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Abstract

We model high volume, multi-stage continuous
production flow through a re-entrant factory.
We approximate production volume through
a continuous density variable and production
stages through a continuous completion vari-
able. Ideas from traffic modeling and gas dy-
namics are adapted to generate a hierarchy of
PDE models. All of these models are variations
of nonlinear nonlocal hyperbolic conservation
laws. They allow extremely fast and accurate
simulations. Large scale discrete event simula-
tion based on an INTEL factory are presented.
The data are analyzed to generate a param-
eterization for the PDE model of this factory.
A diffusion coefficient is determined by looking
at the spread of throughput times in a factory
run at steady state.

1 Introduction

A fundamental goal of any supply chain simu-
lation is to generate simulation tools that sup-
port the exploration of business questions and
to pose what if? questions on these simula-
tions. Since most production deals with indi-
vidual parts and the processes that these parts
undergo, the natural method of choice for ac-
curate simulations is discrete event simulators.
While they have been very successful on the
factory level [11], e.g. to simulate semiconduc-
tor production lines, they are relatively slow,
and it seems obvious that they are not scalable
to a full supply chain. Based on analogies to

traffic flows and using methods from gas dy-
namics we have therefore recently developed
mathematical models of production flows. In
a modern semiconductor factory we are inter-
ested to model and simulate on the order of 250
production steps executed on about 100 ma-
chines, with a re-entrant part of the production
line that cycles about 20- 30 times. Hence the
design feature of all the new models has been
that they are independent of the number of
parts and processes in the factory. In fact their
performance will be more accurate the larger
the number of parts and processes. Another
problem associated with discrete event simula-
tors is the fact that they are stochastic simula-
tions. While it may be straightforward, though
still time consuming, to determine probability
distributions for e.g. throughput of a factory
run in steady state by doing many runs, it is
much harder to determine meaningful average
and statistical results for time dependent sys-
tem. However, with the life cycle of a typical
semiconductor chip of the order of one year and
a throughput time between 40 and 60 days it is
unlikely that a factory is ever run for any longer
amount of time in steady state. We are there-
fore especially interested in transient behavior
of such systems and have developed a hierar-
chy of models that allows the simulation of the
time evolution of moments of the probability
distributions of the stochastic production pro-
cess [3], [1],[2]. These simulation models are in-
tended as building blocks for large supply chain
models [10] as well as for the prediction stage
in Model Predictive Control algorithms [14].
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2 Quasi-steady models

In addition to Discrete Event Simulations an-
other common way to model production pro-
cesses is the use of fluid networks. Fluid models
[5], come from traffic theory and were intro-
duced by Newell [13] to approximately solve
queuing problems. They consider the length
of a queue q(t) as a continuous variable whose
rate of change is given by:

dq

dt
=

{

λ(t) − µ(t) for q(t) 6= 0
0 for q(t) = 0,

(1)

where λ(t) is the arrival rate and µ(t) the pro-
cessing rate of the queue. This basic building
block for a queue can be connected to a work-

conserving fluid model by feeding the outflux
of each queue into other queues. In terms of
aggregate modeling, a fluid network stops half
way. While a fluid network models the work in
progress with a continuous variable, it models
machines as individual discrete queues. With
several hundred production steps for a typical
chip it is reasonable to approximate the pro-
duction steps also along a continuum.

We therefore developed a heuristic model for
a truly continuous description of the produc-
tion process (see [3] and [2]): Let x be a con-
tinuous variable representing completion of the
product, i.e. product at x = 0 denotes a raw
product and parts at x = 1 denote a finished
product. There is a unique production process
assigned to every x-value. Assuming a high
volume, many stage factory we model produc-
tion flow with a continuum variable on a con-
tinuum domain. We write u(x, t) for the (WIP)
density of product at stage x and at time t. As-
suming a unique entry and exit for the factory,
i.e. all product enters at x = 0 and leaves at
x = 1, and assuming a 100 % yield, the density
must satisfy

∂u
∂t

+ v(u)∂u
∂x

= 0
u(x, 0) = f(x)

u(0, t)v(t) = λ(t)
(2)

with a state equation

v(u) = φ(u). (3)
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Figure 1: Throughput time versus WIP levels in
steady state for a large scale discrete
event simulation.

Notice that the start rate λ(t) into the factory
enters as the boundary condition for the local
throughput at x = 0. The state equation re-
lates the speed of the product moving through
the factory to the amount of product in the
factory, i.e. to WIP. The state equation (3)
is based on the steady state behavior of the
factory. It represents the average speed of a
product in the factory as a function of the av-

erage load in the factory. Since this model does
not have a time evolution of the velocity, it
implicitly assumes that, whenever the load in
the factory changes, the velocity will follow in-
stantly to the new velocity given by the state
equation. This is a typical characteristics of
a quasi-static model also known in thermody-
namics as an adiabatic model. As such, the
model (Eq. 2) suffers from the same problem as
the models based on clearing functions (Graves
[6] and Karmarkar [9], and recent work by As-
mundsson et al [4]): Adiabatic models should
do well for small and slow changes of inputs
into the factory but may not be as good for
larger and faster changes.

In [3] we compare the PDE equation with a
large scale simulation of an INTEL Corpora-
tion factory. The simulation corresponds to a
full scale discrete event model of a real fac-
tory. The model contains approximately 100
machines, simulates 250 steps for a product
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Figure 2: Start rate ramp up for the discrete
event simulations

mix of 10 products. We are running this model
for 6 different start rates and determine the
associated average WIP levels and throughput
times in steady state. This results in Figure 1.
The interpolating curve in the figure follows a
clearing function suggested by Asmundsson [4]
and is a least square fit of the 6 data points to

τ =
W

α(1 − e−βW )
(4)

with W the WIP in the factory and α and
β are determined by the fit. With v = 1

τ

as steady state equation we now study the
behavior of the factory to a successive ramp
up of the start rate over about a 1000 days.
Figure 2 shows the start rate increasing from
500 per day to a 1000 per day in 4 different
plateaus. We simulate the PDE with a deter-
ministic start rate that is constant on a plateau
but follows the average start rates of the dis-
crete event simulation. We compare the output
of the discrete event simulation and the PDE
in Figures 3 and 4. Note that a single dis-
crete event simulation run takes 1 hr/year on a
standard desktop computer, whereas the PDE
simulation takes seconds. While the output of
the discrete event simulation varies dramati-
cally day by day, the PDE simulation is deter-
ministic and seems to be more or less centered
on the average of the output. To illustrate fur-
ther how the discrete event simulation and the
PDE simulation are related we smooth the out-
put by averaging the output over 3 days in the
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Figure 3: Discrete event simulation (blue), PDE
simulation (full red), and a measure of
the variance associated with the PDE
simulation (dashed red): raw outputs.
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Figure 4: As Figure 3 but outputs smoothed over
7 days
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future and 3 days in the past, i.e. a moving 7
day average. Figure 4 shows a quite satisfac-
tory agreement between the averaged outs and
the PDE simulation.

In addition we make an interesting observation
that we most likely would not expect to find if
we are doing only a pure discrete event simula-
tion: Theoretically, for a re-entrant factory an
increase in the start rate leads to an inverse
response in the output, i.e. the output ini-
tially drops before it increases to the new level.
The direct discrete event simulation (Figure 3)
shows no such inverse response - if it is there it
is masked in the raw outputs by the daily vari-
ation in the outputs. It is also not commonly
found in the reality of the factory - due in part
to the fact that operators are paid to main-

tain or increase the outputs and hence they
will work hard to speed up WIP at the end of
the production line. However, the smoothed
outputs in Figure 4 indicate that, without the
change of output policies resulting from oper-
ator interference, the inverse response can be
found in the discrete event simulation too and
it follows quite well the PDE simulation.

3 Continuous models with diffusion

Recently [1] we have developed a gas dynamic
model to study the interaction between prod-
ucts moving through a re-entrant production
line. We develop the concept of a stochastic
phase velocity which dynamically updates the
throughput time estimate. This leads to a dif-
fusion term in the evolution equation for the
WIP density.

The basic idea is the following. Instead of
modeling the whole factory as one machine, we
model a group of machines together as a ma-
chine Mm which is working at a variable speed,
given (randomly) by a distribution depending
on the WIP Wm(t) in that group of machines
as a function of time. Thus, later arrivals in-
fluence the throughput time of a given lot by
influencing the speed with which the group of

machines Mm is able to process. The competi-
tion between the various steps at the reentrant
machines will be governed by a set of policies
such as FIFO, PUSH or PULL [12], which we
assume to be given. This results in a stochastic
model which is formally equivalent to a Monte
Carlo discretization of a Boltzmann equation.
The corresponding kinetic evolution equation
for the probability density has been derived,
resulting in a so called traffic flow model [7], [8]
for the parts in the system. Finally, a model for
the expectations of the flux through the system
for large time scales via a Chapman - Enskog
expansion is given by drift diffusion equation

∂ρ

∂t
+ ∂F

∂x
= 0 x, t > 0,

F (x, t) = C(t)ρ − D(t) ∂ρ

∂x
,

(5)

F (0, t) = λ(t),

ρ(x, 0) = 0.

Notice that this is again a quasi-static model
since the drift C(t) velocity is the expectation
value of 1

TPT
relative to the steady state distri-

bution of the throughput times as a function
of WIP in the factory. Alternatively, the drift
velocity can be determined experimentally as
in Figure 1.

3.1 Experimental determination of the

diffusion coefficient

Figure 5 shows the paths of 920 lots as they go
through an actual re-entrant INTEL factory.
The underlying data set represents the times
for 8 machines, when each individual lot ar-
rived at the queue at a machine and when it
left that machine. In Figure 5 we have reset all
the start times to zero and plotted the time as
a function of completion of the factory. Figure
6 shows the histograms of the positions at 4
different times. It clearly shows the diffusion
of the δ-pulse as it moves through the factory.

In order to determine the diffusion coefficient
from these data we compare the data to a
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Figure 5: Paths of 920 lots through an INTEL
factory

Gaussian solution of the drift diffusion equa-
tion (Eq. 5) characterized by a drift velocity
vdrift and a variance σ2. We choose as an ini-
tial condition a normal distribution that we
fit to the data at t = 1 using a maximum
likelihood estimation that matches the mean
µ and variance from the data. With this ini-
tial condition and zero boundary conditions at
infinity we simulate (Eq. 5) and compare the
calculated WIP distribution with the data at
different times. The resulting WIP profile de-
pends only on the diffusion coefficient as a free
parameter. Minimizing the least square error
between the simulation and the data gives us
the best match for the diffusion coefficient de-
scribing the WIP distribution at a particular
time. Figure 7 shows the results. The diffu-
sion coefficient is about 0.6 104 ± 35%. Figure
8 shows two WIP profiles for a WIP wave going
through the factory as a result of a step func-
tion increase in the influx. The sharp profile
corresponds to a simulation without diffusion,
the rounded one uses a diffusion coefficient of
10−4.
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Figure 6: Histograms of positions of the lots in
the factory at time t = 20, t = 30 and
t = 40.
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Figure 7: Diffusion coefficients that characterize
the WIP distribution at various times.
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