Necessary and Sufficient Conditions for Stability of a Class of Second Order Switched Systems

Ayanendu Paul, Mehmet Akar, Michael G. Safonov and Urbashi Mitra

Abstract

For a special class of systems, it is shown that the existence of a Common Quadratic Lyapunov Function (CQLF) is necessary and sufficient for the stability of an associated switched system under arbitrary switching. Furthermore, it is shown that the existence of a CQLF for $N(N>2)$ subsystems is equivalent to the existence of a CQLF for every pair of subsystems. An algorithm is proposed to compute a CQLF for the subsystems, when it exists, using the left and right eigenvectors of a critical matrix obtained from a matrix pencil.

Index Terms - switched systems, stability, common quadratic Lyapunov function, M-matrix

I. Problem Statement

Consider the switched system

$$
\begin{equation*}
\Sigma_{s}: \dot{x}(t)=A(t) x(t), A(t) \in \mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\} \tag{1}
\end{equation*}
$$

where $x(t) \in \Re^{2}$ is the state, and $A_{i} \in \Re^{2 \times 2}, i=$ $1,2, \ldots, N$ are the system matrices for the subsystems

$$
\begin{equation*}
\Sigma_{i}: \dot{x}(t)=A_{i} x(t), i=1,2, \ldots, N \tag{2}
\end{equation*}
$$

Throughout the paper, the negative of each matrix A_{i} (i.e., $-A_{i}$) is assumed be an M-matrix ${ }^{1}$. Therefore, each matrix $A=\left[a_{i j}\right]$ in the set \mathcal{A} satisfies $a_{i i}<0, \quad i=1,2$ and $a_{i j} \geq 0$, and is Hurwitz. The objective of this paper is to derive necessary and sufficient conditions for the stability of the switched system (1) under arbitrary switching between the system matrices $A_{i}, i=1,2, \ldots, N$.

Clearly, if a common quadratic Lyapunov function (CQLF) exists for the subsystems $\Sigma_{i}, i=1,2, \ldots, N$, then the switched system (1) is stable under arbitrary switching. The converse of this statement is not true in general [3], [4]. However, in this paper, we prove that the converse is indeed true for a specific class of systems.

The following notation will be used in sequel. Let $T=$ $\left[t_{i j}\right] \in \Re^{n \times m}$. T is said to be a non-negative matrix, and denoted as $T \succeq 0$ if $t_{i j} \geq 0$ for $1 \leq i \leq n, 1 \leq j \leq m$. Similarly, for two matrices $T_{1}, T_{2} \in \Re^{n \times m}$, we write $T_{1} \succeq$ T_{2} if $T_{1}-T_{2} \succeq 0$. For $Q \in \Re^{n \times n}, Q>0$ denotes that Q is positive definite.

II. Main Results

We first consider the two subsystem case. ${ }^{2}$
Proposition 1: For the systems in (1) and (2) with $N=$ 2 , the following statements are equivalent.

[^0](i) The switched system Σ_{s} is stable under arbitrary switching.
(ii) The matrix pencil $\alpha A_{1}+(1-\alpha) A_{2}$ is Hurwitz for all $\alpha \in[0,1]$.
(iii) A CQLF exists for the subsystems Σ_{1} and Σ_{2}.

Remark 1: (i) In general, the existence of a CQLF is not necessary for the stability of a switched system under arbitrary switching [3], [4]. However, for the special class of systems under consideration, Proposition 1 states that stability of the switched system in (1) is equivalent to the existence of a CQLF for the subsystems in (2).
(ii) The stability properties of the switched system in (1) can be determined by checking the stability of the matrix pencil, $\alpha A_{1}+(1-\alpha) A_{2}, \alpha \in[0,1]$, which can further be reduced to checking whether A_{1} is Hurwitz and whether the matrix product $A_{1}^{-1} A_{2}$ has any negative eigenvalues [5]. Furthermore, the critical value of α for which $\alpha A_{1}+(1-$ $\alpha) A_{2}$ has the largest real eigenvalue can be found easily [4].

Lemma 1: If the diagonal entries of the matrices for the systems in (1) and (2) with $N=2$ are equal to -1 , then the following statements are equivalent.
(i) The switched system Σ_{s} is stable under arbitrary switching.
(ii) The matrix pencil $\alpha A_{1}+(1-\alpha) A_{2}$ is Hurwitz for all $\alpha \in[0,1]$.
(iii) A diagonal CQLF exists for subsystems Σ_{1} and Σ_{2}.

Remark 2: This type of system, whose system matrices have -1 on the diagonals, are widely encountered in problems of power control for wireless networks [6], [7].

The results of Lemma 1 can be extended as follows.
Theorem 1: If the diagonal entries of the matrices for the systems in (1) and (2) with $N>2$ are equal to -1 , then the following statements are equivalent.
(i) The switched system Σ_{s} is stable under arbitrary switching.
(ii) All matrices in the convex hull $\sum_{i=1}^{N} \alpha_{i} A_{i}$ are Hurwitz for $\alpha_{i} \geq 0, i=1,2, \ldots, N$, and $\sum_{j=1}^{N} \alpha_{j}=1$.
(iii) The matrix pencils $\alpha A_{i}+(1-\alpha) A_{j}$ are Hurwitz for all $\alpha \in[0,1]$, and all $i, j=1,2, \ldots, N, i \neq j$.
(iv) A diagonal CQLF exists for every pair of subsystems Σ_{i} and $\Sigma_{j}, i, j=1,2, \ldots, N, i \neq j$.
(v) A diagonal CQLF exists for the subsystems Σ_{i}, $i=1,2, \ldots, N$ and it can be computed using the following algorithm.
Algorithm 1: (a) Among all pairs of the matrices A_{i} and $A_{j}, i, j=1,2, \ldots, N, i<j$, determine (using Lemma 1) the matrix $A=\alpha A_{i}+(1-\alpha) A_{j}$ which has the largest real eigenvalue for some $\alpha \in[0,1]$.
(b) Solve for $v=\left[v_{1}, v_{2}\right]^{T}$ from $A v=\lambda v$.
(c) Compute the diagonal common Lyapunov matrix D as $D=\operatorname{diag}\left[v_{2} / v_{1}, v_{1} / v_{2}\right]$.

Remark 3: In general, for $N>2$, the existence of a CQLF for every pair of subsystems is necessary but not sufficient for the existence of a CQLF for all of the subsystems [4], [8]. However, the above theorem states that this condition is also sufficient for the special class of systems under consideration.

Appendix

A. Proof of Proposition 1

(i) \Rightarrow (ii): Suppose that the matrix pencil $\alpha A_{1}+(1-\alpha) A_{2}$ is unstable for some $\alpha=\alpha_{c} \in[0,1]$. Then $A_{e q}=$ $\alpha_{c} A_{1}+\left(1-\alpha_{c}\right) A_{2}$ is unstable which means that alternating switching between systems Σ_{1} and Σ_{2} utilizing Σ_{1} for $\alpha_{c} T$ units of time and Σ_{2} for $\left(1-\alpha_{c}\right) T$ units of time, with sufficiently small time interval T leads to an unstable switched system.
(ii) \Rightarrow (iii): Assume that the matrix pencil $\alpha A_{1}+(1-\alpha) A_{2}$ is Hurwitz for all $\alpha \in[0,1]$. It can be shown that $\alpha A_{1}+$ $(1-\alpha) A_{2}^{-1}$ is also Hurwitz for all $\alpha \in[0,1]$. Hence, by the result in [8], a CQLF exists for Σ_{1} and Σ_{2}.
(iii) \Rightarrow (i): Trivial.

B. Proof of Lemma 1

The assertions (i) \Rightarrow (ii) and (iii) \Rightarrow (i) follow from Proposition 1. In order to prove (ii) \Rightarrow (iii), suppose that the matrix pencil achieves its largest real eigenvalue $\lambda<0$ for $\alpha=\alpha_{c} \in[0,1]$ and $A=\alpha_{c} A_{1}+\left(1-\alpha_{c}\right) A_{2}$. Let $A v=\lambda v$ and $A^{T} w=\lambda w$. Since $-A$ is an M-matrix, it can be shown that $v, w \succ 0$ and $w=\left[v_{2}, v_{1}\right]^{T}$ where $v=\left[v_{1}, v_{2}\right]^{T}[1]$. Define a diagonal matrix $D=\operatorname{diag}\left[w_{1} / v_{1}, w_{2} / v_{2}\right]$. From $A^{T} w=\lambda w \prec 0$ and $A v=\lambda v \prec 0$, it follows that $\left(A^{T} D+D A\right) v \prec 0$. Hence, $-\left(A^{T} D+D A\right)$ is an $M-$ matrix [1] and since it is also symmetric, $\left(A^{T} D+D A\right)<0$, and D is a Lyapunov solution for A. We now proceed to show that it is also a Lyapunov solution for A_{1} and A_{2}. We consider two cases: (i) $\alpha_{c} \in\{0,1\}$ and (ii) $\alpha_{c} \in(0,1)$.

Case (i): Without loss of generality, assume $\alpha_{c}=1$. Denote the matrices as $A_{i}=\left[\begin{array}{cc}-1 & a_{i} \\ b_{i} & -1\end{array}\right], i=1,2$. The largest eigenvalue of A_{i} is $\lambda_{i}=-1+\sqrt{a_{i} b_{i}}$. As $\alpha_{c}=1$, $\lambda_{1} \geq \lambda_{2}$, hence $a_{1} b_{1} \geq a_{2} b_{2}$. This may happen when (a) $A_{1} \succeq A_{2}$ (i.e. $a_{1} \geq a_{2}, b_{1} \geq b_{2}$), (b) Otherwise, i.e. when either $\left(a_{1}<a_{2}, b_{1}>b_{2}\right)$ or $\left(a_{1}>a_{2}, b_{1}<b_{2}\right)$.

The first subcase (a), ($A_{1} \succeq A_{2}$) is trivial; as any diagonal Lyapunov matrix for A_{1} would be a Lyapunov matrix for A_{2}. Consider the 2 nd subcase (b). Here, $\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)<$ 0 . The largest eigenvalue of the matrix pencil, when given as a function of α, achieves its maximum for $\alpha_{\max }=p / q$ where $p=a_{1} b_{2}+a_{2} b_{1}-2 a_{2} b_{2}$ and $q=-2\left(a_{1}-a_{2}\right)\left(b_{1}-\right.$ $\left.b_{2}\right)$. As $\alpha \in[0,1]$, so $\alpha_{c}=1$ when $\alpha_{\max } \geq 1$. Hence, $\alpha_{c}=1$, if $p \geq q>0$, i.e., we have

$$
\begin{equation*}
a_{1} b_{2}+a_{2} b_{1} \leq 2 a_{1} b_{1} \text { and } 0 \leq a_{2} b_{2} \leq a_{1} b_{1}<1 \tag{3}
\end{equation*}
$$

The eigenvectors of A_{1} and A_{1}^{T} corresponding to λ_{1} can be computed as $v=\left[\frac{1}{\sqrt{b_{1}}}, \frac{1}{\sqrt{a_{1}}}\right]^{T}$ and $w=\left[\frac{1}{\sqrt{a_{1}}}, \frac{1}{\sqrt{b_{1}}}\right]^{T}$. Define $D=\operatorname{diag}\left[w_{1} / v_{1}, w_{2} / v_{2}\right]$. As before, D is a Lyapunov matrix for A_{1}. Using (3), $\left(A_{2}^{T} D+D A_{2}\right) v \prec 0$ and hence, D is a Lyapunov matrix for A_{2} as well.

Case (ii): $\alpha_{c} \in(0,1)$. Let $A=\alpha_{c} A_{1}+\left(1-\alpha_{c}\right) A_{2}$, and consider the matrix pencil $B=\beta A+(1-\beta) A_{1}, \beta \in[0,1]$ which achieves its largest real eigenvalue for $\beta=1$. Hence, this case reduces to case (i) discussed above, and a diagonal common Lyapunov matrix, D, can be calculated for A and A_{1} using the eigenvectors of A. Similar arguments hold for the matrices, A and A_{2}. Thus, D is a Lyapunov matrix for both A_{1} and A_{2}.

C. Proof of Theorem 1

The assertions (i) \Rightarrow (ii), (ii) \Rightarrow (iii) and (v) \Rightarrow (i) are straightforward. The claim (iii) \Rightarrow (iv) follows from the equivalence of the items (ii) and (iii) in Lemma 1. In order to prove (iv) $\Rightarrow(\mathrm{v})$, we proceed as follows. Let every pair of subsystems Σ_{i} and $\Sigma_{j}, i, j=1,2, \ldots, N, i \neq j$, have a diagonal CQLF. The subsystem Σ_{i} has a set of normalized diagonal Lyapunov matrices $D_{i}=\operatorname{diag}\left[1, d_{i}\right]$, where d_{i} can be seen to lie in a convex set, $d_{i} \in\left(d_{i}^{-}, d_{i}^{+}\right), d_{i}^{-} \geq 0$, $d_{i}^{+}>0$ [8], [4]. Similarly for Σ_{j}, we have $D_{j}=\operatorname{diag}\left[1, d_{j}\right]$, $d_{j} \in\left(d_{j}^{-}, d_{j}^{+}\right), d_{j}^{-} \geq 0, d_{j}^{+}>0$. As Σ_{i} and Σ_{j} have a diagonal CQLF, the set $\left(d_{i}^{-}, d_{i}^{+}\right) \cap\left(d_{j}^{-}, d_{j}^{+}\right)$is non-empty. Since this is true for every pair of subsystems, we have $\bigcap_{i=1}^{N}\left(d_{i}^{-}, d_{i}^{+}\right) \neq \emptyset$ which establishes that there exists a diagonal CQLF, $x^{T} D x$, for all of the subsystems. Note that the set of common Lyapunov functions can be computed by intersecting the intervals $\left(d_{i}^{-}, d_{i}^{+}\right)$whose limits can be determined by solving a second order algebraic equation for each matrix A_{i}. An alternative solution is Algorithm 1 which follows from the proof of Lemma 1. (QED) \square

REFERENCES

[1] R. B. Bapat and T. E. S. Raghavan, Nonnegative Matrices and Applications, Cambridge University Press, Cambridge, United Kingdom, 1997.
[2] M. Fiedler and V. Ptak, "On matrices with non-positive off diagonal elements and positive principal minors," Czechoslovak Mathematical Journal, vol. 12, pp. 382-400, 1962.
[3] W. P. Dayawansa and C. F. Martin, "A converse Lyapunov theorem for a class of dynamical systems which undergo switching," IEEE Transactions on Automatic Control, vol. 44, no. 4, pp. 751-760, April 1999.
[4] M. Akar and K. S. Narendra, "On the existence of common quadratic Lyapunov functions for second order linear time-invariant discretetime systems," International Journal of Adaptive Control and Signal Processing, vol. 16, pp. 729-751, December 2002.
[5] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, UK, 1991.
[6] G. J. Foschini and Z. Miljanic, "A simple distributed autonomous power control algorithm and its convergence," IEEE Transactions on Vehicular Technology, vol. 42, no. 4, pp. 641-646, November 1993.
[7] A. Paul, M. Akar, U. Mitra, and M. G. Safonov, "A switched system model for stability analysis of distributed power control algorithms for cellular communications," Proceedings of the American Control Conference, Boston, MA, June 2004.
[8] R. N. Shorten and K. S. Narendra, "Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-invariant systems," International Journal of Adaptive Control and Signal Processing, vol. 16, pp. 709-728, December 2002.

[^0]: The authors are with the Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA, 90089-2565, USA. E-mail: \{ayanendp, akar, msafonov, ubli\}@usc.edu
 This research was supported in part by NSF grant ANI-0137091 and AFOSR grant F49620-01-1-0302.
 ${ }^{1}$ See [1], [2] for the definition and properties of M-matrices.
 ${ }^{2}$ The proofs of the results in this section are relegated to the Appendix.

