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On the other hand, the company is a supplier satisfying 
demand signals from downstream customers. In this role, 
the manufacturing company warehouses and transports 
(perhaps relying on subcontractors) a variety of products to 
a range of geographically disperse consumers. These 
include other manufactures and their subcontractors, 
distributors, and end users, noting that the end users may 
also purchase from the distributors and the distributors 
might also purchase from the other manufacturers. Of 
course, the company's competitors sell to many of the same 
manufacturers, distributors, and end users. The tradition of 
referring to this supply-demand network as simply a 
"supply chain" grossly understates the actual complexity. 

Abstract— After describing the general supply chain 
management problem with examples from the semiconductor 
industry, attention is restricted to the core manufacturing 
problem. Using a control-oriented approach for this nonlinear 
stochastic combinatorial optimization problem, an outer loop 
for addressing the planning parts of the problem and an inner 
loop to manage the execution aspects are proposed. The outer 
loop provides a material release plan generated by a linear 
programming formulation (LP) and inventory safety stock 
targets generated by a dynamic programming formulation 
(DP) to the inner loop to guide execution. Portions of the 
nonlinearity and stochasticity inherent in the problem are 
addressed by the outer loop that requires iterative 
convergence between the LP and the DP. The inner loop is 
formulated from the perspective of model predictive control 
(MPC) and integrates optimal control and stochastic control. 
Initial results are presented to demonstrate the ability of the 
inner loop to track material release and safety stock targets 
while improving delivery performance in the face of both 
supply and demand stochasticity. A simulation module is also 
described that supports the other components of the system by 
validating their efficacy before application in the real world. 
This component has to address the integrated flows of 
materials, information, and decisions through the supply 
chain, and employs innovative approaches combining a 
number of specialized models to do so quickly and accurately.  

 
There are a broad set of flows inherent in this supply-
demand network. Materials flow from suppliers to 
customers increasing in value while becoming products. 
Revenues move in the opposite direction through the many 
echelons in the network. Information flows in many 
directions including forecasts of supply towards the 
customers and forecasts of demand rolling up towards the 
suppliers. This provides a rich set of research and 
development opportunities for those interested in decision 
and control. Beyond the scope of this paper are applications 
of option theory and auction theory to the multiple 
interactions between suppliers and customers in the 
network, as well as applications of forecasting theory to the 
multiple interdependent supply and demand parameters of 
interest. Demand management issues, although extremely 
important, will not be addressed here. Neither will the 
extensive set of issues related to network design.  

I. INTRODUCTION TO THE PROBLEM 

T HE economic systems that are the focus of this paper 
stretch from the suppliers' suppliers to the customers' 
customers with sets of manufacturing facilities in 

between. Any high volume manufacturing company in the 
midst of this system plays many roles. On one hand, the 
company is a customer sending demand signals to upstream 
suppliers.  To manufacture, the company needs raw 
materials relative to its products, production facilities and 
equipment including spares, and often relies on 
subcontractors for burst capacity. In most cases, the 
subcontractor relies on the same materials and equipment 
suppliers as the company. Furthermore, the company's 
competitors often rely on this same set of suppliers. 

 
The focus here will be on integrating optimal decision 
making and controlling decision execution in the pre-
existing manufacturing core of a supply-demand network. 
This business problem is addressed from the inside out 
under the hypothesis that, if the existing manufacturing 
core is not efficiently planned and executed, the probability 
of realizing efficient operation of the other components of 
the network becomes vanishingly small. Another reason for 
this focus is the ever-growing desire for mass 
customization and instantaneous doorstep delivery in our 
society. Consumers have come to expect higher 
performance at lower prices on a year to year basis. In 
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competition between supply-demand networks to satisfy 
these desires and expectations, success or failure rests to a 
large degree on the agility and responsiveness of the 
manufacturing core. 
 
Concrete examples will be drawn from the semiconductor 
industry, specifically Intel Corporation as one of the 
international high volume manufacturing companies that 
represents the manufacturing core of supply-demand 
networks of logic, memory, and communications products 
(among others). While greatly simplified for the purposes 
of this paper, the examples represent 10's of billions of 
dollars in annual sales to 100's of millions of end customers 
for 10's of thousands of diverse products. The most 
sophisticated current logic products integrate roughly 250 
million transistors on a silicon die the size of an average 
human thumb print, and have continued to increase in 
complexity in accordance with Moore's law for over 30 
years. The factories required to manufacture products of 
such sophistication current cost roughly 3 billion dollars to 
construct and outfit, and have continued to become more 
expensive with every generation of decreasing transistor 
feature size. 
 
 
 
 
 
 
 
 
 
Fig. 1.  The basic flow in semiconductor manufacturing. 
 
The basic manufacturing flow is shown from left to right in 
Fig. 1. Transistors are built on a silicon wafer and then 
interconnected to form circuits in a fabrication process that 
might consist of 300 individual production steps and take 
roughly 6 weeks to complete. The resulting wafers are 
tested to sort working die from those that do not function, 
and further sort the working die into broad functional 
categories. Sort is necessary given the number of stochastic 
processes that underlie semiconductor manufacturing 
including random machine breakdowns that drive a 
distribution of throughput times (TPT) and random atomic 
misplacements that cause the resulting devices to work over 
a range of clock speeds and power consumptions including 
devices that do not function at all.  
 
Sorted wafers are then passed into the assembly process 
that might consist of 30 individual production steps and 
take a week or two to complete. Here the individual die are 
cut from the wafers and mounted in packages to protect 
them and make them suitable for incorporation in other 
products, often being mounted on printed circuits of 
various types. Once packaged, they are stressed to induce 

infant mortality and tested again for final classification into 
performance categories. Stochasticity again drives a 
distribution of TPT as well as a distribution of end product 
characteristics.  
 
Categorized product then enters the finish and pack process 
that involves roughly 10 processing steps that take only a 
few days to complete. One of the unfortunate asymmetries 
of semiconductor manufacturing is encountered here. 
Depending on the demand in the marketplace, fast devices 
can be configured to run more slowly, but slow devices can 
not be enticed to run faster. Once the final performance is 
configured, devices are individually labeled and packed in 
batches into the appropriate medium for shipment.  
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Fig. 2.  Product fan-out in semiconductor manufacturing. 
 
The product fan-out implied in Fig. 1 with the associated 
opportunity for delayed differentiation is shown explicitly 
from top to bottom in Fig. 2. Raw wafers are released into 
fabrication and exit covered with die exhibiting a range of 
properties. These are sorted into broad functional 
categories such as high operational speed and low power 
consumption. There is a correlation between speed and 
power with the fastest devices usually consuming the most 
power, and visa versa. This categorization is used in 
assembly to decide what die to put into which packages. In 
the case of microprocessors, die with the highest clock 
speed are placed into server packages while die with the 
lowest power consumption are placed into mobile 
packages. Both die types might be placed into desktop 
packages. Testing then splits the performance distributions 
into finer categories, usually by maximum clock speed. In 
finish, these categories are used to fill demand for specific 
products. It is sometimes the case that the multiple 
splittings of multiple distributions results in different 
production flows giving the same end product (as is seen in 
the middle of Fig. 2). In addition, demand for lower speed 
devices can be filled by configuring higher speed devices 
with an associated lost opportunity cost.  
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Fig. 3. Facilities topology in semiconductor manufacturing. 
 
The network of facilities alluded to in Fig. 1 with the 
associated opportunity for risk sharing is shown explicitly 
from left to right in Fig. 3. The first few echelons show 
vendors of silicon wafers and transportation links 
supplying raw material warehouses in front of fabrication 
(fab) facilities. Multiple vendors and FAB/SRTs are 
involved to mitigate the risk of problems in any individual 
manufacturing facility. FAB/SRT facilities that are owned 
and operated by subcontractors are included as capacity 
buffers against variable demand. The middle few echelons 
show sorted die being transported to die warehouses in 
front of assembly (asm) facilities. In addition, vendors are 
supplying package warehouses through transportation 
links. Once again, multiple vendors and ASM/TST 
facilities are involved as well as subcontractors. Notice the 
assignment of different die types and different package 
types to different factories. The last few echelons show 
tested product being transported to finished goods 
warehouses in front of finish (fin) facilities as well as 
packing materials being supplied by vendors to pack 
facilities. In the example shown, multiple vendors and 
FIN/PAK facilities are present but no subcontractors are 
involved. This is a reflection, in this example, of the 
primary manufacturer directly managing all shipments to 
customers. 
 
The core repetitive decisions that must be made during the 
operation of the supply-demand network are captured in 
these figures. Referring to Fig. 1, decisions must be made 
in every time period about how much of what material to 
release into fabrication, assembly, and finish facilities. In 
addition, in Fig. 2, how much material to put into which 
package in assembly, and how much of what material to 
configure into which product in finish must be decided. 
Supporting these production decisions are a set of 
inventory decisions as shown in Fig. 3. One has to do with 
deciding how much of which raw material to hold in front 
of the fabrication (wafers), assembly (packages), and finish 
(boxes) facilities. Another deals with deciding how much 

of which work in progress to hold at assembly (die) and 
finish (unmarked product) factories.  
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Previous remarks focused attention in the larger set of 
supply-demand network problems to those dealing with the 
operation of the manufacturing core. This list of relevant 
decisions further refines the focus on issues discussed here. 
Excluded are the lower level details of internal factory 
decisions such as the setup and maintenance of machines 
and the batching and prioritization of lots that must be 
made in all of the factories represented in Fig. 3. Details of 
the operations of the warehouses and transportation links 
are similarly not considered. At a higher level, details of 
the decisions for managing the market place are excluded. 
This includes such important decisions as product 
introduction strategies and the timing of special sales 
offers. The decision system of interest here assumes a valid 
demand signal from above and a capable set of facilities 
below. 
 
There are a number of complications to overcome in the 
context of making these decisions. The most obvious from 
Figures 2 and 3 is the combinatorial complexity of the 
problem. In actual practice, across the breadth of the 
offerings of an international high volume manufacturer, 
there would be as many as 25,000 end products with the 
associated number of semi-finished goods, package types, 
and wafers. Across the globe, there would be as many as 
100 factories and 500 inventory holding positions with the 
appropriate number of transportation links.  
 
A second complexity is associated with Figures 2 and 3, 
that of supply stochasticity. Each of the factories 
manufacturing each of the products exhibits at least three 
types of variability based on different stochastic processes. 
The length of time it takes the raw material input to a 
factory to emerge as output, known as the throughput time 
(TPT), can be best described by a distribution. The 
underlying stochastic processes include the contention of 
lots flowing through the factory for production resources as 
well as the random unavailability of those resources. For 
example, machines experience breakdowns and operators 
take breaks. These TPT distributions are skewed since there 
are more events that can occur to slow a lot down and 
increase its TPT than there are events that can speed a lot 
up and decrease its TPT. 
 
How much of the raw material released into the factory will 
emerge as output is also variable depending on a random 
set of unavoidable events that can occur. There are many 
examples of these stochastic processes. At a large scale 
compared with the transistors being fabricated, silicon 
wafers repeated heated and cooled in the production 
process occasionally experience thermal stress resulting in  
cracking with the accompanying lose of all of the die on the 
wafer since the wafer can not be further processed. At a 



 
 

 

small scale, contaminates from the manufacturing process 
can fall onto a wafer in such a way as to short circuit 
transistor interconnects causing a die to malfunction and be 
rejected at sort. 
 
How the output from each factory will function is another 
supply variability. Clock speed and power consumption are 
among the main functional characterizations of 
semiconductors and both of these can best be described 
with distributions. The semiconductor manufacturing 
process can be thought of as the arrangement of atoms to 
form and interconnect transistors. Controlling exactly how 
many atoms are added or subtracted in the individual 
process steps and exactly how they are positioned relative 
to each other involve many stochastic processes. It is the 
detailed outcome of all of these processes for each die that 
generates the functional distributions.   
 
A third complexity is that of demand stochasticity, and it is 
difficult to describe the underlying random processes. 
Ultimately the end customer decides what products to 
purchase, and given the very large number of end 
customers and products, it is hard to forecast how much of 
which product will be purchased in which locations at what 
times because of the complex interplay of economic 
condition, need, and fashion. Compounding this situation is 
the competition in the marketplace between end product 
suppliers who differentiate based on form, function, price, 
and service (to mention but a few of the vectors). This 
translates into variability in the demand signal to the 
decision system of interest here. Orders are placed for 
semiconductor devices that include the specific product 
name and quantity as well as delivery time and place. 
Subsequent random events in the market result in requests 
to alter all of these parameters for existing orders, and the 
flow of materials through the supply-demand network must 
be altered to accommodate. 
 
As can be seen in Figures 2 and 3, the design of the 
network addresses some aspects of these demand 
stochastics. The fan-out of products in Fig. 2 supports 
delayed differentiation, the final configuration being made 
only a few days before product released into the logistics 
network. The multi-trajectory flow in Fig. 3 (including 
multiple vendors and subcontractors) supports risk sharing. 
In each echelon, multiple factories are making the same 
product and multiple products are being made in the same 
factory. Between echelons, the output of each factory is 
tied to the input of many downstream factories just as the 
input of each is tied to many upstream outputs. While all of 
these mappings can be changed over time with the 
dynamics of the business, the decision system under 
discussion here will have to manage all of the remaining 
stochasticity by appropriately utilizing the product fan-out 
and multi-trajectory flows.  
 

Magnifying the complexity of both the combinatorics and 
the supply-demand stochastics is the fact that many of the 
key relationships are nonlinear. Manufacturing TPT, as 
well as TPT variability, increase nonlinearly as the 
utilization of manufacturing resources increase due to 
congestion. The probability of stock out decreases 
nonlinearity as the amount of safety stock inventory 
increases. The well-known price elasticity curve expresses 
the nonlinear relationship between demand and selling 
price. And the history of the semiconductor industry shows 
a nonlinear drop in selling prices of individual products 
over their life cycle (currently in the range of 6 months to 3 
years). Notice as well that these nonlinearities interact. A 
drop in price could lead to an increase in demand. An 
increase in demand could lead to a higher safety stock 
target to protect against stock out. An increase in demand 
and inventory increases the load and congestion in the 
factory leading to an increase in TPT. An increase in 
manufacturing TPT could lead to a less responsive system 
leading to an increase in stock out probability and a 
decrease in demand. The decision system directing the 
supply-demand network must recognize and deal with these 
interacting nonlinearities. 
 
The final complexity in the decision problem described 
here has to do with the financial aspects of the problem. 
The primary goal in operating a supply chain is to realize a 
profit, and this involves a number of conflicting objectives. 
The most obvious is the tug of war between minimizing 
cost and maximizing revenues. More subtle is the balance 
between maximizing profits now (perhaps risking future 
profits) and maximizing profits in the future (perhaps 
delaying or foregoing current profits).  Making too little of 
a product or delivering it late as a result of striving to 
minimize current or future costs too often lead to decreased 
revenues through delayed payments, late penalties, lost 
sales, and (in the worst case) lost customers. Making too 
much of a product or introducing it early before the market 
is ready as a result of trying to maximize revenue now and 
in the future too often lead to higher costs through 
inventory holding charges and increased risk of obsolesce 
leading to fire sales and write offs. 

II. A CONTROL-ORIENTED SOLUTION APPROACH 
Given an international supply-demand network that 
operates around the clock every day of the year, the 
resulting problem can be described as a continuous 
nonlinear stochastic combinatorial financial optimization. 
With the scale of international supply-demand networks, 
the difference between an optimal and a non-optimal 
solution can be worth hundreds of millions of dollars per 
year. For example, in the case of Intel Corporation with 
roughly 30B$ in annual revenue from its network, a 3 1/3% 
improvement in operations would result in an addition 1 B$ 
per annum. 
 



 
 

 

The approach described here relies on splitting the problem 
into a strategic planning function and a tactical execution 
function as shown in Fig. 4. The former can be thought of 
as an outer loop controller that considers business goals 
and trends over months and quarters into the future, the 
latter as a companion inner loop controller that manages 
day to day operations providing the network with 
responsiveness and agility. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Configuration of the proposed control system. 
 
A major component of the strategic outer loop is a Linear 
Programming (LP) formulation that addresses the 
combinatorial financial optimization. The supply and 
demand nonlinearity and stochasticity is managed in two 
ways. On one hand, a major component of the tactical inner 
loop is a Model Predictive Control (MPC) formulation that 
accomplishes both feedback and feed forward control, 
selecting actions based on optimization of a control-
relevant objective function. Stochasticity is contained by 
rapid measured responses as soon as deviation from the 
plan is recognized. On the other hand, a major component 
of both the outer and inner loops is an Inventory Planning 
formulation. The placement and sizing of safety stocks 
provides an additional hedge against both supply and 
demand stochasticity. From an outer loop perspective, 
inventory targets are set based on long term demand 
forecasts that include potentially large errors and passed to 
the inner loop to guide execution. From an inner loop 
perspective, upper and lower control limits can be placed 
around the targets based on recent history in the execution 
environment and used to guide current execution.    
Simulation supports all of these components by providing 
for the testing of policies and plans before they are 
implemented in the real supply-demand network. These 
components and interactions between them will be 
described in the next several sections. 

A. A Strategic Planning Formulation 
One solution to the strategic planning problem can be 
formulated as a mathematical optimization to allocate 

capacity to satisfy demand while minimizing costs and 
maximizing revenue [1], [2]. There are three major 
categories of inputs in this approach as shown in Fig. 5. 
One set of inputs specify the basic structure of the problem. 
This includes the material required to make any particular 
product as depicted in Fig. 2 and the possible 
manufacturing flows for products shown in Fig. 3. 
Supporting these descriptions are forecast future values of 
performance parameters including factory and transport 
TPTs and product yields. Financial data completes the set 
with the cost of manufacturing in each facility, transport 
costs for each link, the cost of holding inventory in each 
warehouse, and the average selling prices. Note that all of 
this data is time varying. New products are introduced and 
old products are discontinued with the associated 
modification of factory qualifications on a monthly basis. 
Yields and TPTs are intended to improve as products and 
factories mature over time. There is always external market 
pressure to lower selling prices and the associated internal 
pressure to reduce manufacturing costs. Note also that 
much of this data also varies by factory and product 
depending on the maturity of each. Different factories have 
different costs and performance parameters for 
manufacturing the same product. The same factory exhibits 
different performance parameters and costs for different 
products. Finally note that while TPTs and yields are the 
result of stochastic processes and are best described by 
distributions, only forecast means are used here. 
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Fig. 5.  A solution to the basic strategic planning problem. 
 
The second set of inputs describes the supply scenario. Part 
of this description is the capacity forecast for all of the 
facilities in the system. This is product and facility specific 
and changes over time as individual facilities are modified. 
While there is a stochastic component to all of these 
capacity forecasts, again means are used. Another major 
part of the supply description is the current work in 
progress in each of the manufacturing facilities and 
transportation links as well as the current inventories in 
each warehouse. In practical applications there can be an 
arbitrary number of supply preferences included in the 
input. For example, it may be advantageous from a risk 
mitigation standpoint to distribute the load somewhat 



 
 

 

evenly across the supply facilities rather than heavily 
loading the low cost facility while leaving the higher cost 
facilities under-loaded. It is often challenging to include 
heuristic preferences in a mathematical formulation since 
they are usually difficult to quantify. 

tpi ,,InvCost    cost of holding inventory 

tpi ,,InvPen   penalty for not satisfying inventory target 

tp,Dem   average demand 

tp,SaleBen  benefit from selling the end product 
 

tp,BackPen    penalty for not satisfying demand The demand scenario is described in the third set of inputs. 
The demand forecasts by product can vary dramatically 
over time and are a collection of numerical estimates on a 
highly stochastic process rooted in the dynamics of the 
marketplace. Included are inventory targets intended to 
mitigate a portion of this demand stochasticity as well as 
part of the supply stochasticity. They are included on the 
demand side since they require capacity to be satisfied. The 
calculation of these targets will be the focus of a later 
section. Analogous to the supply scenario, an arbitrary 
number of demand preferences can be included. For 
example, a particular product or a particular customer may 
be deemed to have an elevated strategic importance relative 
to others although from a tactical financial perspective this 
may not be apparent. Once again, appropriate formulation 
is challenging but necessary to satisfy business needs. 

 
Decision Variables (assume non-negativity): 

tpm ,,Rel   material released into a mfg stage 

tpi ,,Inv    inventory held at an inventory location 

tp,Sales    amount of satisfied demand 

tp,Backlog  amount of unsatisfied demand 

tpi

tpi

,,

,,

InvOvr

InvUnd
 slack variables, for deviation from inv target 

 
Initialization: 

{ 0,TPT0,, tp,m,
Rel −∈tpm } previous material release 

0,,Inv =tpi      beginning on hand inventory 
 
Considering all of this information, the core formulation is 
based on mass balance and capacity constraints and an 
objective function that includes minimizing costs and 
maximizing revenues. The simple example formulation that 
follows includes only the left-most single flow leading to 
"prodA" from Fig. 2. From a facilities perspective, it 
includes only the top-most manufacturing facilities ("FAB-
1 / SRT-1", "ASM-1 / TST-1", "FIN-1 / PAK-1") and the 
top-most product warehouses ("hi-spd", "prod", and "pakd 
prod") from Fig. 3. It ignores raw materials and 
transportation. Demand forecasts and inventory targets for 
the single product are included as are factory capacity, 
yield and TPT, initial factory WIP, and initial warehouse 
inventory for the single manufacturing line. The 
corresponding implied financial model includes 
manufacturing costs, inventory holding costs, penalties for 
missing inventory targets and demand, and the average 
selling price. It ignores both demand and supply priorities. 
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p  product (intermediate or end product) 
t  time 
 
Input Variables:  

tpm ,,Cap  total product that can be in a mfg stage 

tpm ,,Yield  ave fraction of input to a mfg stage that exits 

tpm ,,TPT   ave number of periods to complete a mfg stage 

tpm ,,MfgCost    cost of manufacturing a product 

tpi ,,InvTar  inventory target 



 
 

 

The principal result of executing such a formulation as a 
Linear Program is a material release plan (or equivalently a 
product output plan) for all the manufacturing facilities for 
each time segment. Also available in the output is a 
transportation plan, an inventory plan including level 
relative to the specified targets, and a demand satisfaction 
plan including backlog. A profit projection is also 
available.  
 
In an industrial setting, this tool is used for solidifying the 
response of the company to the market. It is rarely the case 
that initial executions provide a satisfactory match, usually 
leaving some demand unsatisfied and some capacity 
unused. In these circumstances, four of the inputs shown in 
Fig. 5 are manipulated. Selected demand can be moved 
earlier (incurring inventory holding costs), specific backlog 
can be authorized (incurring potential penalties), or some 
demand can be ignored (incurring lost revenue). Particular 
inventory targets can be adjusted (with attendant changes in 
inventory holding costs and penalties). Of course, demand 
and supply priorities can be modified potentially changing 
all facets of the plan. These manipulations reflect the 
practical impossibility of including all of the relevant 
business considerations in the formulation. Fortunately, a 
satisfactory strategic plan can usually be realized within a 
manageable number of iterations. 
 
The principal shortcoming of this formulation is its 
treatment of the operational dynamics of the system. The 
most obvious is the disregard of the stochastic nature of the 
input parameter data, demand forecast, and capacity 
forecast. Addressing this deficiency is the focus of most of 
the rest of this paper. Another is the use of time periods 
with associated buckets of capacity to model the flow of 
work through manufacturing. An example of the 
difficulties this precipitates is the disregard of the fact that 
factory TPT rises nonlinearly with factory utilization. To 
build the plan, fixed factory TPTs are input as parameters. 
The plan that results specifies the amount of material to be 
released into those factories, which determine their work 
loads and, in turn, the TPTs that will be realized.  
 
One approach to this circularity has been to iteratively use 
an LP formulation and a discrete event model as described 
by Hung and Leachman [3]. Given an initial TPT, the LP 
provides an initial plan. This plan is executed in simulation 
to determine the resulting TPT. This TPT is fed back to the 
LP, and iteration is continued seeking convergence. 
Although convergence is not guaranteed, the results are 
generally adequate for most real-world applications. 
Unfortunately, solution time of such a scheme can be quite 
long if the simulation model contains the detail necessary 
to generate accurate TPTs.  
 
More recently an approximate but very efficient approach 
has been developed by Asmundsson, Rardin, and Uzsoy 

[4], [5] using the idea of clearing functions. Here the 
expected throughput of a capacitated factory in a period of 
time is expressed as a function of its workload in that 
period. Based on an outer linearization of this nonlinear 
clearing function, an LP is formulated that appropriately 
captures the dynamics of factory capacity, TPT, and work 
load in a manner that supports rapid execution. 

B. An Inventory Planning Formulation 
One popular approach to managing the inherent 
stochasticity in the supply and in the demand is to put 
safety stock in place [6], [7], [8]. Such extra inventory 
hedges the risk of an unexpected supply downside or 
demand upside. The important decisions include where to 
hold the safety stock as well as how much to hold, both 
varying over time. Consider the product and facilities 
topologies in Figs. 2 and 3, respectively.  
 
Positioning completed product in the final warehouse in the 
manufacturing flow so that it can be shipped from stock to 
the customer on demand tends to maximize revenues, but 
requires complete product differentiation and incurs full 
manufacturing costs. Positioning extra undifferentiated 
material near the beginning of the manufacturing flow 
tends to minimize manufacturing costs, but requires 
customers to wait for the entire manufacturing TPT for 
their orders to be shipped.  
 
Holding too much extra inventory as safety stock increases 
holding costs and risks steep discounts or write-offs as the 
market becomes saturated or the products becomes 
obsolete. It can also waste manufacturing capacity, building 
what ultimately turns out to be the wrong product, 
potentially precluding building other more appropriate 
revenue products. Holding too little safety stock risks 
stock-outs with late delivery penalties, lost revenue, and in 
the worst case, lost customers. It can also stress the 
manufacturing system with rush orders and increased 
congestion in the factories leading to longer TPTs for all 
orders and the possibilities of lower yields. 
 
Practical complications abound. For example, safety stock 
requirements change through the life cycle of products. In 
the ramp-up phase when market penetration is of 
paramount importance and stock-outs can not be tolerated, 
high levels of safety stock might be desirable but might be 
difficult to attain with immature production facilities. 
During the middle phase of market stability, two situations 
are possible based on the assumption that the initial market 
forecasts used to put capacity in place were flawed. If 
forecasts were pessimistic and the network is supply 
constrained, building safety stocks will be difficult since all 
capacity is being used to fill orders. If the network is 
demand constrained due to optimistic forecasts, the 
difficulty will be in overbuilding safety stock since 
manufacturing personnel loath idle capacity. In the ramp-



 
 

 

down phase of a product's life cycle, safety stock is a 
liability when the focus is on moving customers to new 
improved products. 
 
Furthermore, in operating supply-demand networks there is 
a substantial amount of inventory present and it can be 
difficult to identify that which is extra. In an efficient 
network, the majority of the material flowing through 
manufacturing and transportation facilities is destined to 
satisfy firm customer orders. The majority of the material 
in warehouses has a very low residency time as it moves 
steadily toward the market. However, some material might 
appear to be extra. Raw materials might have to be ordered 
in batches larger than can be immediately consumed. 
Intermediate production may arrive in a warehouse ahead 
of schedule due to manufacturing stochasticity in either 
yield or TPT. Final product for actual customer orders may 
be built ahead due to mismatches between demand and 
supply at the time the order is due. None of these can be 
considered safety stock which must be scheduled into 
production facilities in addition to that committed to firm 
orders. 
 
The simple supply-demand network described in Figs. 2 
and 3 is among the most difficult for which to compute 
safety stock positions and amounts even for a bounded time 
horizon [9], [10]. Multiple facilities exhibit a complex 
network flow with multiple products. Both supply and 
demand forecasts included substantial stochasticity with 
means that can vary over time. The flow contains multiple 
points at which multiple raw materials from outside 
vendors are injected. Fortunately the same product can be 
made through a number of routes, and the products 
incrementally differentiate along the flow providing 
opportunities for risk pooling. 
 
One approach to the computation of safety stock positions 
and amounts is to construct a simulation that incorporates 
many of these complexities and then use it to search the 
space of possible positions and amounts for a good (but 
possibly not optimal) solution. Simulation speed and 
accuracy as well as the efficiency and effectiveness of the 
search control algorithm are crucial to the practicality of 
this approach. Glasserman and Tayur [11] have 
demonstrated a gradient estimation technique called 
infinitesimal perturbation analysis (IPA) for estimating 
from simulation the derivatives of inventory costs with 
respect to policy parameters. They have shown that they 
can use these derivatives to help steer the search for 
improved policies in multi-echelon systems with demand 
uncertainty related to those considered here. 
 
Other approaches rely on representing the safety stock 
problem in such a way that mathematical optimization 
techniques can be employed. For example, Graves and 
Willems [12], [13] have developed a method for supply-

demand networks modeled as spanning trees that captures 
the stochastic nature of the demand and allows the safety 
stock problem, given a few key simplifying assumptions, to 
be formulated as a deterministic optimization. The goal of 
this method is to place and size decoupling safety stocks 
that are large enough to permit downstream portions of a 
network to operate independently from the upstream, 
provided the upstream portion replenishes the external 
demand in a timely fashion. The simplifying assumptions 
include 1) bounded demand, 2) deterministic production 
TPTs at each stage that are independent of load (this is 
equivalent to assuming no capacity constraints), and 3) 
guaranteed service times by which each stage will satisfy 
its downstream demand. The first assumption is a practical 
one reflecting the fact that, to cover any possible demand 
eventuality however improbable, very large inventories 
would have to be positioned. Bounding demand simply 
means that, in extraordinary demand scenarios, the 
personnel operating the network would take extraordinary 
measures in response. The second assumption clarifies the 
focus on demand variability (not supply variability) and 
inventory target setting (not capacity allocation). The third 
assumption is key to the formulation. These service times 
for both end items and the internal stages are decision 
variables an optimization model used here including the 
possibility of setting a maximum service time for end items 
as required for customer satisfaction. 
 
This inventory planner models the supply chain as a set of 
nodes and arcs where the nodes denote a processing 
function and the arcs capture the precedence relationship 
between nodes. While the LP formulation draws a 
distinction between manufacturing stages and inventory 
locations, here the stages are defined such that they are also 
potential stocking locations and can hold safety stock after 
processing activity has been completed. The decision 
variables of a stage must be bound to prevent the 
possibility of it holding safety stock. This safety stock 
optimization problem can be formulated as a mathematical 
program …  
 
Indices: 
i  stage  
 
Input Variables:  

iMaxDem )(τ   max demand at a stage over an intervalτ  

iAvgDem )(τ  ave demand at a stage over an interval τ  

iTPT     ave number of periods to complete a stage 

iInvCost   cost of holding inventory 

iMaxServ   max outgoing service time at a stage 
 
Decision Variables (assume non-negativity): 

iServOut    outgoing service time at stage  i  

iServIn    incoming service time to stage i  



 
 

 

Constraints:  
iii TPTServInServOut ≤−    for all nodes             (6) 

ii MaxServServOut ≤                  for all nodes            (7) 

01 ≥− −ii ServOutServIn           for all arcs               (8) 
 
Objective Function:   

iServOut
min  

−−+∑ )([ iiii
i

i ServOutTPTServInMaxDemInvCost  

                    (9) )]( iiii ServOutTPTServInAveDem −+
 
In this formulation, the service times at a stage are the 
decision variables.  It is assumed that each stage quotes its 
downstream customers a guaranteed service time (ServOut) 
by which time it will satisfy demand requests. The 
incoming service time to a stage (ServIn) is the maximum 
outgoing service time that its upstream supplier stages 
quote. The net replenishment time τ  at each stage dictates 
the inventory requirements at each stage to cover the 
demand over this time. The net replenishment time equals 
the outgoing service time at a stage minus the incoming 
service time plus the production time (TPT). The function 
MaxDem ( i)τ  characterizes the maximum demand at each 
stage as a function of the net replenishment time.  If a stage 
has a net replenishment time of t, the stage sets its base 
stock level equal to MaxDem ( i)τ .  The expected safety 
stock level at stage i will then equal the maximum demand 
minus the expected demand over the interval of lengthτ . 
 
This formulation is solvable by dynamic programming 
(DP) where each stage solves a functional equation 
f(ServOut) or g(ServIn) depending on its orientation in the 
network. The DP seeks to determine the optimal set of 
service times that minimizes total safety stock cost while 
satisfying the maximum service time constraints to the final 
customer.  At each stage, the net replenishment time,τ  
equals ServIn +TPT -ServOut.  The constraints on service 
time ensure that net replenishment times are nonnegative, 
incoming service time is no less than the maximum 
outgoing service time quoted to the stage, and the outgoing 
service times of demand stages do not exceeds the 
maximum service times imposed by customers. 
 
From a practical perspective, both of these approaches can 
raise philosophical questions. Both suggest the computation 
of inventory targets preceding the computation of the 
strategic plan on the grounds that the LP used for strategic 
planning expects inventory targets as input. The 
philosophical difficulty with this is rooted in the iterative 
business use of the LP as described previously. That 
iteration is motivated by the desire to play out multiple 
supply and demand scenarios to find the one that best suits 

the overall strategy of the company. From this perspective, 
the role of safety stock is to protect the plan that is 
ultimately selected from the relevant stochasticities that 
might disrupt it, and this can not be done a priori.  
 
Note that both the stochastic simulation and dynamic 
programming approaches utilize some form of mapping 
between demand and production facilities during their 
computation. Notice also that the LP allocates specific 
demand to specific capacitated production facilities during 
its operation. This means that an iterative scheme might be 
appropriate. Two starting points are possible. In one, the 
LP is run first including heuristically set inventory targets, 
allocations result that are passed to the inventory 
computation for its first run, inventory targets result that 
are passed to the LP for a second run, and so on until 
convergence is attained. In the other, the iteration is 
initiated by first running the inventory computation with 
heuristically set allocations.  
 
The results of initial investigations of this iterative scheme 
are in preparation, and while promising, have identified an 
additional difficult decision problem. When the capacity of 
the supply system is greater than the sum of the demand 
forecast and the safety stock computed, convergence is 
relatively easily identified. In circumstances when either a) 
supply capacity is greater than demand forecast but less 
than demand forecast plus safety stock, or b) supply 
capacity is less than demand forecast and less than the sum 
of the demand forecast and the safety stock computed, 
convergence can not be resolved until additional capacity 
allocation choices are made. The decision is between 
building for demand or building for safety stock. This is 
especially interesting when deciding such comparisons as 
demand for lower margin products and safety stock for 
higher margin ones, or demand for products at the end of 
their life cycles and safety stock for ones early in theirs. 

C. A Tactical Execution Formulation 
The combination of strategic planning and inventory 
planning addresses a large portion of the continuous 
nonlinear stochastic combinatorial financial optimization 
problem of concern here. But given the data preparation 
requirements for these tools, as well as the business 
processes necessary to modify strategic directions, it is not 
likely that planning at the strategic level will be practical or 
effective more often than once or twice per week for 
operational purposes. (Note that it is entirely possible that 
these tools will be used much more often to explore supply 
and / or demand scenarios in the process of considering 
strategic options offline.)  Unfortunately the nonlinear and 
stochastic aspects of a continuously operating supply chain 
are active minute to minute, hour by hour, day after day. It 
is clear that responding on a timescale much shorter than 
weekly will result in lower supply chain costs and 



 
 

 

improved levels of delivery performance generating higher 
revenues.  
 
The approach suggested is not more rapid execution of the 
outer loop tools, but rather relies on decision policies based 
on control-theoretic concepts applied to supply-demand 
networks. For more than 50 years, control methodologies 
have been continuously improved and reduced to reliable 
practice in a variety of process industries [14]. Process 
control systems are widely used to adjust flows to maintain 
product levels and compositions at desired levels. This is 
analogous to the management goals of high volume supply-
demand networks and material flows in these networks can 
be modeled using a fluid analogy as shown in Fig. 6. In a 
very general sense, the manufacturing stages are 
represented as long and leaky "pipes" (to include TPT and 
yield, respectively) with the material in the pipes 
correspond to production work in progress. Additional 
pipes represent transportation links containing work in 
transit. Warehouses are represented as holding "tanks" and 
their contents correspond to inventory. Decisions about 
releasing material to initiate a production process or satisfy 
demand are implemented by adjusting control valves. 
Compare the system shown in Fig. 6 with the top-most 
facilities in Fig. 3. As a result of using this fluid analogy, 
one can expect that decision policies based on process 
control concepts to have a large and beneficial impact on 
supply chain management.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  A fluid analogy for semiconductor manufacturing. 
 
In particular, Model Predictive Control (MPC) offers a 
combined feedback-feed forward decision framework that 
can be tuned to provide enhanced performance and 
robustness in the presence of significant supply and 
demand variability and forecasting error while enforcing 
constraints on inventory levels and production and 

transportation capacities. Its formulation integrates optimal 
control, stochastic control, multivariable control, and 
control of processes with dead time. MPC is arguably the 
most general method currently known of posing the process 
control problem in the time domain [15]. In addition, there 
are early indications that MPC is applicable to the supply-
demand network problems of interest here [16]-[21]. 
 
In MPC, a system model and current and historical 
measurements of the process are used to predict the system 
behavior at future time instants.  A control-relevant 
objective function is then optimized to calculate a sequence 
of future control moves that must satisfy system 
constraints. The first predicted control move is 
implemented and at the next sampling time the calculations 
are repeated using updated system states. This is referred to 
as a Moving or Receding Horizon strategy and is illustrated 
in Fig. 7.  
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Fig. 7.  The moving or receding horizon strategy. 
 
Input variables consist of two types: manipulate variables u 
which can be adjusted by the controller to achieve desired 
operation and disturbance or exogenous variables d.  The 
starts rates for F/S (C1), A/T (C2), and F/P (C3) represent 
manipulated variables for the problem in Fig. 6, with 
suggested targets determined by the strategic planning 
module. Demand (D1, D2, …) in Fig. 6 is treated as an 
exogenous signal.  This signal consists of actual demand 
which is only truly known in the past and for a very short 
time into the future, and forecasted demand which is 
provided to all of the components shown in Fig. 4 by a 
separate organization such as Sales and Marketing. As 
noted in Fig. 7, the demand forecast is used in the moving 
horizon calculation to anticipate future system behavior and 
plays a significant role in the starts decisions made by the 
MPC controller. Representing quantities of primary 
importance to the system, y is a vector of output variables. 
Outputs can be classified in terms of controlled variables 



 
 

 

which must be maintained at some setpoint value and 
associated variables which may not have a fixed setpoint, 
but must reside between high and low limits. For the 
problem in Fig. 6, controlled variables consist of the three 
inventory levels (I1, I2, and I3) whose setpoint targets are 
determined by the inventory planning module. Associated 
variables include loads on the manufacturing nodes (M1, 
M2, and M3) determined on the basis of their WIP.   
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In MPC control, predictions of y over a horizon are 
computed on the basis of an internal model arising from 
mass conservation relationships describing the dynamics of 
the manufacturing, inventory, and transportation nodes. For 
the problem in Fig. 6, the mass conservation relationship 
for inventories I can be written as: 

 
The first input target term is meant to maintain the starts 
close to target values for each time period over the move 
horizon m based on the targets calculated by the outer loop 
strategic planner. The second move suppression term 
penalizes changes in the starts over the move horizon m. 
This term serves an important control-theoretic purpose as 
the primary means for achieving robustness in the 
controller in the face of uncertainty [15]. The third setpoint 
tracking term is intended to maintain inventory levels at 
targets specified by the outer loop inventory planner over 
time. These targets need not be constant and can change 
over the prediction horizon p. The emphasis given to each 
one of the sub-objectives is achieved through the choice of 
weights Q that can potentially vary over the move and 
prediction horizons. 

 

)()()()1( 1 kCTPTkYCkIkI xMMxxx xx +−−+=+           (10) 
 

where x can equal 1, 2, or 3. For the manufacturing nodes 
an expression for the work in progress WIP is written as: 
   

)()()()1(
xxx MxxMM TPTkCkCkWIPkWIP −−+=+  (11) 

 

where x can equal 1, 2, or 3, and TPT and Y represent the 
nominal throughput time and yield for the manufacturing 
node, respectively, while C represents the manufacturing 
starts per time period that constitute inflow for factories 
and outflow streams for warehouses. These systems of 
equations can, in general, be organized into a discrete-time 
state-space model representation amenable to Model 
Predictive Control implementation and analysis [22]. 
 

 
For an MPC system relying on linear discrete-time state-
space models to describe the dynamics, with an objective 
function as described above, and subject to linear 
inequality constraints, a numerical solution is achieved via 
a Quadratic Program (QP). Depending on the nature of the 
objective function, model and constraint equations, other 
programming approaches (LPs) may also be utilized [23]. 
 

The goal of the MPC decision policy is to seek a future 
profile for u, the manipulated variables, that brings the 
system to some desired conditions consistent with the 
relevant constraints and the minimization of an objective 
function.  TABLE I  MAJOR EXPERIMENTAL INPUTS The ability to address constraints explicitly in the controller 
formulation is part of the appeal of MPC. For the problem 
in Fig. 6, constraints need to be imposed on the magnitudes 
of factory starts (12), the changes in factory starts (13), 
factory loads (14), and warehouse inventory levels (15). 

 
 
 
 
   max)|(0 xx CkjkC ≤+≤    x=1 to 3   j=1,2,…,m        (12)  
 maxmin )|( xxx CkjkCC ≤+∆≤∆    x=1 to 3  j=1,2,..,m  (13) 
 

max)|(0
xx MM CAPkikWIP ≤+≤   x=1,2,3  i=1,2,..,p  (14)  

 maxmin )|( xxx IkikII ≤+≤       x=1,2,3    i=1,2,..,p    (15)  
 

M 1 M 2 M 3
P lann ed  S tarts

(u n its  / d ay) 1 ,025 975 960

I1 I2 I3
In ven to ry T arg ets

(u n its ) 2 ,700 1 ,550 1 ,450

Ave V ar
D em an d

(u n its /d ay) 950 150
(u n ifo rm  d is trib u tio n ) 

 While there is significant flexibility in the form of the 
objective function used in MPC, a meaningful formulation 
for the problem in Fig. 6 is:  
 

It is suggested that MPC-based formulations are able to 
perform satisfactorily if properly tuned in spite of the 
nonlinearities and stochasticity associated with 
semiconductor manufacturing supply-demand networks.   



 
 

 

This is illustrated for the representative problem described 
in Fig. 6. The major inputs to the controller for the 
experiment are shown in Table I including planned starts 
from the strategic planning system, inventory targets from 
the inventory planning system, and the demand forecast as 
used by both outer loop modules.  The experimental model 
parameters for factories are shown in Table II including 
fixed factory capacity with stochastic TPTs and yields. 
Note that the TPTs are nonlinear with load for the fab/sort 
factory.  

 
TABLE II 

EXPERIMENTAL MODEL PARAMETERS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Demand can be measured and used to make predictions, 
but can not be manipulated. Planned starts can be 
manipulated by the controller and are modified to satisfy 
customer demand and keep inventories as close to target as 
possible while keeping factory within their allowed 
operational parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.  The results of an MPC experiment. 
 
The performance of the controller over a six month trial 
using  is shown in Fig. 8. The 

factory starts in the left column have been adjusted relative 
to their targets in each time period while the loads in each 
factory in the middle column are appropriately managed. 
The load in the F/S factory is maintained at a high and 
stable level as desired for very expensive factories with 
long TPTs where "thrash" is likely to degrade performance. 
At the other end of the manufacturing flow, the F/P factory 
load varies from 30% of its maximum to 100% as expected 
in a low cost very short TPT factory that is tracking wildly 
fluctuating demand. The A/T factory in the middle is 
absorbing supply stochasticity as well as demand 
stochasticity. The inventory levels in the right column are 
performing a similar function. In all three cases, the 
inventory averages are roughly at their target levels. But in 
each case there are times when levels range from zero 
(stock-out for a few days) to brief periods at nearly double 
target levels. This is precisely what the safety stocks are 
intended to do, insulating manufacturing facilities from a 
large part of the variation in the system while assuring 
demand satisfaction. It is important to note that there was 
no backlog of customer orders during the six month 
experiment.  

1,10,0 === ∆ ICC QQQ

M1 M2 M3

Capacity (concurrent items Max 45,000 7,500 2,500
in factory) Initial 33,500 5,700 1,900

TPT (uniform distribution)
Min TPT (days) 30 5 1

Load 0% to 70% Ave TPT (days) 32 6 2
Max TPT (days) 34 7 3

Min TPT (days) 32 5 1
Load 70% to 90% Ave TPT (days) 35 6 2

Max TPT (days) 38 7 3

Min TPT (days) 35 5 1
Load 90% to 100% Ave TPT (days) 40 6 2

Max TPT (days) 45 7 3

Yield (uniform distribution) Min Yield (%) 93 98 99
(applied at factory exit) Ave Yield (%) 95 99 99

Max Yield (%) 97 99 100

D. Simulation Support 
Simulation can play many roles in the system described 
here for managing supply-demand networks. In each case, 
the speed with which the plan is generated, or the quality of 
the resulting plan, or the confidence in the plan producing 
the expected results (or some combination of these factors) 
is increased. 
 
In the outer loop, there are multiple ways to utilize 
simulation. As described previously, using appropriate 
search control (such as Infinitesimal Perturbation Analysis 
[11]), a simulator can be run repeatedly to compute 
inventory targets. Or if inventory calculations are 
performed using mathematical optimization (for example, 
with Dynamic Programming [12], [13]), a simulator that 
models the stochasticity of the real environment can be run 
to test whether the computed targets perform as expected. 
A similar test could be performed on the plan that results 
from running the strategic planning module (the LP) alone 
or in tandem with the inventory planning module. This is 
similar in spirit to the iterative computation described 
previously between an LP model and a simulator to manage 
the nonlinearity between TPT and factory utilization [3]. 
The idea behind all of these activities is, if there is some 
question about whether or not the planning system has 
adequately modeled the nonlinearity and stochasticity in 
the execution environment, build a simulation of the 
execution environment and use it to evaluate the plan. 
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One interesting extension of this idea addresses the fragility 
of plans. Assume that a system has been implemented 
including a strategic planner and an inventory planner that 
iteratively generate a plan, and that an accurate simulation 



 
 

 

of the execution environment is available. Assume that the 
business problem being addressed is complex enough that a 
number of strategies have been investigated. It is tempting 
to believe that, since the solution to each strategy has been 
generated by mathematical optimization, the plan with the 
best objective function value is the plan that should be 
passed into the execution environment. Unfortunately this 
overlooks the fact that little if any of the dynamics of the 
supply-demand network have been included in the 
optimization model. A more discriminating process would 
take each plan generated from each business strategy and 
subject it to multiple executions in the simulation 
environment. The result would be a distribution of results 
for each providing insight into plan fragility. The plan that 
appears best upon initial generation might not be the most 
robust under stress. Additional decision making would be 
required to make the selection based on such criteria as 
worst case, expected, and best case profit, but the plan 
selected would have a higher likelihood of producing the 
desired results.  
 
In the inner loop, there are also a number of important uses 
for simulation. In developing a controller, a test bed that 
simulates the intended application environment is needed to 
tune and test the formulation and parameters. Although the 
controller might not deal with all of the intricacies of the 
real world, the simulation should to adequately test the 
system before it is deployed. In the Model Predictive 
Control approach advocated here [15], a simulation to 
provide repeated forward projection is an inherent part of 
the method. Higher fidelity projection generates a number 
of benefits, although as shown in the experiment presented 
earlier, very impressive results are produced even from an 
approximate simulation.  
 
This range of uses highlights one of the inherent tradeoffs 
that must be weighed in applying simulation to the supply-
demand network problem. Generally, the higher the 
accuracy required of the simulation, the longer the 
computation time. On one hand, a very detailed discrete 
event simulation could be used internally in a MPC 
formulation to produce very high quality results for 
forward projection, but the run time of the resulting 
controller might compromise its usefulness. On the other 
hand, a very abstract fluid flow simulation could be used 
externally to the strategic and inventory planning modules 
to very quickly evaluate proposed plans, but the lack of 
detail might compromise the desired discriminating power. 
 
Recent efforts have focused on improving this tradeoff. 
Historical applications of simulation to manufacturing have 
included fine details of the production process as well as 
the equipment and the personnel to address problems of 
factory design and operation. Including this level of detail 
when considering the set of manufacturing, warehousing, 
and transportation entities involved in a supply-demand 

network would raise computation times well beyond 
practical limits. To address this difficulty, there have been 
explorations to find the simplest possible discrete event 
elements that can be coupled to provide a sufficiently 
accurate simulation for these networks [24], [25]. Another 
approach to modeling is the use of fluid networks as used, 
for example, in traffic theory [26]. Expanding this type of 
modeling to address the specific features important to 
simulating supply-demand networks has been explored 
recently [26]-[30]. 
 
Whatever the simulation approach used, robustly 
interfacing the components shown in Fig. 4 is a challenge. 
The simulation component is present as a way to accurately 
model the material flow in the system. The other 
components are all involved in the decision flow required 
to manage the network. Algorithms for modeling material 
flow, whether based on differential equations or discrete 
events, are very different from the optimization and control 
algorithms used to model decision flow. From one 
perspective, interfacing these algorithms is equivalent to 
modeling the data and information flow throughout the 
network. Recent work in this area has focused on a 
versatile methodology to interconnect a wide variety of 
simulation approaches and decision approaches based on 
the computing principles of model composability and 
system interoperability [31], [32]. 

III. CONCLUSION 
Efficient operation of a complex supply-demand network 
can provide a company with a substantial competitive 
advantage. Unfortunately the planning problem for the 
manufacturing core of a network requires continuous 
nonlinear stochastic combinatorial financial optimization. 
One of the best ways to attack such a difficult problem is 
from a control-oriented perspective. An outer loop 
combining strategic planning and inventory planning can 
address the combinatorial and financial aspects of the 
problem as well as one of the major nonlinearities. An 
inner loop based on Model Predictive Control can take 
material release and inventory target plans from the outer 
loops (with inventory control limits from recent execution 
results) and provide excellent customer service over long 
periods of time in the presence of nonlinearities and 
stochasticities. Multiple simulation techniques can provide 
support for each of these activities. Integrating these 
modules as a control system promises to deliver practical 
solutions to this very difficult but very important economic 
problem. 
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