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Abstract— In this paper, we address systematic design of a linear
compensator to enhance the performance of an adaptive output
feedback control with actuator nonlinearities. The adaptive output
feedback controller augments a baseline linear controller. The basic
approach involves showing that the augmenting adaptive output
feedback architecture is structurally equivalent to a robust internal-
loop compensator. The approach addresses a broad class of actuator
nonlinearities, and is applicable to non-affine, nonlinear system con-
taining both parametric uncertainty and unmodelled dynamics. We
illustrate the main results using a three-disk torsional system, in which
the actuator is subject to dead zone and saturation.

I. INTRODUCTION

Actuator nonlinearities have been a major obstacle in guaran-
teeing stability and performance of adaptive control systems. In
this paper, we address how actuator performance can be improved
in the adaptive control architecture developed in [1]. From the
perspective of adaptive control, actuator nonlinearities can be
grouped into two classes: dead zone, backlash, and hysteresis
are generally problematic when the control demand is low, and
actuator saturation and rate limits degrade performance when the
control demand is large.

While actuator nonlinearity is often present, most control design
methods either ignore them, or treat a single type of nonlinearity.
This is particularly problematic in an adaptive control setting
[2]–[4]. Ref. [4] developed an approach called “pseudo-control
hedging” (PCH) that is applicable when augmenting a nonlinear,
state feedback inverting controller with an adaptive element in the
presence of control saturation, and other nonlinear effects. The
role of PCH is to protect the adaptive process from attempting to
adapt to the effects of actuator nonlinearities. Ref. [5] extends this
approach to output feedback, when augmenting a linear controller,
and is referred to as “control hedging” (CH). Dead zone, backlash,
and hysteresis ( and other members of this class) have been mainly
addressed by seeking an inverse for a selected nonlinearity [6],
[7]. In [8], a neural network (NN) with jump basis functions is
employed to approximate a dead zone inverse.

A disturbance observer is a servomechanism that estimates and
rejects external disturbances so that the system behaves like the
plant model. Its use in dealing with actuator nonlinearities is
illustrated in [9], for non-adaptive systems, where it is shown that
the disturbance observer greatly mitigates the effects that dead
zone and backlash have on control system performance. Ref. [10]
proposed a robust internal-loop compensator (RIC) and showed its
equivalence to a disturbance observer.

In this paper, we show that the control architecture in [1] is
equivalent to that of RIC. Using this structural equivalence, We
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apply the results in [9] to the adaptive control architecture in
[1], and incorporate CH from [5] to protect the adaptive process.
It is shown that this combination is highly effective for a great
variety of actuator nonlinearities (dead zone, backlash, hysteresis
and saturation).

The paper is organized as follows: Section II formulates the
control problem. In Section III a structural equivalence between a
disturbance observer and an augmenting adaptive output feedback
architecture is established using the RIC framework. In Section IV
we describe the method of augmenting a baseline linear controller
with an adaptive element, subjected to nonlinear actuation. The
design involves deriving tracking error dynamics and constructing
a reduced error observer to generate a teaching signal for an
adaptation law. Simulation results with a three-disk pendulum are
presented in Section V. Finally, conclusions are given in Section
VI.

II. PROBLEM FORMULATION

For simplicity, the control scheme is presented in a single-
input single-output (SISO) setting. Consider an observable and
stabilizable nonlinear system Σp in the following normal form [11,
p.541]:

ξ̇ =Amξ +bm[u+φ(zo,ξ ,g(u))]

żo = f (zo,ξ )

y =cT
mξ ,

(1)

where ξT � [ x1 · · · xr ] ∈ R
r,

Am =


0 1 0 · · ·
0 0 1 · · ·
...

...
...

...
a1 a2 · · · ar


r×r

, bm =


0
0
...
b


r×1

,

cT
m =

[
1 . . . 0

]
1×r .

(2)

The vector zo ∈ R
n−r contains the states of the internal dynamics,

u∈R
1 and y∈R

1 are control and measurement variables, φ and f
are unknown continuous functions, φ(0,0,g(0)) = 0, f (0,0) = 0,
and r is the relative degree of y, which is assumed known. The
function g(u) represents actuator nonlinearity.

Assumption 1: The internal dynamics żo = f (zo,ξ ) are input-
to-state stable [11] with ξ as an input.

A plant model Pn(s), the model used to design a linear controller,
is realized by the matrices in (2)

ξ̇m = Amξm +bmulc, ym = cT
mξm (3)

where ξm ∈ R
r. This implies that the plant model has the relative

degree r, and is fully linearizable (has no zero dynamics). The



baseline linear controller C(s), designed based on the model in
(3), is given by

ẋc = Acxc +bc(yd − y)

ulc = cT
c xc +dc(yd − y)

(4)

where xc ∈R
nc . Figure 1 represents the typical closed loop system.

It is assumed that yd is bounded, and that for Σp = Pn(s) (φ =

�

�

yd ed
C(s)

ulc
Σp

y

Fig. 1. Typical Feedback Control System

0, f = 0) all performance specifications are satisfied.
Our control objective is to augment ulc in Figure 1 with an

additional control signal uad so that bounded reference command
tracking, i.e. bounded ed = yd − y, is achieved.

III. CONTROL SYSTEM ARCHITECTURE

A. Disturbance Observer ⇐⇒ RIC

Figure 2 illustrates how an inner-loop disturbance observer is
used to augment the outer-loop controller of Figure 1. Its goal
is to force the system Σp to behave as the plant model Pn(s) by
rejecting external disturbances and modelling errors satisfying a
matching condition. Its architecture is depicted in Figure 2 for the
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Fig. 2. Disturbance Observer Architecture

case in which the system is linear, Σp = P(s). The terms dex, w
represent external disturbance and sensor noise, respectively. The
Q-filter is designed to reject disturbances below a cut-off frequency
[10]. From Figure2, the output y is expressed as

y = [Pn(s)ulc +Pn(s){1−Q(s)}dex −Q(s)w]
P(s)
X(s)

, (5)

where X(s) = Pn(s)+[P(s)−Pn(s)]Q(s). From (5), we can see that
it is desirable that |1−Q( jω)| � 0 to reject external disturbances,
while |Q( jω)| should be small in order to reduce the effect of
sensor noise w. Thus, the design of Q(s) is compromise between
these conflicting objectives, which can be formulated as a mixed
sensitivity optimization problem [12], [13]. A common form for
the Q-filter, proposed in [12], is

Q(s) =
1+∑N−r

k=1 ak(τs)k

1+∑N
k=1 ak(τs)k

, (6)

in which ak and τ are design parameters. A structural equivalence
between the disturbance observer and RIC is established when the
Q-filter is selected as

Q(s) =
Pn(s)K(s)

1+Pn(s)K(s)
, (7)

in which K(s) is the compensator designed for the unity feedback
system in Figure 1, with C(s) and Σp replaced by K(s) and Pn(s),
respectively. The relation in (7) implies that if a compensator K(s)
is designed for Pn(s) in order to satisfy a given robustness criterion,
such as gain/phase margin, the Q-filter is automatically designed.

The feedback control system with RIC as an internal-loop
compensator is depicted in Figure 3. The analysis in [10] reveals
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Fig. 3. Robust Internal-loop Compensator (RIC) Architecture

that with u∗ = 0, the estimated disturbance δd in Figure 2 is
reformulated as

δd = −udc = −K(s)e1, (8)

in which e1 is defined by e1 = ym−y. The control signal u∗ is an
additional control input used to compensate for plant uncertainty.
It can be designed using either a fixed gain method or an adaptive
method. From Figure 3 it follows that

y =
[{1+Ln(s)}P(s)C(s)

Xc(s)

]
yd +

[
P(s)
Xc(s)

]
dex

−
[

L(s)+{1+Ln(s)}P(s)C(s)
Xc(s)

]
w,

(9)

where L(s) = P(s)K(s), Ln(s) = Pn(s)K(s), Xc(s) = 1+L(s)+{1+
Ln(s)}P(s)C(s). With the following definition for deq

deq �
[

P(s)
Pn(s)

−1

]
u+

[
P(s)
Pn(s)

]
dex, (10)

which is depicted in Figure 4, we have the transfer function from
deq to y

y(s)
deq(s)

=
Pn(s)

[1+Pn(s)C(s)][1+Ln(s)]
. (11)

Then, with w = 0, the relationship among ed ,yd and deq can be
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Fig. 4. Reconstruction of the system using equivalent disturbance

expressed as

ed(s) =
1

1+Pn(s)C(s)

[
yd −

Pn(s)
1+Ln(s)

deq

]
. (12)

The effect of deq on ed decreases by a factor of 1+Ln(s) compared
to the control loop in Figure 1. A stability analysis based on small-
gain theorem can be found in [10] for the case of multiplicative
model uncertainty, P(s) = Pn(s)[1+∆(s)].



B. Adaptive Output Feedback Control

Figure 5 depicts the adaptive output feedback augmentation
architecture developed in [1]. The adaptive controller is designed
using the approach in [14]. It is apparent that the architecture

�_
�

�

�

�_

_
yd ulc

ym

u
y

e1

uad

udc

η

Ê
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Fig. 5. Adaptive Output Feedback Augmentation Architecture

in Figure 5 is equivalent to the RIC framework in Figure 3 .
With u∗ =−unn, the architectures are identical if Σp = P(s). Thus,
we can design a linear controller K(s) in Figure 5, using RIC,
to achieve performance enhancement when actuator nonlinearities
(dead zone, backlash, hysteresis) belong to the class defined in [9].
In addition, input saturation can be treated using the CH method
[5] depicted in Figure 6. The term ĝ(u) is an estimate for input
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Fig. 6. Implementation of Control Hedging.

saturation. That is, ĝ(u) =

{
u, if |u| ≤ ûlim

sgn(u)ûlim, if |u| > ûlim
, where

ûlim is an estimate for the control limit ulim. If the control limit is
known, ûlim = ulim. The rationale of CH combined with the RIC
design is as follows. When actuation is nonlinear at low control
command levels, the RIC controller boosts the control command.
When actuation is nonlinear at high control command levels, CH
modifies the control command to Pn(s) to protect the adaptive
process.

IV. ADAPTIVE OUTPUT FEEDBACK AUGMENTATION

A. Output Tracking Error Dynamics

With CH, the plant model dynamics in (3) are modified as

ξ̇m =Amξm +bm(ulc −uh), uh = u− ĝ(u)

ym =cT
mξm,

(13)

Define the tracking error vector

e = ξm −ξ . (14)

With the following control signal augmentation

u = ulc +uad = ulc +udc −unn, (15)

comparing (1) to (13) leads to the following tracking error dynam-
ics

ė =Ame+bm(−udc +unn −Φ(zo,ξ ,u))

żo = f (zo,ξ )

e1 =cT
me,

(16)

where udc is the control signal designed by RIC, and unn is
an adaptive signal used to approximately cancel the uncertainty
Φ(zo,ξ ,u), which is defined by

Φ(zo,ξ ,u) = φ(zo,ξ ,u)+(u− ĝ(u)). (17)

From (15) and (17), it follows that Φ depends on unn through u,
whereas unn is designed to cancel Φ.

Assumption 2: There exist a fixed point solution for unn =
Φ(·,−unn) on the domain of interest.
When the actuator is not in saturation, the equation collapses
into unn = φ(·,−unn). According to the Brouwer fixed point
theorem [15], any continuous function with its range contained
in a bounded domain must have at least one fixed point. Existence
and uniqueness of a fixed point is guaranteed when the mapping
unn → φ is a contraction. This can be assured if∣∣∣∣∂φ∂u

∣∣∣∣ < 1, (18)

which is more general than the typical assumption found in the
literature [11, p. 603]

|φ(zo,ξ ,u)| ≤ ρ(zo,ξ )+ ku|u|, (19)

in which a continuous function ρ(zo,ξ ) ≥ 0 and ku ∈ [0, 1) are
assumed to be known. Also, the condition in (18) is equivalent to
the following two conditions [16]:

sign(b) = sign(
∂ ẋr

∂u
)∣∣∣∣∂ ẋr

∂u

∣∣∣∣/2 < |b| < ∞.
(20)

These conditions mean that control reversal is not permitted and
there is a lower bound on the estimate of the control effectiveness
b of the plant model. When the actuator is in saturation, ĝ(u) =
±ulim. Therefore, Assumption 2 is automatically satisfied unless
∂φ
∂u = 2. In this case, it is notable that without CH, Assumption
2 is violated [17]. A different viewpoint that uses the mean value
theorem to eliminate the fixed point assumption can be found in
[18], [19].

A single hidden layer NN is used to approximate Φ in (17).
Since the uncertainty Φ is a function of states and control, we
recall the result from [20] that enables approximation of unknown
bounded processes, using finite input/output history.

Theorem 1: For arbitrary ε∗ > 0, there exist bounded constant
weights M,N such that:

Φ(zo,ξ ,u) = MTσ(NTη)+ ε(η), ‖ε(η)‖ ≤ ε∗ , (21)

where ε(η) is the NN reconstruction error and η is the network
input vector

η(t) = [ 1 ūTd (t) ȳTd (t) ]T , ‖η‖ ≤ η∗

ūTd (t) = [u(t) u(t−d) · · ·u(t− (n1 − r−1)d)]T

ȳTd (t) = [y(t) y(t−d) · · ·y(t− (n1 −1)d)]T
(22)



with n1 ≥ n and d > 0, σ being a vector of squashing functions
σ(·), its ith element being defined as

[
σ(NTη)

]
i = σ

[
(NTη)i

]
.

The adaptive signal unn is designed as

unn = M̂
Tσ(N̂Tη) , (23)

where M̂ and N̂ are estimates of M and N to be adapted on-line.
To design K(s) using RIC, a critical step involves defining

an equivalent disturbance deq as in (10). We define it as the
approximation error between unn and Φ in (17)

deq � −unn +Φ(zo,ξ ,u). (24)

This implies that the NN approximation error is further attenuated
by udc. The linear controller K(s) is described by

ẋdc = Adcxdc +bdce1

udc = cT
dcxdc +ddce1 .

(25)

Applying udc in (25) to (16) leads to the following error dynamics

Ė =ĀE − b̄deq

z = c̄T E
(26)

where ET = [ eT xT
dc ], c̄T =

[
cT
m I

]
, and

Ā =
[

Am −bmddcc
T
m −bmcT

dc
bdcc

T
m Adc

]
, b̄ =

[
bm

0

]
. (27)

Since Ā is Hurwitz, for any Q > 0, there exists a P > 0 such that:

ĀT P+PĀ+Q = 0. (28)

Note that the error dynamics in (26) have the same form as in
[14], thus the same NN weights update law can be derived.

B. Reduced Error Observer and Adaptation Law

With the definition of deq in (24), the error dynamics in (16)
can be expressed by the following transfer function

e1(s) = Pn(s)[−udc −deq]. (29)

The term udc in (8) is an estimate for the equivalent disturbance
according to Figure2. Therefore, by the relation between Q(s) and
K(s) in (7), Eq.(29) can be rearranged as follows

e1(s) = −Pn(s)(1−Q(s))deq. (30)

Since the Q-filter is designed so that (1−Q(s))deq ≈ 0 below a
cut-off frequency, we construct an error observer assuming (1−
Q(s))deq ≈ 0 for the dynamics in (30)

˙̂e = Amê+L(e1 − ê1)

ê1 = cT
mê.

(31)

The observer gain L is designed so that Am −LcT
m is Hurwitz.

Using the estimate in (31), the teaching signal for the NN is
constructed as Ê

T
=

[
êT xT

dc

]
. The NN weights M̂, N̂ are

updated according to the following adaptation laws [14]

˙̂M =−ΓM [(σ̂ − σ̂ ′N̂Tη)Ê
T
Pb̄+ kM̂],

˙̂N =−ΓN [ηÊPb̄M̂T σ̂ ′ + kN̂]
(32)

in which ΓM , ΓN > 0 are positive definite adaptation gain matrices,
k > 0 is a σ−modification constant, σ̂ �σ(N̂η), σ̂ ′ is the Jacobian
computed at the estimates: σ̂ ′ = σ ′(N̂η).

Theorem 2: Consider the system in (1) that satisfies Assump-
tions 1-2. Together with the NN adaptation rule in (32), the control
law in (15) guarantees that the signal ed is ultimately bounded.

Proof: In [5], [14], it is shown that the adaptive element en-
sures that the tracking error, e1, is bounded. Moreover, Assumption
1 ensures that zo is bounded. Since the linear controller C(s) is
designed to stabilize the plant model Pn(s), it immediately follows
that if yd and e1 are bounded, then ed is bounded. It is also apparent
that when e1 = 0 we recover the tracking performance associated
with the existing controller design, with the plant model Pn(s)
substituted for the system Σp.

V. ILLUSTRATIVE DESIGN EXAMPLE

We demonstrate the approach using a three-disk torsional pendu-
lum in ECP system Inc. [21]. Figure 7 depicts a torsional pendulum
system consisting of three disks connected by flexible shafts. The

Fig. 7. The 3-disk Torsional Pendulum System [21].

actuation device, a brushless DC servo motor, apply torque to the
bottom disk. The equations of motion for the system are as follows

J1θ̈1 +K(θ1 −θ2)+ fc1(θ̇1) = 0,

J2θ̈2 −Kθ1 +2Kθ2 −Kθ3 + fc2(θ̇2) = 0,

J3θ̈3 −K(θ2 −θ3)+ fc3(θ̇3) = Kvtg(u),

(33)

where Ji = 0.103 kg ·m2, i = 1,2,3 are the moments of inertia,
K = 2.2625 kg ·m2/s2 is the spring constant, Kvt = 0.42 N·m

V
is the gain from control voltage to torque, and fci , i = 1,2,3
represents dynamic friction torque, which is described by the
model developed in [22]

żi = θ̇i −
σ f |θ̇i|
G(θ̇i)

zi, G(θ̇i) = Tc +(Ts −Tc)exp

(
−(

θ̇i

θ̇s
)2

)
fci = σ0zi +σ1żi +σ2θ̇i, i = 1,2,3,

(34)

where Tc = 0.075 N ·m is the Coulomb friction level, Ts =
0.083 N ·m is the stiction torque, and θ̇s = 0.0001 rad/s is the
Stribeck velocity. The constants σ f = 4 N ·m, σ0 = 2 N ·m,
σ1 = 0.1 N ·m · s are friction parameters, and σ2 = 0.0018 kg ·m/s
represents a viscous damping coefficient. The control input u is
the voltage applied to the control motor, and the stiction value
Tc corresponds to the control voltage 0.2V with the given gain
Kvt . The actuator nonlinearity g(u) consists of dead zone and
saturation with ud =±0.1V and ulim = 1.2V as depicted in Figure
8. However, the estimate for the actuator ĝ(u) only considers the
saturation characteristic. The output is the angular displacement
of the bottom disk θ3, which has relative degree 2. With fci = 0
and g(u) = u, the transfer function from applied voltage to the
regulated output is given by

y
u

=
Ka(s2 +2ζz1ωz1s+ω2

z1
)(s2 +2ζz2ωz2s+ω2

z2
)

s(s+ c)(s2 +2ζp1ωp1s+ω2
p1

)(s2 +2ζp2ωp2s+ω2
p2

)
. (35)

The parameters are Ka = 40.46, ζz1 = 0.009, ωz1 = 9.87, ζz2 =
0.0035, ωz2 = 25.8, c = 0.1786, ζp1 = 0.00559, ωp1 = 16(rad/sec)



u

limu

limu-

g(u)

u
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du�

limu

limu-

g(u)

Fig. 8. Actuator Characteristic g(u) and its Estimate ĝ(u) in CH.

and ζp2 = 0.00323, ωp2 = 27.7(rad/sec). The eigenvalues associ-
ated with the zero dynamics are −0.089± 15.97i and −0.893±
27.66i. Thus, the internal dynamics are input-to-state stable with
y as its input.

The low frequency model without flexible modes is assumed as
the plant model

ym

u
=

Kn

s(s+ c)
, (36)

where Kn = 13.49,c = 0.18. Figure 9 compares the frequency re-
sponse of the plant model in (36) with that in (35). The agreement
is quite good at low frequencies but differs significantly at high
frequencies due to the unmodelled flexible modes. Comparison of
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(33) with (36) leads to the following modelling error

Φ =
1
Kn

[
K
J3

(θ2 −θ3)− 1
J3

fc3(θ̇3)+
Kvt

J3
g(u)+ cθ̇3 −Knĝ(u)].

(37)
Assumption 2 is assured, since Kn −Kvt/J3 �= b.

The linear controller C(s) is designed as a lead compensator,
which results in a dominant mode at ωn = 3rad/s and ζ = 0.8 for
the nominal system design. This results in ulc = K1

s+b1
s+a1

ed , where
K1 = 0.67,a1 = 4.8,b1 = 0.1786. The RIC controller K(s), which
is designed in the same manner as C(s), puts the dominant mode
at ω = 20rad/s and ζ = 0.8. This results in udc = 29.65 s+0.18

s+32 e1.
From K(s), Q(s) is determined by the relation in (7). Its frequency
response is shown together with 1−Q(s) in Figure 10. Figure 10
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Fig. 10. Frequency Responses of Q(s) and 1−Q(s).

shows that K(s) is designed so that 20db gain decrease is achieved
around ω = 1rad/s.
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The reduced error observer is designed so that the eigenvalues
of Am −LcT

m are located at −82.12±82.12i. The SHLNN has 20
neurons in the hidden layer, with its input consisting of 6 delayed
values of y and 4 delayed values of u. The network parameters are
ΓM = 0.5I, ΓN = 0.5I, k = 1.3.

Figure 11(a) compares output responses of the system in (33)
regulated only by the controller C(s) to that of the nominal closed
loop system consisting of the plant model in (36) regulated by
C(s). The reference command is made up of a square wave of
1 rad. at 0.2 Hz. The response is oscillatory and exhibits a large
steady state error. When C(s) is augmented by the elements in
Figure 5, the steady steady error and oscillations are drastically
decreased as shown in Figure 11(b). The commanded control
signal u and the achieved control signal g(u) are compared in
Figure 12(a). The modelling error Φ and the adaptive signal unn are
compared in Figure 12(b) to illustrate NN adaptation. The overall
compensation scheme is further justified by the results in Figure
13. Without the adaptive signal unn, as shown in Figure 13(a), the
plant model output ym and the system output y do not converge to
each other. Without udc, Figure 13(b) shows that bounded tracking
is achieved, but the response is much more oscillatory than that in
Figure 11(b).

The role of CH is illustrated by increasing the magnitude of
the reference command to 3 rad. Figure 14 compares the output
responses with and without CH. Without CH, the plant model
output ym and the system output y significantly deviate from
each other as shown in Figure 14(a). Whenever the actuator is
in saturation, the adaptive signal unn loses track of the uncertainty
Φ as shown in Figure 14(c) and 14(e). With CH, almost perfect
tracking is maintained with correct NN adaptation as shown in
Figure 14(b),14(d) and 14(f).

VI. CONCLUSIONS

This paper describes a linear control design to enhance the
performance of adaptive augmenting output feedback control when
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Fig. 13. Output Responses without either udc or unn.
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Fig. 14. Comparison of responses With and Without CH

a combination of actuator nonlinearities are present. A key in-
gredient of the linear control design is the structural equivalence
between the architecture of augmenting adaptive output feedback
control and that of a disturbance observer using the framework
of robust internal-loop compensation. Multiple types of actuator
nonlinearities can be effectively compensated when the disturbance
observer is combined with control hedging. Simulation results
illustrate the effectiveness of the approach in control of a three-disk
torsional pendulum with dynamic friction, in which the actuator
nonlinearities consist of dead zone and saturation.

ACKNOWLEDGEMENT

This research is sponsored by the Air Force Office of Scientific
Research, under grant number F4960-01-1-0024.

REFERENCES

[1] A.J. Calise, B.-J. Yang, and J.I. Craig. Augmentation of an existing
linear controller with an adaptive element. In Proceedings of the
American Control Conference, pages 1549–1554, Anchorage,AK,
May 2002.

[2] Alexander Leonessa, Wassim M. Haddad, and Tomohisa Hayakawa.
Adaptive tracking for nonlinear systems with control constraints. In
Proceedings of the American Control Conference, Arlington, Virginia,
jun 2001.

[3] Marios Polycarpou, Jay Farrell, and Manu Sharma. On-line approx-
imation control of uncertain nonlinear systems: Issues with control
input saturation. In Proceedings of the American Control Conference,
pages 543–548, Denver, CO, June 2003.

[4] Eric N. Johnson and Anthony J. Calise. Limited authority adaptive
flight control for reusable launch vehicles. AIAA Journal of Guidance,
Control & Dynamics, 26(6):906–913, 2003.

[5] A.J. Calise, B.-J. Yang, and J.I. Craig. An augmenting adaptive
approach to control of flexible systems. AIAA Journal of Guidance,
Control & Dynamics, 2004. to appear.

[6] Gang Tao and Petar V. Kokotović. Adaptive Control of Systems with
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