, (k + 1)T )
(11)

The expression above is identical to the expression (3) de-
scribing sd(t). However, the duty ratio dk is now calculated
in a different way

dk =

{

0, F (x(kT ) − xr) ≤ 0

d∗, F (x(kT ) − xr) > 0
(12)



where d∗ is the solution to

min d

s.t.

{

F (Φ̄1(d)xk + Γ̄1(d) − xr) = d

0 ≤ d ≤ 1

(13)

and the matrices Φ̄1(·) and Γ̄1(·) are found in the appendix.
If (13) is infeasible, we set d∗ to 1.

The expressions above should be understood as follows:
If the controller output u = F (x−xr) is less than or equal to
zero at time kT the duty ratio is set to dk = 0 and the switch
remains open during the entire interval [kT, (k + 1)T ]. If
the controller output is greater than zero, problem (13) is
solved to see when the controller output intersects the ramp.
This yields the duty ratio dk. If the minimization problem
does not have a solution we conclude that the output does
not cross the ramp during the interval in question and the
switch remains closed during the entire interval.

Writing the switching function as in (11) enables us to
derive a discrete-time dynamic system identical to (6)

xk+1 = Φ̄(dk)xk + Γ̄(dk) (14)

only now the duty ratio is not a linear function of the state
xk but is given by (12)- (13).

The error model is also derived in analogy with the
discrete control case. We assume there is a fixed point
(x0, d0) solving the system of nonlinear equations

x0 = Φ̄(d0)x0 + Γ̄(d0)

F (Φ̄1(d
0)x+ Γ̄1(d

0) − xr) = d0 (15)

0 ≤ d0 ≤ 1

and consider the deviation ∆xk = xk−x
0. Again using the

notation yk = ∆xk the error dynamics satisfy

yk+1 = Φ(dk)yk + Γ(dk) (16a)

dk =

{

0, F (x0 − xr) + Fyk ≤ 0

d∗, F (x0 − xr) + Fyk > 0
(16b)

where Φ(·) and Γ(·) are given in (9)- (10) and d∗ is the
solution to (13) or d∗ = 1 if (13) is infeasible.

IV. STABILITY ANALYSIS

The discrete time error models in (8) and (16) describe
how a perturbation x− x0 of a stationary periodic solution
of (1) evolves at the switching instants kT . If we prove
stability of the error models, this also implies stability of
the continuous time solutions since the dynamics between
the switching instances is affine.

To obtain sufficient conditions for the error models to be
exponentially stable we use discrete time Lyapunov theory.
The following result is fundamental to our analysis

Lemma 1: Consider a sequence {yk} ∈ Rn and a func-
tion Vk := V (yk) : Rn → R. If there are real numbers α1,
α2, β > 0 such that α1‖yk‖

2 ≤ Vk ≤ α2‖yk‖
2 and

Vk+1 − Vk ≤ −β ‖ yk ‖2

for all k then the sequence is exponentially stable (about
the origin)
Now consider a sequence {yk} satisfying the er-
ror dynamics yk+1 = Φ(dk)yk + Γ(dk). Using a
quadratic Lyapunov function Vk = yT

k Pyk the inequality
Vk+1 − Vk ≤ − β ‖ yk ‖2 of lemma 1 can be written
in the quasi-quadratic form.

ȳT
k Π(dk, β, P )ȳk ≤ 0 (17)

where ȳk = [yk, 1]
T and

Π(dk, β, P ) =
[

Φ(dk)TPΦ(dk) − P + βI Φ(dk)TPΓ(dk)
Γ(dk)TPΦ(dk) Γ(dk)TPΓ(dk)

]

In the sections below, we use a partition of the state space
to derive stability conditions from inequality (17).

A. STABILITY ANALYSIS, DIGITAL CONTROL

To test the inequality (17) we utilize a partition of the
state space. The fact that the duty ratio d is confined to the
interval [0, 1] gives a natural partition of the state space into
three (unbounded) polyhedral sets with pairwise disjoint
interior. We write

Rn =
⋃

i∈{0,1,2}

Si (18)

where

Si = {y | Ēiȳ =
[

Ei ei

]

[

y
1

]

≤ 0}

and the vector inequality z ≤ 0 is component-wise. In
particular we have

Ē0 =
[

F d0
]

, Ē1 =
[

−F 1 − d0
]

Ē2 =

[

F d0 − 1
−F −d0

]

Thus, S0 and S1 are the regions where the feedback dk =
d0 + ψ(Fyk) saturates and S2 is the non-saturated region.

When testing (17) we also make use of a parameterization
of S2. Let the matrix Z be the orthogonal complement of
the feedback matrix F , i.e.

Z = F⊥ (19)

where F⊥ satisfies FF⊥ = 0, (F⊥)TF⊥ = I . For any
d ∈ R, the set of points y ∈ Rn such that d = d0 + Fy is
a hyperplane in Rn. If we let γ(d) = d−d0

FF T F
T then the set

S2 can be expressed as

S2 = {y | y = Zx+ γ(d), x ∈ Rn−1, d ∈ [0, 1]} (20)

This means that as d varies in the interval [0, 1] we sweep
the entire non-saturated region.

We now consider the inequality (17) on each of the
regions Si. In the regions S0 and S1 we apply the S-
procedure [2] to obtain a lossless relaxation of the in-
equalities Ēiȳ ≤ 0. In the region S2 we make use of the
parameterization described in (20). By Lemma 1 we have



Theorem 1: Consider the error model (8). If there are
real numbers β > 0, τi ≥ 0 and a matrix P = P T > 0
such that

Π(i, β, P ) − τi

[

0 ET
i

Ei 2ei

]

≤ 0

for i = 0, 1 and
[

Z γ(d)
0 1

]T

Π(d, β, P )

[

Z γ(d)
0 1

]

≤ 0

for d ∈ [0, 1], then (8) is exponentially stable about the
origin.

Remark 1: In order to check the last condition of Theo-
rem 1 we partition the interval [0, 1] into points di. For a
fixed di the condition is an LMI and verifying the theorem
thus amounts to checking a set of coupled LMIs. To deduce
feasibility of the inequality above from the result on a
partition is a non-trivial matter, but we omit the details here.
See [1] for a thorough treatment of the subject.

B. STABILITY ANALYSIS, ANALOG CONTROL

Just as in the digital control case, we test stability by
checking the inequality (17). We again use a partition of
the state space, but because of the new way of calculating
the duty ratio the result is slightly different.

Looking at equation (16) and how the duty ratio dk is
determined it is clear that for any point yk, one and only
one of the following statements holds.

• F (x0 − xr) + Fyk ≤ 0. In this case dk = 0.
• F (x0−xr)+Fyk > 0 and the equation F (Φ̄1(d)(x

0+
yk)+ Γ̄1(d)−xr) = d has a solution for d ∈ [0, 1]. In
this case dk = d.

• F (x0−xr)+Fyk > 0 and the equation F (Φ̄1(d)(x
0+

yk) + Γ̄1(d) − xr) = d has no solution for d ∈ [0, 1].
In this case dk = 1.

This defines a similar partition of the state space as in (18).
The first and the third bullet points correspond to the sets

S0 = {y | Ē0ȳ ≤ 0}, S1 = {y | Ē1ȳ < 0}

where the matrices Ēi = [Ei, ei], i = 0, 1, are

Ē0 =
[

F F (x0 − xr)
]

Ē1 =

[

−F −F (x0 − xr)
−F Φ̄1(1) 1 − F (Φ̄1(1)x

0 + Γ̄1(1) − xr)

]

The set S1 takes this form since F (Φ̄1(0)(x
0+y)+Γ̄1(0)−

xr) = F (x0 +y−xr) > 0 and the equation F (Φ̄1(d)(x
0 +

y) + Γ̄1(d)− xr) = d has no solution for d ∈ [0, 1], which
by continuity implies F (Φ̄1(1)(x

0 + y) + Γ̄1(1)− xr) > 1.
The non-saturated region corresponding to the second

bullet point above is denoted by S2 and it is described using
a parameterization. Let

Z(d) = (F Φ̄1(d))
⊥

and

γ(d) =
d− F (Φ̄1(d)x

0 + Γ̄1(d) − xr)

F Φ̄1(d)Φ̄1(d)TFT
Φ̄1(d)

TFT

then S2 can be expressed as

S2 = {y | Ē11ȳ < 0 and y = Z(d)x+ γ(d), (21)

x ∈ Rn−1, d ∈ [0, 1]}

where Ē11 denotes the first row of Ē1.
Again, we consider the inequality (17) on each region Si.

The S-procedure is used on all regions to obtain relaxations
of the corresponding inequalities and on S2 we also make
use of the parameterization described in (21). We have

Theorem 2: Consider the error model (16). Let Ēij =
[Eij eij ] denote the jth row of Ēi and let Π = Π(d, β, P ).
If there are real numbers β > 0, τij ≥ 0 and a matrix
P = PT > 0 such that

Π(i, β, P ) −
∑

j

τij

[

0 ET
ij

Eij 2eij

]

≤ 0

for i = 0, 1 and
[

Z(d) γ(d)
0 1

]T
(

Π−τ21

[

0 ET
11

E11 2e11

]

)

[

Z(d) γ(d)
0 1

]

≤ 0

for d ∈ [0, 1], then (16) is globally exponentially stable.

V. LOCAL RESULTS

If the error models (8) or (16) are not globally stable, we
confine our attention to some ellipsoid EQ = {y | yTQy ≤
1}. The idea is to prove local stability by finding a contrac-
tive set in EQ.

A. LOCAL RESULTS, DIGITAL CONTROL

Let yk be a sequence satisfying (8) and let V (y) = yTPy
be a quadratic Lyapunov candidate. First we require V (y)
to be strictly decreasing on EQ, i.e.

ȳT Π(d, β, P )ȳ ≤ 0 ∀ y ∈ EQ (22)

The inequality above is not enough to prove stability on EQ.
This is because there is no guarantee that yk+1 will stay in
EQ. However, if (22) is satisfied, then a level surface of
V (y) contained in EQ is the boundary of a contractive set.
Therefore we impose a second condition on V (y), namely
that

{y | V (y) ≤ 1} ⊆ EQ ⇔

yTQy ≤ 1 ∀ y s.t. yTPy ≤ 1 (23)

If (22) and (23) are both satisfied, then the error model (8)
is exponentially stable on the set EP = {y | yTPy ≤ 1}.

With Z and γ(d) as in equation (20), any point y ∈ Rn

can be represented as y = Zx + γ(d̄), x ∈ Rn−1, d̄ ∈ R.
(Note that d̄ 6= d, but d = d0 + ψ(d̄ − d0) is in fact a
saturated function of d̄). We let D be the solution to the
problem

max d̄
s.t (Zx+ γ(d̄))TQ(Zx+ γ(d̄)) ≤ 1

and this means that we can cover EQ by sweeping d̄ over
the interval [−D,D].



Using the parameterization above the condition (22) is
written

[

x
1

]T [
Z γ(d̄)
0 1

]T

Π(d, β, P )

[

Z γ(d̄)
0 1

] [

x
1

]

≤ 0 (24a)

∀ (x, d̄) s.t
[

x
1

]T [
Z γ(d̄)
0 1

]T [
Q 0
0 −1

] [

Z γ(d̄)
0 1

] [

x
1

]

≤ 0 (24b)

For a fixed d̄ ∈ [−D,D] we apply the S-procedure to the
condition (24a)- (24b). In doing so we obtain a bilinear
matrix inequality and can state the following

Theorem 3: Consider the error model (8) on the ellipsoid
EQ = {y | yTQy ≤ 1}. Let Π = Π(d, β, P ) and d =
d0+ψ(d̄−d0). If there are real numbers β, λ > 0, a function
τ(d̄) ≥ 0 and a matrix P = P T > 0 such that

λ

[

Q 0
0 −1

]

−

[

P 0
0 −1

]

≤ 0

[

Z γ(d̄)
0 1

]T
(

Π − τ(d̄)

[

Q 0
0 −1

]

)

[

Z γ(d̄)
0 1

]

≤ 0

for d̄ ∈ [−D,D], then the error model (8) is exponentially
stable on EP = {y | yTPy ≤ 1 }.

Remark 2: To verify Theorem 3 we grid the entire inter-
val [−D,D] and this can be computationally burdensome
when D is large. A less work intensive approach would
be to grid only the non-saturated region and relax the
inequalities on the saturated half-spaces. However, in this
case the S-procedure may be lossy, causing a conservative
estimate of the stability region. In the numerical example
of this paper the “full grid” approach resulted in a larger
region of attraction.

B. LOCAL RESULTS, ANALOG CONTROL

In analogy with the discrete control case we want to
verify conditions (22) and (23), thereby proving exponential
stability on EP . We consider the partition of the state-space
described in Section IV-B and use different parameteriza-
tions to cover different regions. Let

κ = F (x0 − xr)

G(d) = F Φ̄1(d)

g(d) = d− F (Φ̄1(d)x
0 + Γ̄1(d) − xr)

and let d̄ = [d1, d2]
T be the parameter vector. We use these

expressions to define

Z0 = F⊥, Z1 =

[

F
G(1)

]⊥

, Z2(d̄) =

[

F
G(d2)

]⊥

γ0(d̄) =
d1 − κ

FFT
FT

γ1(d̄) =

[

F
G(1)

]T
(

[

F
G(1)

] [

F
G(1)

]T
)−1

[

d1 − κ
g(1) + d2

]

γ2(d̄) =

[

F
G(d2)

]T
(

[

F
G(d2)

] [

F
G(d2)

]T
)−1

[

d1 − κ
g(d2)

]

The sets Si can now be written

S0 = {y | y = Z0x+ γ0(d̄), x ∈ Rn−1, d1 ≤ 0}

S1 = {y | y = Z1x+ γ1(d̄), x ∈ Rn−2, d1 ≥ 0, d2 ≥ 0}

S2 = {y | y = Z2(d̄)x+ γ2(d̄), x ∈ Rn−2, d1 ≥ 0,

d2 ∈ [0, 1]}

We can now cover the regions EQ ∩ Si by sweeping the
corresponding parameters over suitable areas. Let Ωi ⊂ R2

be the sets satisfying

∀d̄ ∈ Ωi ∃ x s.t y = Zix+ γi(d̄) ∈ EQ ∩ Si

∀d̄ /∈ Ωi @ x s.t y = Zix+ γi(d̄) ∈ EQ ∩ Si

These sets can easily be estimated numerically and this
allows us to verify the following conditions.

Theorem 4: Consider the error model (16) on the ellip-
soid EQ = {y | yTQy ≤ 1}. If there are real numbers
β, λ > 0, functions τi(d̄) ≥ 0 and a matrix P = P T > 0
such that

λ

[

Q 0
0 −1

]

−

[

P 0
0 −1

]

≤ 0

[

Zi γi(d̄)
0 1

]T
(

Π(i, β, P )−τi(d̄)

[

Q 0
0 −1

]

)

[

Zi γi(d̄)
0 1

]

≤ 0

for d̄ ∈ Ωi, i = 0, 1 and
[

Z2(d̄) γ2(d̄)
0 1

]T
(

Π(d2, β, P )−

τ2(d̄)

[

Q 0
0 −1

]

)

[

Z2(d̄) γ2(d̄)
0 1

]

≤ 0

for d̄ ∈ Ω2, then the error model (16) is exponentially stable
on the ellipsoid EP = {y | yTPy ≤ 1 }.

Remark 3: Verifying Theorem 4 may be computationally
heavy. In Remark 2 we discussed a less work intensive
approach which can be used also here.

Example 1: The converter in Fig. 1 is designed to trans-
form a source voltage of 3000V into a load voltage of
1500V. The parameters of the system are

L1 = 23mH, C1 = 2mF, L2 = 11mH, C2 = 16mF,
E = 3kV, Iload = 200A, T = 2.5ms
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Fig. 1. Bidirectional DC-DC step-down converter with input filter.

The feedback controller contains a low pass filter to atten-
uate ripple in the output voltage. This adds an extra state
to the converter dynamics (x5 = ω

s+ω
x4 in the Laplace

domain). The cutoff frequency of the filter is ω = 100 · 2π
rad/s. The feedback matrix is chosen as

F =
[

0 0 0 −0.00369 0.00348
]

and the reference signal xr is chosen such that Fxr =
−0.8114.

To prove local stability of this system, we first numeri-
cally solve for fixed points (x0, d0) satisfying (7) and (15)
respectively. Exponential stability is then proved on sets
EP by verifying the conditions in Theorems 3 and 4. The
conditions can be formulated as checking the feasibility of a
set of linear matrix inequalities. These are solved using the
MATLAB LMI Control Toolbox. We choose the parameter
Q = λI and solve the problem for gradually decreasing
values of λ. The fixed points (x0, d0), parameters λ for
which the problem is feasible and the smallest and largest
eigenvalue of P , denoted ρmin and ρmax are given in the
table below.

Digital Control
x0

[

100.395 3026.917 114.284 1504.073 1504.493
]

d0 0.5006
λ 1 · 10−7

ρmin 1 · 10−7

ρmax 1.6 · 10−5

Analog Control
x0

[

100.032 3026.949 114.287 1498.667 1499.094
]

d0 0.4988
λ 1 · 10−8

ρmin 1 · 10−8

ρmax 1.8 · 10−6

VI. CONCLUDING REMARKS
The stability analysis presented in this paper is systematic

and easy to implement. It was applied to a non-trivial
example and provided a region of attraction of considerable
size. We suspect that for most DC-DC converters, quadratic
stability cannot be proven globally. A topic for further
research is therefore to improve the local results obtaining
larger regions of stability. We believe this can be done by
using extensions of the quadratic Lyapunov function that
further exploits the structure of the system. One possibility
is to use the piecewise quadratic Lyapunov function.

APPENDIX: DERIVATION OF DISCRETE-TIME
DYNAMIC SYSTEM

Using the notation xk = x(kT ) and x1
k = x((k + dk)T )

we write

x1
k = Φ̄1(dk)xk + Γ̄1(dk)

xk+1 = Φ̄2(dk)x1
k + Γ̄2(dk)

where

Φ̄1(dk) = e(A0+A1)dkT

Φ̄2(dk) = eA0(1−dk)T

Γ̄1(dk) = (A0 +A1)
−1(e(A0+A1)dkT − I)(B0 +B1)

Γ̄2(dk) = A−1
0 (eA0(1−dk)T − I)B0

Note that the matrix operator A−1(eAT − I) generally
should be interpreted as the integral

∫ T

0
eAtdt. The solutions

on the two intervals are stacked to yield the discrete-time
dynamic system

xk+1 = Φ̄(dk)xk + Γ̄(dk)

where

Φ̄(dk) = Φ̄2(dk)Φ̄1(dk)

Γ̄(dk) = Φ̄2(dk)Γ̄1(dk) + Γ̄2(dk)
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