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Abstract— In this paper we elaborate on the problem of
supply chain control in semiconductor manufacturing. First,
we introduce the problem. Next, we propose the use of
Effective Processing Times (which can be measured from
real factory data) to arrive at ‘simple’ discrete-event models
for manufacturing systems. We explain why existing models
can not be used for solving the problem and explain the
need for PDE-models that consider the flow of products as
a compressible fluid flow. Next, we present a validation study
in which we compare the response of the currently available
PDE-models to the results of discrete-event simulation. We
conclude the paper by analytically deriving a controller that
solves the ramp-up problem. The resulting controller is often
used in practice.

I. I NTRODUCTION

The dynamics of manufacturing systems has been a
subject of study for several decades [1], [2]. Even though
understanding the dynamics of manufacturing systems is a
challenging problem, studying the overall dynamics of a
network of interacting manufacturing systems is even more
challenging. A network of suppliers that produce goods,
both for one another and for generic customers, is also
called a supply chain. A simple example of a semiconductor
manufacturing supply chain is given in Fig. 1.
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Fig. 1. A simple semiconductor manufacturing supply chain.

In this figure, F1, F2, and F3 denote wafer fabs, in
which wafers are being produced, containing hundreds to
thousands of integrated circuits (ICs) on its surface. Due
to, among others, the large number of process steps, the
re-entrant nature of the process flow, and the advanced
process technologies, the fabrication of wafers is a complex
manufacturing process. A typical flow time for a wafer fab
is in the order of two months. That is, once a bare silicon
wafer enters the manufacturing system, it typically takes
about two months for the wafer to be completed.
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Finished wafers are moved to an Assembly/Test facility,
where individual chips are cut out of the wafer and each
separated IC is assembled. Typical flow times for the
manufacturing systemsA1 and A2 is in the order of ten
days. Finally, the chips are packaged inFP1, FP2, FP3, and
can be shipped to customers. This takes in the order of five
days.

The control of this supply chain is one of the problems
the semiconductor industry currently faces. The fact that
flow times are large and nonlinearly dependent on the load
is one of the most difficult aspects in this problem. Notice
that, even though the flow time of a wafer fab is in the
order of two months, the pure processing time of a wafer
is less than two weeks. That is, if a wafer enters an empty
wafer fab, it takes less than two weeks for the wafer to be
completed.

We are interested in solving the following problem: given
a certain time-varying demand and the current state of the
system, when to start how many new products (for each
wafer fab) and how to coordinate the network flows. For
addressing this question, we first need valid computationally
feasible models that describe the dynamics of a manufactur-
ing system and incorporate both throughput and flow time.

In this paper, we propose in Section II to first build
a discrete-event model which describes the manufactur-
ing system under consideration, using Effective Processing
Times that can be estimated from real factory data [3].
In Section III we quickly review the models that have
been used in the literature on modeling and control of
manufacturing systems, we discuss why a new class models,
PDE-models, is needed, and we give an overview of the
PDE-models currently available. In Section IV we present
a validation study of currently available PDE-models, in
Section V we consider the control of one of these PDE-
models, and Section VI concludes the paper.

II. EFFECTIVE PROCESSINGTIMES

Several factors contribute to the flow time of lots in
a manufacturing system, ranging from processing time,
transport time, and variable availability of resources, to
non-product lots, batching, setups, lots on hold, and re-
work lots. In semiconductor manufacturing industry it is
common practice to build detailed discrete-event models
incorporating all of the mentioned effects. One of the major
disadvantages of these large models is their computational
complexity: evaluating each what-if scenario can take hours
for a typical semiconductor facility. A considerable reduc-
tion in model complexity can be achieved by considering
Effective Processing Times (EPTs) as a conceptual way



of thinking to describe the combined influence of multiple
sources of variability [3].

According to [2], the Effective Processing Time is the
time seen by a lot from a logistical point of view. In other
words, it is the time a lot actually was or could have been
in process at a workstation. This idea can most clearly be
illustrated by means of a simple example.
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Fig. 2. Gantt chart of a workstation consisting of a buffer and one
machine.

In Fig. 2, the Gantt chart of a workstation is depicted.
The first lot arrives att = 0 at this workstation. After the
equipment has been setup, att = 2 processing of the lot
starts and is completed att = 6. The second lot arrives at
t = 4, but has to wait (since the first lot is being processed).
Even though the equipment becomes available att = 6,
when the first lot leaves the workstation, it takes untilt = 7
before the second lot starts processing, as only then an
operator is available. Att = 12 the second lot is completed.
The third lot, which arrives att = 9, after a setup finishes
processing att = 16. However, due to the fact that no
operator is available, the lot leaves the equipment only at
t = 17. For the fifth lot processing starts att = 24, but at
t = 26 a machine breakdown occurs. The machine is up
again att = 28 and finishes the fifth lot att = 30.

How can we determine the Effective Processing Times of
this equipment? In order to do so we take the perspective of
a lot. The first lot arrives att = 0 at an empty workstation.
According to the lot, processing therefore starts att = 0
and finishes att = 7. Since the lot is not aware of what
is involved in the processing of it, this is what the lot
effectively experiences as processing time. The second lot
arrives att = 4 at a busy workstation. Therefore, it has to
wait (which is a common experience for lots). However, at
t = 6 the equipment becomes available, so according to the
second lot its effective processing starts att = 6. From the
perspective of the second lot it can very well be part of its
processing that an operator first does something else before
putting the lot on the equipment. Using similar reasoning
we can arrive at the EPTs of all five lots, as depicted in
Fig. 3.

Notice that the Effective Processing Times are given by
the time that a lot was, or could have been, in process.
Furthermore, the only information needed for determining
the EPTs of an equipment consists of the arrival and
departure times of the lots processes by the equipment. As
this data is commonly collected at semiconductor manu-
facturing systems, EPT-distributions of workstations can be
determined from real factory data [3].
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Fig. 3. EPT realizations at workstation.

These EPT-distributions capture not only the theoretical
processing time, but also setup time, breakdown, operator
availability, and all other operational times due to vari-
ability effects. This implies that EPT-distributions can be
used for obtaining a so-called EPT-meta-model. That is,
a discrete-event queueing model, consisting only of the
equipments with their processing times drawn from their
corresponding EPT-distributions. Since all variability has
been incorporated in the EPT-distributions, there is no need
for including all kinds of variability effects in the discrete-
event model, like failure-behavior of machines, personnel
behavior, etc. As a result, considerable reduction in the
complexity of discrete-event simulation models for a semi-
conductor wafer fab can be achieved, while still yielding
reasonable estimates for throughput and flow time.

The algorithms for determining EPT-realizations from
real factory data as described in [3] can only be applied
to equipment that processes single lots. Algorithms for
equipment that processes lots in batches can be found in
[4].

III. M ODEL

Even though using an EPT-meta-model can considerably
reduce the complexity of discrete-event models for man-
ufacturing systems, the overall model of a semiconductor
wafer fab is still unsuitable for dealing with the problem
addressed in the introduction. A wafer fab consists of more
than 100 machines and each wafer needs to undergo more
than 100 processing steps. In the simple supply chain as
presented in Fig. 1 three of such models need to run in
parallel, together with several other models describing the
dynamics of the other factories. Clearly, using discrete-event
simulation for studying the supply chain control problem is
computationally unfeasible. This also holds for the discrete-
event models as studied by Ramadge and Wonham [5],
since all possible states need to be considered in which
a manufacturing system can be.

A second class of models available in the literature are
models based on relations from queueing theory, see e.g.,
[6], [7]. Although these results give valuable insight into
steady-state behavior of manufacturing lines, a disadvantage
is that only steady state is concerned. No dynamic relations
are available. Therefore, these models cannot be used for
studying the supply chain control problem mentioned in the
introduction.



A third class of models available in the literature are the
so-called fluid models, in which the number of products
is considered to be a continuous variable. Examples of
these models are the flow model as initiated by Kimemia
and Gershwin [8] for modeling failure-prone manufacturing
systems, the fluid models or fluid queues as proposed by
queueing theorists [9], or the stochastic fluid model as
introduced by Cassandras et al. [10]. In these models, each
buffer is modeled using the observation that the rate of
change of the buffer contents is given by the difference
between the rate at which lots enter and leave the buffer.
Unfortunately, these models are only throughput oriented.
The nonlinear relation between throughput and flow time is
not incorporated in these models. As a result, a property of
these models is that any feasible throughput can be achieved
by means of zero inventory. Also, in case one feeds lots to
an initially empty factory, according to these models lots
will immediately come out of the manufacturing system,
which in practice does not happen. Since large flow times
play a crucial role in the supply chain control problem for
the semiconductor industry, these fluid models can not be
used either.

Recently, a new class of models for manufacturing sys-
tems has been introduced [11], [12], [13]. In these models,
the flow of products through a manufacturing system is
modeled in a similar way as the flow of cars on a highway.
Not only is the number of lots assumed to be continuous,
also the position of a lot in the manufacturing system is
assumed to vary continuously.

Let t ∈R+ denote the time and letx∈ [0,1] denote the po-
sition in the manufacturing line (the degree of completion).
The behavior of lots flowing through the manufacturing line
can now be described by three variables that vary with time
and position: flowu(x, t) measured in unit lots per unit time,
densityρ(x, t) measured in unit lots per unit completion and
speedv(x, t) measured in unit completion per unit time.
First, we observe that flow is the product of density and
speed:

u(x, t) = ρ(x, t)v(x, t). (1)

Second, assuming no scrap, the number of products between
any two locationsx1 andx2 (x1 < x2) needs to be conserved
at any timet, i.e., the change in the number of products
betweenx1 andx2 is equal to the flow entering atx1 minus
the flow leaving atx2:

∂

∂ t

∫ x2

x1

ρ(x, t)dx = u(x1, t)−u(x2, t),

or in differential form:

∂ρ

∂ t
(x, t)+

∂u
∂x

(x, t) = 0. (2)

The two relations (1) and (2) are basic relations that any
model must satisfy. As we have three variables of interest,
a third relation is needed. For this third relation, several
choices can be made. So far, the following models have
been proposed:

Model 1 (Single queue I, cf. [11]):Relations (1), (2) to-
gether with

v(x, t) =
µ

1+
∫ 1

0 ρ(s, t)ds
, (3)

whereµ > 0 is a constant representing the processing rate
of the workstation.

Model 2 (Single queue II, cf. [11]):Relations (1),(2) to-
gether with

∂ρv
∂ t

(x, t)+
∂ρv2

∂x
(x, t) = 0, (4)

and the additional boundary condition

ρv2(0, t) =
µ ·ρv(0, t)

1+
∫ 1

0 ρ(s, t)ds
, (5)

where µ > 0 again denotes the processing rate of the
workstation.

Model 3 (Re-entrant I, cf. [12]):Relations (1), (2) to-
gether with

v(x, t) = v0

(
1− 1

Lmax

∫ 1

0
ρ(s, t)ds

)
, (6)

wherev0 > 0 is a constant representing the maximal speed
that can be achieved (i.e., 1/v0 denotes the theoretical
minimal flow time), andLmax> 0 is a constant representing
the maximal number of lots that can be in the manufacturing
system.

Model 4 (Re-entrant II, cf. [12]):Relations (1), (2) to-
gether with (4), and the additional boundary condition

ρv2(0, t) = v0

(
1− 1

Lmax

∫ 1

0
ρ(s, t)ds

)
ρv(0, t), (7)

wherev0 andLmax are the same as in (6).
Model 5 (m identical machines, cf. [13]):Relations (1),

(2) together with

v(x, t) =
µ

m+ρ(x, t)
,

wherem> 0 denotes the number of machines, andµ > 0
denotes the processing rate of each workstation.
All five models have as a boundary condition

ρv(0, t) = λ (t),

whereλ (t) denotes the inflow to the manufacturing system
(the lot start rate) in unit lots per unit time.

When we compare the PDE-models 1–5 to the other
models available in the literature, the PDE-models are the
only ones that arecomputationally feasible, describe the
dynamicsof a manufacturing system and incorporateboth
throughput and flow time. Furthermore, as we illustrate in
Section V, we can study the boundary control problem for
PDE-models, yielding an answer to the question how to feed
lots to a manufacturing system. The only question remaining
is: are the models 1–5 valid models?



IV. VALIDATION STUDY

In the previous section we discussed that discrete-event
models of manufacturing systems, as well as models from
queueing theory, are not suitable for addressing the supply
chain control problem as mentioned in the introduction.
Nevertheless, these are well-accepted models in the analysis
of manufacturing systems. Therefore, queueing theory and
discrete-event simulation can be be used for validating the
models 1–5.

When we consider the supply chain in Fig. 1, two typical
manufacturing systems can be considered. On the one hand
we have the factoriesF1, F2, and F3, which have a re-
entrant nature, on the other hand we have the factoriesA1,
A2, FP1, FP2, and FP3, which have the nature of a line
of workstations. Therefore, we define two manufacturing
systems:

System 1:A line consisting of 15 identical workstations.
Lots visit the workstations according to the following
recipe: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15. This is an
‘ordinary’ manufacturing line.

System 2:Consider a line consisting of five identical
workstations. Lots visit the workstations according to the
following recipe: 1-2-3-4-5-1-2-3-4-5-1-2-3-4-5. Since each
lot re-enters the system twice, this is a re-entrant manufac-
turing line.
We assume that each workstation consists of an infinite
buffer, which operates under a FIFO policy (First In First
Out), and a single machine whose Effective Processing
Times are drawn from an exponential distribution with
mean 1. If we furthermore assume that lots arrive to the
manufacturing system according to a Poisson process with
an arrival rateλ , we can easily derive the following steady
state properties by means of queueing theory:

• For System 1, the mean number of lots equalsλ

1−λ
in

each workstation, resulting in a mean number of15λ

1−λ

lots in the system. Furthermore, the mean flow time of
lots for System 1 is 15

1−λ
. Translated into PDE-terms

we have

ρ(x, t) =
15λ

1−λ
, v(x, t) =

1−λ

15
. (8)

• For System 2, the mean number of lots equals3λ

1−3λ
in

each workstation, resulting in a mean number of15λ

1−3λ

lots in the system. Furthermore, the mean flow time of
lots for System 2 is 15

1−3λ
. Translated into PDE-terms

we have

ρ(x, t) =
15λ

1−3λ
, v(x, t) =

1−3λ

15
. (9)

From (8) we obtain, by eliminatingλ , that in steady state

v(x, t) =
1

15+ρ(x, t)
=

1

15+
∫ 1

0 ρ(s, t)ds
. (10)

Similarly, from (9) we obtain that in steady state

v(x, t) =
1

15+3ρ(x, t)
=

1
15

(
1−

∫ 1
0 ρ(s, t)ds

5
1−3λ

)
. (11)

When we compare (11) with (6) and (7), we notice that in
order for models 3 and 4 to be valid in steady state, we
needLmax= 5

1−3λ
, whereλ denotes the steady state arrival

rate. Therefore, the re-entrant models 3 and 4 are not likely
to be ‘globally’ valid for re-entrant manufacturing systems.
In the best case they are valid ‘locally’ around a certain
steady state. On the other hand, any manufacturing system
can contain only a finite number lots, arguing the validity
of a queueing model with infinite buffers.

From (10) we obtain that the models 1, 2, and 5 are valid
in steady state, provided that in (3) and (5) we replace the
denominator 1+

∫ 1
0 ρ(s, t)ds with 15+

∫ 1
0 ρ(s, t)ds, which

is consistent with the results in [11]. In [11] a single queue
is assumed. If, instead, we assume a line of 15 workstations
the mentioned modification of (3) and (5) results.

Next, we can use discrete-event models of System 1
and System 2 to study the dynamics of the proposed
PDE-models. Starting with an initially empty system, we
performed experiments where lots arrive according to a
Poisson process with a mean arrival rateλ . During an
experiment we collected at the timest = 1,2,3, . . . the
number of lots in each workstation as well as the number
of lots that has been completed by the system. In order to
guarantee a 99% confidence interval with a relative width of
less than 0.01 foreachmeasurement, experiments have been
repeated 1.000.000 times. We averaged all data, resulting in
the average number of lots in each workstation, as well as
the number of lots that has been completed by the system,
at each time-instant. This we did for both System 1 and Sys-
tem 2, where we chose the arrival rate such that the steady-
state utilization of the workstations was respectively 25%,
50%, 75%, 90%, and 95% (soλ = 0.25,0.5,0.75,0.90,0.95
for System 1 andλ = 0.08333,0.16667,0.25,0.3,0.31667
for System 2). Clearly, these experiments provide more data
than can be presented in this paper. The interested reader
is referred to [14] for more results. Here we present some
general findings.

The first results we present are for System 1 with an
arrival rate ofλ = 0.25. Fig. 4 presents the evolution of the
total number of lots in the system as a function of time.
The black solid line describes the (averaged) result of the
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Fig. 4. Number of lots in System 1 for utilization of 25%.

discrete-event simulations. The magenta dotted line, the red
dash-dotted line, and the blue dashed line describe the result
according to respectively Model 1, Model 2, and Model 5.
In Fig. 4 we see that initially the total number of lots in
the line linearly increases. This is due to the fact that lots
are only entering the system and it takes a while before lots



start coming out. Also, we see that all models predict that in
steady state five lots are in the system. This is as expected.
When we closely look at Fig. 4 we see that aroundt = 10
the graph of the discrete-event simulation bends off from the
PDE-graphs, from which we can conclude that the moment
at which the first lot leaves the factory is overestimated by
the PDE-models. That is, according to the discrete-event
simulation this should happen earlier. Also, we see that after
t = 40 all three PDE-models underestimate the number of
products in the system. Therefore, all PDE-models predict
that the system is later in steady state than according to the
discrete-event simulation.

The differences in behavior become more clear when
we consider the development of the density over time.
This can be made most clear by means of a movie, for
which the reader is referred to [14]. In Fig. 5 the most
important parts of the behavior are captured. The figure
presents respectivelyρ(0, t), ρ(0.5, t) andρ(1, t), again for
the discrete-event model, Model 1, Model 2, and Model 5.
For the discrete-event system we assume the density to be
piecewise constant at intervals of width115. When looking
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Fig. 5. Densities atx = 0, x = 0.5 andx = 1 for utilization of 25%.

at the first graph, we see that the behavior of Model 1 and
Model 2 almost coincide. All three models predict a quicker
raise of the density than the discrete-event model predicts.
If we look at the graph ofρ(0.5, t) we see that initially
the PDE-models underestimate the growth of the density,
around t = 7 the PDE-models show a strong increase in
the density, resulting in an over-estimation of the density.
Similar behavior can be observed forρ(1, t).

The second results we present are for System 2 with an
arrival rate ofλ = 0.08333. Fig. 6 presents the evolution of
the total number of lots in the system as a function of time.
In addition to the lines from the previous two figures, the
green and cyan solid line represent the output of Model 3
and Model 4 respectively. The third equations in models
1, 2 and 5 have been modified according to the difference
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Fig. 6. Number of lots in System 2 for utilization of 25%.

between (10) and (11).
For the re-entrant case we can make similar remarks as

for System 1. Furthermore, a close resemblance between
Model 1 and Model 3 can be noticed, as well as a close
resemblance between Model 2 and Model 4.

To conclude this validation study, we remark that Model 1
has a uniform velocity through the whole factory. As a
result, lots at the end of the line are influenced by lots
in the beginning of the line. For System 1 this is an
undesirable property. If initially the manufacturing system
is non-empty, increasing the influx results in an initially
decreasing outflux. In an actual manufacturing line this
does not happen. Clearly, more accurate models are needed.
Recently, a new model has been proposed in [15]. It would
be interesting to include this model in the validation study.

V. CONTROL

Even though the validation study of the previous sec-
tion showed that current PDE-models do not describe the
dynamics of manufacturing systems in the same way as
discrete-event simulations do, they do provide several ad-
vantages. First of all, simulating a PDE-model takes in the
order of seconds, whereas simulating a discrete-event model
takes in the order of hours. However, even more important
is that fact PDE-models can used for analytically deriving
control strategies.

In case we have a PDE-model for each manufacturing
system of the supply chain in Fig. 1, the problem of
determining when to start how many products (for each
wafer fab) and how to coordinate the network flows, simply
becomes a (left-)boundary control problem for PDEs. To
illustrate how such a problem might be tackled, we consider
the problem of ramping up a line, like System 1.

From the previous section we know that models 1–4 have
undesirable properties. Therefore, consider Model 5, even
though it clearly also has its shortcomings:

∂ρ(x, t)
∂ t

+
µm

(m+ρ(x, t))2

∂ρ(x, t)
∂x

= 0, (12)

with boundary conditionρ(0, t) = ρ0(t), as input.
Assume that we want this system to converge to the

steady state

ρ(x, t) = ρss=
mλss

1−λss
.

Consider the Lyapunov function candidate

V =
2

3µm

∫ 1

0

[
(m+ρ(s, t))3− (m+ρss)3]2ds, (13)



which is positive for allρ(x, t) 6= ρss. Along the dynamics
(12) we have

∂

∂ t

[
(m+ρ)3− (m+ρss)3]2

= 2
[
(m+ρ)3− (m+ρss)3] ·3(m+ρ)2 · ∂ρ

∂ t

=−6·
[
(m+ρ)3− (m+ρss)3] · (m+ρ)2 · µm

(m+ρ)2 ·
∂ρ

∂x

=−6µm·
[
(m+ρ)3− (m+ρss)3] · ∂ρ

∂x
.

Therefore, differentiating the Lyapunov function candidate
(13) along the dynamics (12) results in

V̇ =−
∫ 1

0
4
[
(m+ρ(x, t))3− (m+ρss)3] ∂ρ

∂x
dx

= [m+ρ0(t)]
4− [m+ρ1(t)]

4 +4[m+ρss]3[ρ1(t)−ρ0(t)],

whereρ1(t) = ρ(1, t).
If we want to reach the desired steady state as quickly as

possible, we should try to minimizėV by a proper choice
of ρ0(t). It is easy to verify that we minimizėV by taking

ρ0(t) = ρss. (14)

As a result, we obtain

V̇ = [m+ρss]4− [m+ρ1(t)]
4 +4[m+ρss]3[ρ1(t)−ρss]

=−1
3
[ρ1(t)−ρss]4−

2
3
[ρ1(t)+2ρss+3m]2[ρ1(t)−ρss]2,

which is negative forρ1(t) 6= ρss.
We establish the following result:
Proposition 1: Consider the system (12) together with

the input (14). Then we have

lim
t→∞

ρ(x, t) = ρss.

Furthermore, the choice (14) is the input that achieves the
goal the quickest.

Notice that the boundary control (14) does not only
achieve stabilization to the desired steady state the quickest,
it is also a very simple input to be applied. Actually, this
input is common practice when ramping up semiconductor
manufacturing systems.

VI. CONCLUSIONS

In this paper we discussed the problem of controlling
a semiconductor manufacturing supply chain, i.e., given a
certain time-varying demand and the current state of the
system: when to start how many products for each factory
and how to coordinate the network flows.

Several factors contribute to the flow time of lots in
a manufacturing system, ranging from processing time,
transport time, and variable availability of resources, to
non-product lots, batching, setups, lots on hold, and rework
lots. Instead of including all these factors into a complex
large discrete-event model, we proposed to use Effective
Processing Times for capturing all variability, yielding a
much simpler discrete-event queueing model.

Unfortunately, discrete-event queueing models of semi-
conductor manufacturing systems are still too large to
be able to successfully address the supply chain control
problem. Also other established models such as queueing
theory and fluid queues of flow models are unsuitable.
Therefore, we introduced PDE-models in which the flow
of products is considered as a compressible fluid flow. This
new class of models iscomputationally feasible, describes
the dynamicsof a manufacturing system, and incorporates
both throughput and flow time, and can be used for address-
ing the supply chain control problem.

Next, the currently available PDE-models have been
reviewed and validated by means of queueing theory and
discrete-event simulation. A need for more accurate models
was made clear.

Finally, a ramp-up control problem has been studied using
one of the available PDE models. It turned out that, in order
to reach full production in the shortest time, one can best
feed the manufacturing system at the desired steady-state
rate. This is a simple control action as often used in practice.
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