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Abstract— This paper gives an algorithm for fourth order
trajectory planning with constrained dynamics for single
axis motion control. A model-based feedforward controller is
derived that makes full use of these trajectories. Application
to industrial high-precision electromechanical motion systems
is motivated. Issues like time-optimality, implementation and
digitization are considered. Simulation results show superior
effectiveness in comparison with rigid-body feedforward.

I. INTRODUCTION
Feedforward control is commonly applied to high per-

formance industrial motion control systems like robots and
pick-and-place units. These systems are often embedded
in a factory automation scheme, which provides desired
motion tasks. Such motion tasks are then transferred to
computer hardware dedicated to the control of the system,
leaving the details of planning and execution of the motion
to this dedicated motion controller.

For simplicity, the trajectory planning and feedforward
control are usually done for each actuating device sepa-
rately, relying on system compensation and feedback control
to deal with interactions and non-linearities. Each actuating
device is then considered to be acting on a single mass
moving along a single degree of freedom. The feedforward
control problem is then to generate the force required
for acceleration of the mass over the desired trajectory.
Conversely, the trajectory should be such that the force is
allowable and can be generated by the actuating device. This
approach is referred to as ‘mass feedforward’ or ‘rigid-body
feedforward’.

The disadvantage of this approach is its dependence on
system compensation and feedback control to deal with
unmodelled behavior. The resulting problem formulation
can be split in two.

1) During the trajectory, position errors and feedback
control actions can be large, resulting in unallow-
able velocities and/or accelerations (hence: actuator
forces).

2) When arriving at the endpoint, the position error is
large and it is necessary to introduce a settling time
before subsequent actions or motions are allowed.

To improve on this, many academic and practical ap-
proaches are possible. These can be categorized in three.

1) Smoothing or shaping the trajectory and/or applica-
tion of force. The result of this can be good, but it

may also lead to a considerable increase in execution
time of the trajectory. Various examples can be found
in [2], [5], [6], [7], [11], [4].

2) Feedforward control based on plant inversion, either
by using a more detailed model or by learning its
behavior based on measurements. This does not pro-
vide an approach for designing a trajectory. Various
examples can be found in [1], [3], [8], [9], [10], [13],
[14], [15].

3) Feedback control and/or system compensation im-
provement. Obviously, any feedback control design
method can be used for this, but trajectory design is
again not considered. Some references given above
also discuss the effect of feedback control on trajec-
tory following; e.g. see [9], [10], [15].

This paper will provide a method for fourth order trajectory
planning and feedforward control that can be used in
addition to all of these approaches. After a review of rigid-
body feedforward in section II, ‘Fourth order feedforward’
will be presented in section III. An accurate planning
algorithm is given in section IV. The effect of discrete time
implementation will be considered in section V. Finally,
some simulation results are given in section VI, followed
by conclusions in section VII.

II. RIGID-BODY FEEDFORWARD

The specifics of planning a trajectory and calculating
a feedforward signal based on rigid-body feedforward are
fairly simple and can be found in many commercially avail-
able motion control systems. In this section a short review
is given as an introduction to a standardized approach to
higher order feedforward calculations.

Consider the configuration of figure 1 with m denoting
the mass of the motion system, F the force supplied by the
actuating device, x the position and k a viscous damping
term. Now suppose we have a given bound on acceleration
ā (i.e. a bound on F ), and we want to perform a motion
over a distance denoted as x̄. Then the shortest time within
which the motion can be performed is calculated as:

x̄ = 2 ×
1

2
āt2 ⇒ tā =

√

x̄

ā
⇒ tx̄ = 2tā (1)

with tā denoting the constant acceleration phase duration
and tx̄ denoting the total trajectory execution time. Hence,
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Fig. 1. Simple motion system: a single mass.

the trajectory consists of a constant maximal acceleration
phase followed directly by a constant maximal deceleration
phase. Clearly if a bound on velocity, denoted as v̄, is
taken into account, tx̄ can only become larger. We can test
whether the velocity bound v̄ is violated by calculating
the maximal velocity obtained using the minimal time
trajectory:

v̂ := ā · tā (2)

Now if v̂ <= v̄ we are finished: tx̄ = 2tā and no constant
velocity phase is required. If v̂ > v̄ we calculate:

tā =
v̄

ā
⇒ xā := 2 ×

1

2
āt2ā < x̄ (3)

and the constant velocity phase duration tv̄ is calculated as:

tv̄ =
(x̄ − xā)

v̄
(4)

resulting in: tx̄ = 2tā + tv̄.
This procedure can now be given as a simple trajectory

planning algorithm:
1) calculate tā from equation 1,
2) calculate maximal velocity v̂ from equation 2,

if v̂ > v̄: recalculate tā from equation 3,
3) calculate xā from equation 3,
4) calculate tv̄ from equation 4, and
5) finished: x̄ = āt2ā + v̄tv̄ and tx̄ = 2tā + tv̄ .

Note that tv̄ automatically reverts to zero if the velocity
bound is not obtained.

Construction of the acceleration profile a from tā and
tv̄ is straightforward. From this, the desired trajectory
can be determined by integrating it once to obtain the
velocity profile v, and integrating it twice to obtain the
position profile x; see figure 2. As the position profile thus
establishes the trajectory as a sequence of polynomials in
time with a degree of at most two, rigid-body feedforward is
also referred to as ‘second order feedforward’. Note that the
feedforward force F is simply calculated from the profiles
in figure 2 as:

F = ma + kv (5)

III. HIGHER ORDER FEEDFORWARD

Compared with the second order trajectory considered
in the previous section, higher order trajectories inherently
have the advantage of ‘smoothing’. This implies a lower
energy content at higher frequencies, which results in a
lower high frequency content of the error signal, which in
turn enables the feedback controller to be more effective.
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Fig. 2. Second order trajectory determination.

Furthermore this reduces the chance of demanding a motion
which is physically impossible to perform by the given
motion system: e.g. most power amplifiers exhibit a ‘rise
time’ effect, such that it is impossible to produce a step-
like change in force. The result is a decrease of position
errors during execution of the trajectory and a reduced
settling time. Because of this, many high performance
motion systems are already equipped with a third order
trajectory planner; in this section it will be determined that a
fourth order trajectory planner may give a significant further
improvement.

The main argument for this is that an electromechanical
motion control system will usually have some compliance
between actuator and load, and that both actuator and load
will have a relevant mass. For this reason it is natural to
extend the single mass model of figure 1 to the double
mass model of figure 3. Here m1 denotes the mass of the
actuator, m2 the mass of the load, F the force supplied by
the actuating device, x1 the actuator position, x2 the load
position, c the stiffness between the two masses, k12 the
viscous damping between the two masses, k1 the viscous
damping of the actuator towards ground and k2 the viscous
damping of the load towards ground. The equations of
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Fig. 3. Extended motion system: double mass.

motion for this configuration are:

{

m1ẍ1 = −k1ẋ1 − c(x1 − x2) − k12(ẋ1 − ẋ2) + F

m2ẍ2 = −k2ẋ2 + c(x1 − x2) + k12(ẋ1 − ẋ2)
(6)



Laplace transformation and substitution then results in:

F =
q1s

4 + q2s
3 + q3s

2 + q4s

k12s + c
· x2 (7)















q1 = m1m2

q2 = (m1 + m2)k12 + m1k2 + m2k1

q3 = (m1 + m2)c + k1k2 + (k1 + k2)k12

q4 = (k1 + k2)c

This implies that if we have planned some fourth order tra-
jectory for x2, from which we can derive the corresponding
profiles for velocity v, acceleration a, jerk  and derivative
of jerk d, the feedforward force F can be calculated as:

F =
1

k12s + c
· {q1d + q2 + q3a + q4v} (8)

An implementation of this feedforward scheme is given in
figure 4. Analogous to rigid-body feedforward, all required
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Fig. 4. Fourth order feedforward implementation.

profiles can be obtained by integration of the derivative of
jerk profile d. Note that rigid-body feedforward is implicit
in this scheme: simply setting m2 = k2 = k12 = 0 makes
equation 8 equal to equation 5. The remaining difference
is that boundedness of jerk and derivative of jerk will
result in a smooth trajectory in comparison with figure 2.
This is illustrated in figure 5, which gives an example of
a symmetrical fourth order trajectory for a point-to-point
move based on the construction of a derivative of jerk profile
d. This profile is completely determined by the value of the
given bound d̄ and the switching time instances t0 · · · t15.
An algorithm for obtaining these switching time instances
will be the subject of the next section.

IV. FOURTH ORDER TRAJECTORY PLANNING

Planners for second and third order trajectories are fairly
well known in industry and academia and there are many
approaches for obtaining a valid solution. Extension to
fourth order trajectory planning is however not trivial. In
this section an approach is given that can be seen as a direct
extension of the rigid-body algorithm given in section II.

Assume that the position displacement x̄ and bounds on
all derivatives of the trajectory up to the derivative of jerk d

0 0.2 0.4 0.6 0.8 1 1.2
−1000

0

1000

0 1

2 3 4 5

6 7

8 9

10 11 12 13

14 15

0 0.2 0.4 0.6 0.8 1 1.2
−50

0

50

0 0.2 0.4 0.6 0.8 1 1.2
−5

0

5

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

PSfrag replacements

Fourth order trajectory profiles

d
[m

/s
4

]


[m
/s

3
]

a
[m

/s
2

]
v

[m
/s

]
x

[m
]

time [s]

tt

tttt

tt

tt

tttt

tt

Fig. 5. Fourth order trajectory planning.

are given (indicated as v̄, ā, ̄ and d̄). Furthermore, assume
that all derivatives are equal to zero at the start and end
positions. The proposed fourth order trajectory planning
algorithm is then given in the following steps.

1) Temporarily discard v̄, ā and ̄. From figure 5 follows
that d consists of 8 periods with value d̄ or −d̄.

2) Determine td̄: the shortest time of constant d (always
first period) such that the total displacement is x̄:

td̄ = 4

√

x̄

8d̄
(9)

3) Calculate maximal value of velocity v̂:

v̂ = 2d̄t3
d̄

(10)

if v̂ > v̄: recalculate td̄ based on v̄:

td̄ = 3

√

v̄

2d̄
(11)

4) Calculate maximal value of acceleration â:

â = d̄t2
d̄

(12)

if â > ā: recalculate td̄ based on ā:

td̄ =

√

ā

d̄
(13)

5) Calculate maximal value of jerk ̂:

̂ = d̄td̄ (14)

if ̂ > ̄: recalculate td̄ based on ̄:

td̄ =
̄

d̄
(15)



The resulting td̄ will not be changed anymore.
6) Temporarily discard v̄ and ā, but not ̄: extend the

trajectory symmetrically with periods of constant 

whenever  reaches the value ̄ or −̄.
7) Determine t̄ such that the total displacement is x̄.

This is the positive real solution of the third order
polynomial equation:

t3̄ + (5td̄)t
2

̄ + (8t2
d̄
)t̄ + (4t3

d̄
−

x̄

2d̄td̄
) = 0 (16)

8) Calculate maximal value of velocity v̂:

v̂ = 2d̄t3
d̄

+ 3d̄t2
d̄
t̄ + d̄td̄t

2

̄ (17)

if v̂ > v̄: recalculate t̄ based on v̄; this is the positive
real solution of the second order polynomial equation:

t2̄ + 3td̄t̄ + 2t2
d̄
−

v̄

d̄td̄
= 0 (18)

9) Calculate maximal value of acceleration â:

â = d̄t2
d̄

+ d̄td̄t̄ (19)

if â > ā: recalculate t̄ based on ā:

t̄ =
ā

̄
− td̄ (20)

The resulting t̄ will not be changed anymore.
10) Temporarily discard v̄ but not ā: extend the trajectory

symmetrically with periods of constant a whenever a

reaches the value ā or −ā.
11) Determine tā such that the total displacement is x̄.

This is the positive real solution of the second order
polynomial equation:

{t2
d̄

+ td̄t̄}d̄t2ā + {6t3
d̄

+ 9t2
d̄
t̄ + 3td̄t

2

̄}d̄tā+

{8t4
d̄

+ 16t3
d̄
t̄ + 10t2

d̄
t2̄ + 2td̄t

3

̄}d̄ − x̄ = 0
(21)

12) Calculate maximal value of velocity v̂:

v̂ = 2d̄t3
d̄

+ 3d̄t2
d̄
t̄ + d̄td̄t

2

̄ + d̄t2
d̄
tā + d̄td̄t̄tā (22)

if v̂ > v̄: recalculate tā based on v̄:

tā =
v̄ − 2d̄t3

d̄
− 3d̄t2

d̄
t̄ − d̄td̄t

2

̄

d̄t2
d̄

+ d̄td̄t̄
(23)

13) Calculate total displacement as if no constant velocity
phase is required:

xā = {8t4
d̄

+ 16t3
d̄
t̄ + 10t2

d̄
t2̄ + 2td̄2t

3

̄+

t2
d̄
t2ā + td̄t̄t

2

ā + 6t3
d̄
tā + 9t2

d̄
t̄tā + 3td̄t

2

̄ tā}d̄
(24)

14) Calculate constant speed phase duration tv̄ such that
the total displacement is x̄:

tv̄ =
x̄ − xā

v̄
(25)

15) Finished: d̄, td̄, t̄, tā and tv̄ completely determine
the trajectory.

The trajectories resulting from this algorithm have two
important inherent properties:

• none of the given bounds is violated,
• in case there is a constant velocity phase (tv̄ > 0), the

trajectory is time-optimal.
Furthermore, although obviously more complex than the
rigid-body approach, the algorithm consists of straightfor-
ward calculations that can relatively easily be implemented
in state-of-the-art motion control hardware.

V. IMPLEMENTATION ASPECTS

This section gives some considerations on the trajectory
planning algorithm and the feedforward control scheme of
figure 4 for implementation in digital hardware.

A. Switching times

When considering discrete time implementation, the
switching time instances of the planned trajectory must
be synchronized with the sampling time instances. This
implies that the time intervals tv̄ , tā, etc. must be rounded-
off towards a multiple of the sampling time interval Ts.
To remain within the given bounds, but at the same time
approximate them as closely as possible, this rounding off
must be done to the next higher multiple. The suggested
approach is to do this immediately after each calculation of
a time interval, after which the maximal value d̄ must be
recalculated accordingly.

As an example consider the first calculation of td̄ (equa-
tion 9). The rounded-off value for td̄ is:

t′
d̄

= ceil

(

td̄
Ts

)

× Ts (26)

with ceil(.) denoting the rounding off towards the next
higher integer. From equation 9 we can then calculate a
new value for d̄:

d̄′ =
x̄

8t′
d̄

4
(27)

Note that with t′
d̄
≥ td̄ we must have d̄′ ≤ d̄. It can be

verified that this same approach is valid for the calculation
or recalculation of all time intervals. Note that with each
new calculation of d̄′ its value must reduce. This guarantees
that none of the bounds that were checked in earlier steps
of the algorithm will be violated.

B. Synchronization of profiles

The discrete time implementation of the integrators in
figure 4 can be done by replacing the continuous time
integrators by forward Euler discrete time integrators as in
figure 6. Clearly, all required profiles are now calculated
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Fig. 6. Discrete time planner using forward Euler integrators.

with sampling time interval Ts. However, due to the zero



order hold effect, each of the four integrators introduces
a specific delay time. This can be seen in figure 7a, in
which the discrete time profiles are compared with the
corresponding continuous time profiles. Note that Ts =
0.05 s, which is chosen large in relation to the required
trajectory to show the discretization effect more clearly.

To fix this effect, the higher order profiles can be delayed
individually such that the symmetry of the complete set
of profiles is restored. Figure 7b shows this: the discrete
time profiles are now perfectly synchronized with the 2Ts

delayed continuous time profiles.

Normalized discrete time fourth order profiles, compared with continuous time profiles
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Fig. 7. Discrete time fourth order profiles using forward Euler integrators,
compared with equivalent continuous time profiles.

Note that the derivative of jerk profile must be delayed
with 2Ts, the jerk profile with 1 1

2
Ts, the acceleration profile

with Ts and finally the velocity profile with 1

2
Ts. To obtain

a delay of 1

2
Ts when sampling with Ts the average value is

taken from the current and previous amplitude of the con-
sidered profile. This operation appears to work very well,
although the associated smoothing effect is undesirable.

C. Implementation of first order filter

All required profiles for calculation of the feedforward
signal are now available. The multiplication with factors
q1 to q4 followed by summation as indicated in figure 4
is straightforward. The first order filtering is less trivial,
as it must also be transferred to discrete time. A possible
implementation that prevents problems with unwanted time
delays and gives good results is to make use of the trape-
zoidal integration method as shown in figure 8.

ZOH 

y
z

1
-K-

Ts / (2*k12+c*Ts)

u

-K-

(2*k12-c*Ts) / (2*k12+c*Ts)

Fig. 8. Discrete implementation of first order filter using the trapezoidal
integration method.

D. Calculation of reference trajectory

A final point on synchronization must be made with
respect to the calculation of the reference trajectory that
is used for feedback control. When applying the syn-
chronized feedforward signal as given above, the actual
plant’s response will be close to the ideal continuous time
response with a delay of 2Ts. However, in order to compare
this response with the reference trajectory it must also be
sampled with Ts, leading to an additional delay of 1

2
Ts.

Hence, it is necessary to also delay the reference trajectory
with this same value.

The result of this is that the control error will not
be affected by sampling. The controller will only act on
the effects of disturbances and on discrepancies between
the actual plant and the modelled fourth order behavior.
Obviously, this is only true if the sampling frequency is
sufficiently high: otherwise the momentary control error
may deviate significantly from the average value. If this
is the case, an increase in sampling frequency must be
considered. Usually however, the sampling frequency is
more significantly determined by the demands on stability
and performance of the (digital) feedback controller.

VI. SIMULATION RESULTS

The effects of parameter variations and discretization on
the performance of fourth order feedforward control are
considered. For this, some simulations are performed using
the configuration of figure 4. The motion system parameters
and their variations are given in table I. The trajectory

Parameter Value Unit Variation
m1 20 Kg m1 ∈ {15 · · · 25},
m2 10 Kg m2 = 30 − m1

k1 10 Ns/m k1 ∈ {5 · · · 15},
k2 10 Ns/m k2 = 20 − k1

c 6 · 105 N/m ±33%

k12 500 Ns/m ±100%

TABLE I
SIMULATION PARAMETERS

is calculated for a displacement x̄ = 1 m, with bounds:
d̄ = 1000 m/s4, ̄ = 50 m/s3, ā = 5 m/s2, and v̄ = 1.5 m/s
(see figure 5).

The main concern with model-based feedforward is the
discrepancy between the behavior of the actual motion
system and the used model. Figure 9 shows the performance
of fourth order feedforward for a fourth order motion
system model with perturbations according to table I. For
comparison, the response of the nominal motion system
model with optimal rigid-body feedforward is given (by
applying equation 5 to the acceleration and velocity profiles
of figure 5). Note that in spite of the significant plant
variations, fourth order feedforward performs at least twice
as good.

Figure 10 shows that the servo error responses will
not significantly deteriorate if fourth order feedforward is
implemented in discrete time. As an example, the motion
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system with minimal spring-stiffness is considered. Both
open loop and closed loop results are given: the feedback
controller is tuned for a bandwidth of about 10 Hz, whereas
the motion system’s first resonance mode is at 50 Hz. The
digital feedforward controller is combined with a discrete
time feedback controller, both with a sampling rate of
200 Hz. Note that this is a low sampling rate for a high
performance servo system: this is chosen to demonstrate
the discretization effects more clearly.

VII. CONCLUSIONS

For high performance motion control the usefulness of
feedforward is well known. This paper shows that rigid-
body feedforward can be extended to fourth order feedfor-
ward with superior performance for an important class of
motion systems.

An algorithm is given to calculate fourth order trajec-
tories for point-to-point moves with important properties
like time-optimality, actuator effort limitation, reliability,
implementability and accuracy. Other motion commands,
like speed change operations, can be derived from this.

Further implementation issues, like discrete time calcu-
lations and synchronization, are addressed. It is shown that
deterioration of the continuous time results due to sampling
are small when applying a sufficient sampling rate.
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