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Michael K. Kalandros, Lidija Trailović, Lucy Y. Pao, and Yaakov Bar-Shalom

Abstract— This paper provides an introduction to sensor
fusion techniques for target tracking. It presents an overview
of common filtering techniques that are effective for moving
targets as well as methods of overcoming problems specific
to target tracking, such as measurement-to-track association
and sensor registration. The computational demand of such
algorithms is discussed and various practices, including dis-
tributed processing of target tracks and sensor management,
are proposed to help reduce this demand. Final comments
include a discussion of applications and implementation issues
specific to the presented scenarios.

I. INTRODUCTION

Target tracking is the process of maintaining state es-
timates of one or several objects over a period of time.
These objects can be aircraft, ships, or ground-based targets.
Mobile robots can track the location of landmarks in their
environment to maintain an accurate estimate of their loca-
tion, as well. Target tracking algorithms are basically state
estimation algorithms, where the estimate of the state is
corrected by measurements from various sensors, which can
include radar, sonar, and CCD cameras, to name a few. An
illustration of tracking multiple aerial targets using sensors
such as radars is presented in Figure 1. The use of multiple
sensors can dramatically improve tracking accuracy in a
process known as sensor fusion. Section II discusses the
extension of common state estimation and target tracking
algorithms, such as the Kalman filter [9], to include the
fusion of data from multiple sensors based on a centralized
processing architecture as shown in Figure 2.

One of the difficulties that sets target tracking apart from
other estimation tasks is the uncertainty in measurement
origin. Typically in state estimation tasks, the measurement
is clearly linked to the object about which state informa-
tion is desired. In many tracking environments, however,
measurements are received from multiple objects, and it
is not known which measurement originated from which
object. In these environments (radar-based tracking, for
example) there is no clear linkage of measurement to object,
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Fig. 1. An illustration of the sensor fusion idea: the radars provide
measurements of the surveillance region and the processing units (cen-
tralized or distributed) gather data, perform a sensor fusion algorithm,
and determine positions of targets. Sensor fusion algorithms are capable
of combining information from diverse sensing equipment, and improve
tracking performance, but at a cost of increased computational complexity.

requiring data association algorithms to associate measure-
ments to target tracks. Data association is further compli-
cated by the possible presence of non-target or “clutter”
measurements (detections or returns from nearby objects,
clouds, electromagnetic interference, acoustic anomalies,
false alarms, etc.) that must be identified as not originating
with any targets of interest. The resulting uncertainty about
measurement origin decreases the accuracy of the state
estimate of each track and can ultimately lead to track loss.
One approach to data association is known as the Nearest
Neighbor (NN) filter, which simply selects the measurement
that is closest to the predicted measurement, discarding all
the others ([8], p. 123). Another approach is Probabilistic
Data Association (PDA), which creates a weighted average
of all the received measurements, based on the likelihood
that each measurement came from the target of interest
([8], Section 3.4). Sensor fusion techniques for tracking
environments requiring data association are discussed in
Section III.

Another factor that affects the accuracy of sensor fusion is
imperfect knowledge of the location of each sensor, leading
to errors common to each measurement from that sensor.
Techniques to reduce these errors, discussed in Section IV,
generally involve augmenting the state of the target track to
include estimates of the sensor’s relative location.
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Fig. 2. Tracking system using a centralized processing architecture. It
includes a set of sensors that observe the environment, including the targets
to be tracked, and a central system for processing the outputs of those
sensors.

While the fusion of multiple sensor measurements can
result in dramatically increased tracking performance, it
often leads to large increases in communication load and
computational complexity. One method of implementing
such algorithms is to distribute the tracking task across
multiple processors. For example, each sensor could have its
own processor that uses single-sensor tracking algorithms.
The tracks from each processor are either shared among
the different processors or sent to a “global” processor
for fusion. This approach has its own drawbacks, most
notable of which is that while measurements of a target
from different sensors are generally uncorrelated, the tar-
get tracks created from the measurements are correlated,
requiring additional processing. However, since the number
of target tracks is generally much lower than the number
of individual measurements, the complexity seen by each
processor will still be less than that required for a single
centralized processor system. Distributed and decentralized
tracking are discussed in Section V.

As the number of targets and sensors increases, track-
ing systems can very quickly become overloaded by the
incoming data. Furthermore, as the number of available
sensors and sensor modes increases, it is easy to overwhelm
human operators, such as fighter pilots, as well. Sensor
manager systems that balance tracking performance with
system resources are often required to control the flow
of information. Although functions controlled by sensor
managers include a wide array of sensing activities such
as the selection of sensor modes or scanning an area
for unknown targets, we primarily overview methods for
determining how best to task sensors to illuminate specific
targets in Section VI. By setting an allowable threshold on
track accuracy, sensors can be assigned by the needs of each
target track, instead of attempting to apply all sensors to all
targets. Alternatively, sensors can be selected in such a way
that their effectiveness is maximized, thus deriving the most
information from the available sensor resources.

In principle, fusion of multisensor data provides signif-
icant advantages over single source data. In addition to
the statistical advantage gained by combining same-source
data (e.g., obtaining an improved estimate of a physical
phenomenon through redundant observations), the use of
multiple types of sensors may increase the accuracy of the

observation. For example, let us consider a moving object
such as an aircraft, observed by both a pulsed radar and
an infrared imaging sensor. The radar provides accuracy
in determining the aircraft’s range, but a limited ability
to determine the angular direction of the aircraft. On the
other hand, the infrared imaging sensor has accuracy in
determining the aircraft’s angular direction, but is unable to
measure range. If these two observations can be correctly
associated, the combination of the two sensor data would
provide improved estimates of the location (better than
either of the two independent sensors), but at a cost of
additional computation.

Computational complexity studies of the tracking algo-
rithms are numerous and can be categorized as studies of the
filter complexity and studies of data association complexity.
For example, comparison of different filtering techniques
in terms of handling nonlinearities were discussed in [2],
[62], [63], similar tracking scenarios were analyzed in [26],
[28], [36], [74], and comparison of several data association
algorithms were addressed in [60]. More on computational
issues in tracking algorithms will be presented in Sec-
tion VII.

Multisensor fusion was designed to combine sensor in-
formation from a variety of sensors and to improve target
state estimates (over those resulting from using a single
sensor) in a surveillance region, or in other words, to resolve
uncertainty in retrieved data sets. Significant activity has
taken place in the research and development of sensor
and data fusion systems for military applications such as
automatic target recognition, mission-critical systems (in
battlefield assessment), and for smart weapons. More re-
cently, applications such as integration of intelligent systems
(automated plant management, computer vision, vehicle
teleoperation, intelligent robot navigation, etc.), atmospheric
sciences data modeling (e.g., handling large state spaces
in remote sensing), medical diagnosis (e.g., imaging), and
smart buildings are beginning to apply methods that have
originated in multisensor fusion. A number of projects of
interdisciplinary nature for civilian applications have been
carried out — Distributed Space Systems Technology, Earth
Science Technology, to name a few — where some form of
uncertainty is built in the acquired data sets. Implementation
of multisensor fusion systems has become practical in the
last decade due to the advances in sensor manufacturing,
signal processing algorithms, VLSI technology, and high
performance computing and communication [29].

It is worth noting the difference between sensor data
fusion and general data fusion (or frequently, information
fusion), according to terminology suggested in [29]. Mul-
tisensor fusion implies a process which generally employs
both correlation and fusion processes to transform sensor
measurements into updated states and covariances for entity
tracking (also known in the literature as correlator-tracker
or level 1 fusion). Information fusion refers to acquir-
ing, processing, and intelligently combining information
gathered by various knowledge sources and sensors to
provide a better understanding of the phenomenon under
consideration. It implies the use of multisensor fusion as an
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integral part of a more complex process. Information fusion
is capable of handling data diverse in nature and origin, re-
quires access to a variety of resources (e.g., data/knowledge
base), and can be described as a process by which the
tracked entities are associated with environmental, doctrinal,
and performance constraints, or presents a structured multi-
perspective assessment of entities and trends (situation
assessment and threat assessment, or level 2 and level
3 fusion). Techniques for information fusion are complex
and drawn from a wide range of areas including artificial
intelligence, pattern recognition, statistical estimation, etc.
Though the terms sensor fusion and information fusion may
be used interchangeably in the literature, issues related to
information fusion as described above are beyond the scope
of this tutorial paper.

II. FILTERING

From a Bayesian perspective, the general tracking prob-
lem is to recursively calculate some degree of belief that
the state x(k) at time k has some value given the data
z(1 : k) up to time k. Thus, it is required to construct
the pdf p(x(k)|z(1:k)). It is assumed that the initial pdf
p(x(0)|z(0)) ≡ p(x(0)) of the state vector, also known
as the prior, is available (z(0) being the set of no mea-
surements). In principle, the pdf p(x(k)|z(1 :k)) may be
obtained recursively in two stages: prediction and update.
In the update stage the measurement z(k) is used to modify
the prior density to obtain the required posterior density of
the current state.

To define the general problem of tracking, let us consider
the evolution of the state-space model of a target defined
by a sequence {x(k)},

x(k) = fk(x(k − 1),w(k − 1)), (1)

where fk(·) is a possibly time-varying nonlinear function
of the state x(k), w(k) is an i.i.d. process noise sequence,
and k is the discrete time index. The tracking objective is
to recursively estimate x(k) based on measurements from
sensor j

z(k) = hk(x(k),v(k)), (2)

where hk(·) is a possibly time-varying nonlinear function of
the state, and v(k) is an i.i.d. measurement noise sequence.
In particular, tracking is the calculation of filtered estimates
of x(k) based on the set of all available measurements
z(1 : k) = {z(i), i = 1, . . . , k} up to time k.

The recursive relations for prediction and update form the
basis for the optimal Bayesian solution [3] but in general
it can not be determined analytically. Solutions exist in a
restrictive set of cases. In the special case when the state and
measurement equations are linear, the noise is Gaussian, and
in the absence of clutter, the optimum analytical solution to
the problem of recursively estimating the states x(k) based
on the measurements z(1 : k) is given by the Kalman filter
(KF).

The Kalman filter is based on the following models of
the target and measurement systems ([7], Chap. 5):

x(k) = Fx(k − 1) + w(k − 1) (3)

z(k) = Hx(k) + v(k) (4)

where x(k) is the current state of the target; F, H are known
system matrices; z(k) is the measurement of the target;
w(k) is a variable representing process noise or higher-
order motion not modeled by F; and v(k) is a variable
representing measurement noise in the sensor. Both w(k)
and v(k) are assumed to have zero-mean, white, Gaussian
probability distributions.

Since w(k) and v(k) are zero-mean noise processes, the
target states and measurements in the next time interval can
be predicted by

x̂(k|k − 1) = Fx̂(k − 1|k − 1) (5)

ẑ(k|k − 1) = Hx̂(k|k − 1) (6)

where x̂(k|k − 1) is the expected value of x(k), E[x(k)],
given data up to the time period k−1 and ẑ(k|k−1) is the
expected value of the measurement at time k. The quantity
ν(k) = z(k) − ẑ(k|k − 1) is known as the innovation. The
covariance of the state and the innovation predictions are
P and S, respectively:

P(k|k − 1)=E
[
(x(k) − x̂(k|k − 1))(x(k) − x̂(k|k − 1))′

]
=FP(k − 1|k − 1)F′ + Q(k − 1) (7)

S(k) =E[(z(k) − ẑ(k)) (z(k) − ẑ(k))′]
=HP(k|k − 1)H′ + R(k) (8)

where Q(k) is the process noise covariance and R(k) is the
measurement noise covariance. The state estimate is then
updated with the new measurement:

x̂(k|k − 1) = x̂(k|k − 1) + K(k) (z(k) − Hx̂(k|k − 1))
(9)

where K(k) is the Kalman gain:

K(k) = P(k|k − 1)H′ S−1(k) . (10)

The state covariance is updated by

P(k|k) = (I − K(k)H) P(k|k − 1) . (11)

The Kalman filter, as well as the other, more advanced
algorithms in this section, can be extended to include
inputs from multiple sensors per scan in either a parallel
or sequential fashion [81]. In the parallel implementation,
the measurement vectors zs(k) = Hsx(k) are stacked into
a single vector Z(k) = [z1(k), z2(k), . . . zNs

], where Ns

is the total number of sensors and s is the sensor index,
and then processed as a single sensor as described above.
However, extending the size of the measurement vector can
dramatically increase the computational complexity of the
algorithm, particularly in the calculation of the inverse of
the innovation covariance matrix for the Kalman gain in
(10). Because of this, the parallel approach to multisensor
fusion is rarely used. In the sequential implementation a dif-
ferent KF is run for each sensor, with the a posteriori state
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estimate and covariance from each sensor’s KF becoming
the a priori state estimate and covariance for the following
sensor’s KF.

A central operation performed in the KF is the propa-
gation of a Gaussian random variable through the system
dynamic equations (5) and (6). However, many real-world
systems, such as target tracking problems with clutter and/or
maneuvering targets, involve elements of nonlinearity and
non-Gaussianity, which preclude exact analytic solution.

Resolving nonlinearities in tracking problems motivated
the development of a number of suboptimal filtering al-
gorithms. The extended Kalman filter (reviewed in [2],
[78]) has become a standard technique used in a number
of nonlinear estimation and machine learning applications.
These include estimating the state of nonlinear dynamic
systems, estimating parameters for nonlinear system identi-
fication (e.g., learning the weights of a neural network), and
dual estimation (e.g., the expectation maximization (EM)
algorithm) where both states and parameters are estimated
simultaneously. In the extended Kalman filter (EKF), the
states are propagated using their nonlinear descriptions in
(1) and (2) without contributions from the noise compo-
nents,

x̂(k) = fk(x(k − 1)) (12)

ẑ(k) = hk(x(k)), (13)

and then the state distribution is approximated by a Gaus-
sian random variable. The state estimate is then propagated
analytically through a first-order linearization of the non-
linear system by replacing the state transition matrix F
and the measurement matrix H with the partial derivatives
of the nonlinear functions of the state and measurement,
respectively,

F(k) =
∂(x(k))
∂x

∣∣∣∣
x=x̂(k|k)

, (14)

H(k) =
∂hk(x(k))

∂x

∣∣∣∣
x=x̂(k|k)

. (15)

The new F and H matrices are used in the rest of the
KF equations, which are unchanged. If the true density
is non-Gaussian (e.g., bimodal or heavily skewed), this
can introduce large errors in the true posterior mean and
covariance of the transformed Gaussian random variable,
which may lead to sub-optimal performance and sometimes
divergence of the EKF. The unscented Kalman filter (UKF)
addresses this problem by using a deterministic sampling
approach. The UKF has been proposed [32], [33] and
adopted in recent years as an alternative to the EKF. The
state distribution is again approximated by a Gaussian
random variable, but is now represented using a minimal
set of carefully chosen sample points (called Sigma points)
instead of approximating the nonlinear system dynamics.
These sample points capture the true mean and covariance
completely, and when propagated through the true nonlinear
system, capture the posterior mean and covariance accu-
rately to the third order (of the Taylor series expansion)

for any nonlinearity. Methods that demand approximation
and/or linearization (as does the EKF) modify the system
model itself in order to solve the filtering problem. The
EKF achieves only first-order accuracy, but interestingly,
the computational complexity of the UKF is the same order
as that of the EKF.

The first step in the UKF is to sample the prior state
distribution, that is, generate the Sigma points:

χ0,k−1 = x̂k−1

W0 =
κ

(n+ κ)

χi,k−1 = x̂k−1 +
(√

(n+ κ)Pk−1

)
i

Wi =
1

2(n+ κ)

χi+n,k−1 = x̂k−1 −
(√

(n+ κ)Pk−1

)
i

Wi+n =
1

2(n+ κ)
(16)

where i = 1, 2, . . . , n, and n is the state dimension. Each
Sigma point (χi,k−1) has an associated weight (Wi,k−1).
The parameter κ is a design parameter of the UKF which
affects the the distribution of the Sigma points. After the
prior distribution is sampled to generate the Sigma points,
they are propagated through the nonlinear model. This is
the prediction step of the UKF:

χi,k = f (χi,k, uk−1, (k − 1)) (17)

x̂−
i,k =

2n∑
i=0

Wi χi,k (18)

P−
k =

2n∑
i=0

Wi

(
χi,k − x̂(k)−

) (
χi,k − x̂(k)−

)′
.(19)

In the UKF, the prediction step also requires determining the
output distribution by propagating the Sigma points through
the nonlinear output equation. Denoting the output Sigma
points as χy

i,k, the output Sigma points and the distribution
are

χy
i,k = h

(
χy

i,k−1, uk−1, (k − 1)
)

(20)

ŷ−
k =

2n∑
i=0

Wi χ
y
i,k (21)

P−
yy,k =

2n∑
i=0

Wi

(
χy

i,k − ŷ−
k

)(
χy

i,k − ŷ−
k

)′
(22)

P−
xy,k =

2n∑
i=0

Wi

(
χi,k − x̂−

k

) (
χy

i,k − ŷ−
k

)′
. (23)

In the correction step, an alternative Kalman gain is cal-
culated and used to update the a priori estimate with the
measurement,

Kk = P−
xy,k

(
P−

yy,k + Rk

)−1

. (24)

The state and covariance updates are calculated as in the
standard Kalman filter, using the alternative gain computa-
tion.
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Another approach when resolving the nonlinear and non-
Gaussian nature of tracking is using Sequential Monte
Carlo methods that have evolved from the general problem
of estimation in nonlinear, non-Gaussian systems such as
particle or bootstrap filters. In many estimation and tracking
application areas it is important to include both nonlinear
or non-Gaussian elements in order to accurately model the
dynamics of physical systems. To reduce storage costs and
allow for rapid adaptation to changing signal characteristics,
it is required to process data on-line in a sequential manner.
Particle filters [2], [22] are sequential Monte Carlo meth-
ods based on point mass (or “particle”) representations of
probability densities, which can be applied to any (possibly
nonlinear and non-Gaussian) system model, and which
generalize traditional Kalman filtering methods. Because of
the highly nonlinear dynamics and measurement models,
and non-Gaussian distributions in ground moving target
scenarios, particle filters have been applied for littoral
tracking (targets on land or in the sea near the boundary)
and yielded good tracking performance [50].

Consider a one-dimensional random process with pdf
p(x). If Np particles xi, i = 1, . . . , Np are drawn from
the process, then a discrete approximation of the density
p(x) is written as

p(x) ≈
Np∑
i=1

wi δ(x− xi) , (25)

where δ(·) is the Dirac delta function and wi is the weight
of the i-th particle. A particle filter operates by recursively
propagating a set of Np particles through the model (1)-
(2). Under certain assumptions, it has been shown [22]
that the discrete density approximation approaches the true
a posteriori density p(x(k)|z(1), . . . z(k)) as Np → ∞.
Variations in particle filters differ in the details of the
numerical procedures used to recursively propagate the set
of particles. Several versions of the algorithms can be found
in [2], [20], [22].

Studies of advanced filtering algorithms are numerous
and, as a rule, include comparisons between Kalman filter,
EKF, UKF, and particle filters, showing tradeoffs among
these approaches in different applications. For example, a
nonlinear trajectory tracking problem in a one-dimensional
state space has been proposed as a benchmark example in
[2] where it was shown that classical Kalman or extended
Kalman filters do not perform as well as a particle filter.
Another example is tracking (from radar observations) a
ballistic object on reentry, considered a highly complex
problem in nonlinear filtering. In [63] the Cramer-Rao lower
bounds were derived for the variance of the estimation error
and a comparison of several nonlinear filtering techniques
was presented (Kalman filter, EKF, UKF, and the particle
filter). Considering the computational and statistical perfor-
mance, the unscented Kalman filter was shown to be the
preferred choice for this particular application.

In many tracking systems and scenarios, targets may
switch between a number of maneuvering and non-
maneuvering modes and the number and type of sensors

supporting a particular target track can also vary due to
the target maneuvering mode or the type and resource
limitations of the individual sensors. This variability of
the target motions and the sensor systems complicates the
tracking process. A Kalman filter is often employed to
filter the position measurements for estimating the position,
velocity, and acceleration of a target. When designing a
Kalman filter, the process (or acceleration) noise Q is
selected such that the 65− 95% probability region contains
the maximum acceleration level of the target [15]. When
targets maneuver, the acceleration changes in a deterministic
manner, the white noise assumption associated with the
process noise does not hold, and the filter develops a bias
in the state estimate during maneuvers. If a “larger” Q
is chosen, the bias in the state estimates is less during
maneuvers, but such a Q poorly characterizes the target
motion when the target is not maneuvering, leading to filter
performance that is far from optimal.

The Interacting Multiple Model (IMM) algorithm can
be applied in such scenarios [15], [16]. When the motion
of the target is represented by multiple models which
are hypothesized to include the correct one, the IMM
estimation algorithm is an efficient approach for merging
the different model hypotheses. In the IMM algorithm,
the state estimate is computed under each possible model
hypothesis for the most recent sampling period with each
model using a different combination of previous model-
conditioned estimates. All the hypotheses are then merged
to compute the output state estimate and associated error
covariance. The IMM algorithm consists of a filter for each
model, a model probability evaluator, an estimate mixer at
the input of the filters, and an estimate combiner at the
output of the filters. With the assumption that the model
switching is governed by an underlying Markov chain, the
mixer uses the model probabilities and the model switching
probabilities to compute a mixed estimate for each filter.

Define x̂q(k − 1|k − 1) as the a posteriori estimate for
model q at time k− 1. Define ωq(k) as the probability that
the target is defined by model q at time k− 1. Now define
a “mixing probability”, ωr|q(k− 1|k− 1) as the probability
that the model was defined by model r at k − 1 given that
it is now defined by model q. This can be calculated using
Bayes’ rule

ωr|q(k − 1|k − 1) =
1
cq
pqr ωr(k − 1),

q, r = 1, . . . , Im (26)

where Im is the number of models, pqr is the probability
of the target switching from model r to model q and cq is
a normalization constant.

Now create the a priori state estimate for model q by
using an average of the state estimates from each model,
weighted by the mixing probabilities,

x̂0q(k − 1|k − 1) =
Im∑
r=1

ωr|q(k − 1|k − 1) x̂r(k − 1|k − 1)

(27)
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P0q(k − 1|k − 1)=
Im∑
r=1

ωr|q(k − 1|k − 1) ·

(Pr(k − 1|k − 1)+
[x̂r(k − 1|k − 1) − x̂0q(k − 1|k − 1)] ·
[x̂r(k − 1|k − 1) − x̂0q(k − 1|k − 1)]′

)
.

(28)

Note that these estimates will be different for each model,
because the mixing probabilities will be different for each
model. Once the a priori estimates are calculated, each filter
is processed independently using the measurements from
the current scan. The model probabilities are updated by
calculating the likelihood ∆q(k) that each model produced
the current target measurement and combining it with the a
priori probability of being the model currently that defines
the target motion,

ωq(k) =
1
c

Im∑
r=1

pqr ωr(k − 1) . (29)

This process is repeated for each scan. To extract an
updated state and covariance estimate, the model outputs
are merged by averaging the state estimates weighted by
their model probabilities:

x̂(k|k) =
Im∑
r=1

ωr(k)x̂r(k|k) (30)

P(k|k) =
Im∑
r=1

ωr(k) (Pr(k|k) + [x̂r(k|k)− x̂(k|k)] ·

[x̂r(k|k) − x̂(k|k)]′) . (31)

Improvements in the application of the IMM algorithm
for radar management (pointing, scheduling, and waveform
selection) and highly maneuvering targets in the presence of
false alarms and electronic counter measures are presented
in [44]. The IMM estimator was used in combination
with the probabilistic data association (PDA) technique to
compare several benchmark scenarios of multiple sensors
tracking a single target. The combined IMMPDAF tech-
nique presents a unified framework for target tracking and
radar management (estimation results were used quanti-
tatively to select the operating conditions of the radar).
More recently, IMM was applied to improve algorithms
for resolving multipath problems (due to reflections) which
occur in tracking low elevation targets near the sea-surface
[69].

III. DATA ASSOCIATION

In this section, we overview several approaches for
data association. A centralized processing architecture is
assumed, where all sensor measurements are received by
a central processor prior to data fusion.

Consider tracking T targets with a single sensor in
a cluttered environment. To distinguish between different
targets, augment the Kalman filter equations with notation

specifying which target is being referenced [8], [11], [56],
[58]:

xt(k + 1) = Ft(k)xt(k) + Gt(k)wt(k) . (32)

The noise vectors wt(k) are independent Gaussian random
variables with zero mean and known covariances Qt(k).

Measurements (also called reports or returns) from the
sensor are received by a central processor at discrete time
intervals. Each measurement can originate from at most
one target. Sensor may not provide measurements at every
interval. Some of the measurements arise from targets,
and some from clutter; some targets may not yield any
measurements at all in a particular time interval. The
probability of detection is assumed to be constant across
targets for a given sensor and will be denoted PD. False
measurements (clutter) are uniformly distributed throughout
the surveillance region with density λ.

Let Mk be the number of measurements from the sensor
at the k-th time interval. Assuming a pre-correlation gating
process is used to eliminate some of the returns [8], [58],
let mk denote the number of validated measurements from
the sensor at time k. The volume of the gate at time k is
chosen such that with probability PG the target-originated
measurements, if there are any, fall into the gate of the
sensor. The number of gated false measurements is modeled
by a Poisson distribution µF (mk) given by

µF (mk) = e−λVk
(λVk)mk

mk!
. (33)

The target-originated position measurements are determined
by

zt
�(k) = H(k)xt(k) + vt

�(k), (34)

where 1 ≤ t ≤ T and 1 ≤ $ ≤ Mk. The H(k) matrices
are known, each vt

�(k) is a zero-mean Gaussian noise vector
uncorrelated with all other noise vectors, and the covariance
matrices R(k) of the noise vectors vt(k) are known. For a
given target t it is not known which measurement $ (1 ≤
$ ≤ Mk) originates from the target. That is the problem of
data association whereby it is necessary to determine which
measurements originate from which targets [8].

Let Z(k) denote the set of gated measurements at time
k,

Z(k) = (z1(k), . . . , zmk
(k)) . (35)

The superscripts t are not indicated, since it is not known
which measurements originated from which target. Finally,
let Zk denote the sequence of the first k observations,

Zk = (Z(1), . . . ,Z(k)). (36)

We generally assume that the initial states of the targets
are perfectly known, and each target is always well inside
the surveillance region. In practical KF-based data associ-
ation algorithms, gating is usually required to limit com-
putational burden. Assuming that the measurement noise
and model process noise are normally distributed, gating
is done by a Chi-squared test [8] to determine whether a
given measurement lies within the minimum-volume hyper-
ellipsoid which contains a set percentage (PG) of the



7

��
���������
�����������
���������

�����

�����

�����

������ ������

Fig. 3. Tracking multiple targets in the same environment may cause
overlapping of validation regions and create sharing of measurements.
The gating regions for targets n and r are centered around the predicted
measurements ẑn(k) and ẑr(k). In this example, measurement z2(k) is
gated by both targets n and r.

probability distribution of the predicted measurement. More
rigorously, for a given target t, a gated measurement $ must
satisfy d t

� < γ, where

d t
� (k)2 = ν t

� (k) S t(k)−1 ν t
� (k) (37)

where d t
� is known as the normalized distance, ν t

� is the
innovation between target track t and the $-th measurement
during scan k, and S t(k) is the covariance of the innovation
for each measurement. The threshold γ is set such that the
true target track will be gated with probability PG .

In each time interval where measurements are received,
several measurements may be associated with (fall into the
gate of) each target as shown in Figure 3. The associated
measurements give rise to a Gaussian mixture of compo-
nents representing several possible estimates for each target
state. In the JPDA algorithm, each Gaussian mixture is
approximated by a single Gaussian mode with the same
mean and covariance as the original mixture [8], [25].

There are several approaches for constructing optimal and
sub-optimal estimators in cluttered environments and here
we will briefly discuss two categories: Maximum A Pos-
teriori (MAP) Probability and Maximum Likelihood (ML)
filters. The Probabilistic Data Association (PDA) Filter [8]
and Mixture Reduction (MR) filter [65] use a weighted
average based on the total probability theorem. The Nearest
Neighbor (NN) filter [8] is an approximate MAP filter,
whereas the Mean-Field Event-Averaged Maximum Likeli-
hood Estimator (MFEAMLE) [38] is an ML estimator. The
Probabilistic Multi-Hypothesis Tracking filter (PMHT) [72]
is a hybrid of the two. MFEAMLE and PMHT are in-
herently multitarget algorithms, but there are multitarget
extensions of the NN, PDA, and MR algorithms: the Global
Nearest Neighbor filter, Joint Probabilistic Data Association
(JPDA) [8], and Multi-Target Mixture Reduction [59].

The challenge, of course is to correctly associate each
target’s track with the measurements from that target, as
opposed to measurements from clutter or another target.
This is done by evaluating the probability that each mea-
surement came from a given target, which is based on the

statistical distance between the propagated track’s predicted
measurement and each measurement received during each
scan.

The Nearest Neighbor algorithm [8] selects the mea-
surement that is closest (minimizing d t

� (k)2) to the target
track at each scan as the “true” measurement for the
Kalman filter. However, when the clutter density is high, or
targets are closely-spaced, it is easy to associate the wrong
measurement with the target.

To reduce the effects of misassociation, the probabilistic
data association (PDA) algorithm [8], [11] and its extension
for multiple targets, joint probabilistic data association
(JPDA), use a weighted average of gated measurements
rather than selecting a single measurement candidate. Given
the gated (true and false) measurements, the JPDA track-
ing algorithm computes the probabilities of each of the
measurements being the true measurement of target t. A
combined measurement is then calculated as a weighted
average of these gated measurements,

z̃t(k) =
M∑

�=1

β t
� (k) z�(k) , (38)

where the weights, β t
� , are the computed probability that

measurement $ originated from target t. Each combined
measurement is then used to update the the target state esti-
mate using the Kalman filter. The state covariance resulting
from using the combined innovation is

Pt(k|k)=Pt(k|k − 1) −
(1 − βt

0)K
t(k)H(k)Pt(k|k − 1) + P̃t(k)

(39)

P̃t(k)=Kt(k)

[
mk∑
�=1

βt
�(k)ν

t
�(k)ν

t
�(k)

′ − ν̃t(k)ν̃t(k)′
]

(Kt(k))′ (40)

where βt
0 is the probability that none of the measurements

originated from target t.
In the multisensor case, these algorithms have been

extended by typically using recursions in the number of
sensors Ns. As with the filtering algorithms of the previous
section, the two alternative implementations of multisensor
algorithms are sequential and parallel, e.g., multisensor
JPDA (MSJPDA). In practice, sequential algorithms are
not only superior in computational requirements over the
parallel implementation (in case of MSJPDA, [26], [58]),
but in tracking performance as well. It was shown that
computational complexity for the parallel implementation
(which is not practical in reality due to the fact that multiple
sensors are hard to synchronize) grows exponentially with
the number of sensors. A sequential implementation of the
multisensor JPDA algorithm was presented in [26], where
it was shown that it has only linear growth in complexity
with an increasing number of sensors, and that it results
in better performance (in terms of both root-mean squared
position error (RMSE) and track lifetime metrics) for track-
ing in cluttered environments. While parallel and sequential
implementations for pure Kalman filtering (i.e., no clutter
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and hence no data association required) are equivalent in
terms of performance [81], this is not true for tracking in
cluttered environments.

The implicit assumption is that the probability density
of the target track can be represented by a single Gaus-
sian distribution or “mode”. The Mixture Reduction Filter
relaxes this constraint and propagates multiple distribution
modes for each target [65]. Each mode essentially represents
a separate target estimate.

Allowing an infinite number of distribution modes, the
optimal maximum a posteriori estimator is, in the multiple
target case, Multiple Hypothesis Testing (MHT). This ap-
proach results in an exponential increase in the number of
track modes over time [8], as a target track (mode) and an
associated probability are created in each time step for all
possible combinations of the present set of tracks and the set
of new measurements. Associating every new measurement
with every target mode is generally impractical for more
than a few iterations and hence, various suboptimal filters
have been proposed, namely pruning and combining algo-
rithms. Pruning algorithms are characterized by eliminating
new modes with lower probabilities in each time step. In
combining algorithms, two or more modes are combined
into one. In ([5], Ch. 2) an optimization-based approach for
the MHT using multidimensional assignment as opposed to
the conventional, enumerative approach is introduced.

MFEAMLE, a maximum likelihood algorithm, performs
data association using a mean-field approach to sum over
all associations [38]. The mean-field approach simplifies the
summation over all the associations and avoids assignment
of a priori probabilities to the associations through the use
of a continuous variable, η whose integral converges to the
Kronecker delta function. Estimation of the state x̂(k) is
done by maximizing a pseudo-log likelihood function based
on the state and η. However, this function must be solved
using (computationally complex) numerical methods.

PMHT is an empirical Bayesian algorithm [72] that
includes the simplifying assumption that different target-to-
measurement assignments are independent, which is gen-
erally not the case, but allows for a reduction in the
computational growth of algorithm the relative to those that
do not use this assumption (e.g., JPDA). Association of
measurements with tracks is modeled as random variables
estimated jointly with the target states, and the ML estimate
is found iteratively using the method of Expectation Maxi-
mization (EM). In practice this is done as a batch process
(taking multiple scans of data at once) and replacing the
measurement and measurement covariance in the Kalman
filter equation with a “synthetic” measurement z̃t(k) and a
corresponding measurement covariance R̃t(k). For a set of
measurements collected between time k1 and k2,

z̃t(k) =
∑mk

m=1 w
t
m,n(k)zm(k)∑mk

m=1 w
t
m,n(k)

, k = k1, . . . , k2 (41)

R̃t(k) =
R(k)∑mk

m=1 w
t
m,n(k)

(42)

where wt
m,n(k) is the probability that measurement m

comes from target t at time k, and n is the iteration number.
Having calculated the synthetic measurement data, apply a
Kalman smoothing algorithm (a smoothing algorithm filters
the incoming data moving both forward in backward in time
to create a more accurate, “smoothed” state estimate [7]).
Repeat the calculation of the synthetic measurements using
the new, smoothed state estimates and repeat until some
stopping criterion is reached.

In multisensor centralized tracking systems, measure-
ments are typically collected in “scans” or “frames” and
then transmitted to a processing center. Communication
network delays and varying pre-processing times at the sen-
sor platforms can result in out-of-sequence measurements
(OOSMs) [10], [48], [49]. The algorithms that account for
OOSMs can be classified in two types, OOSM filtering
algorithms and OOSM tracking algorithms. OOSM filtering
addresses the update of the state and covariance using
the OOSMs. Research in multisensor multitarget OOSM
tracking involves data association, filtering, and hypothesis
management. The resulting problem (namely, how to update
the current state estimate with an “older” measurement) is
a nonstandard estimation problem. It was first solved for
the case where the out-of-sequence measurement lag is less
than a sampling interval (the single-lag case). Subsequently,
the suboptimal algorithm was extended to the case of an
arbitrary (multistep) lag [10]. A single-model multiple-
lag OOSM algorithm for data association, likelihood com-
putation, and hypothesis management for a multisensor
multitarget multi-hypothesis tracking (MHT) system that
handles missed detections and clutter is presented in [49].
More recently, particle filters have also been applied to
OOSM problems [50].

IV. SENSOR REGISTRATION

An added complication to the fusion of multiple sensor
outputs is the effect of relative errors on the target tracks.
Most sensors measure target location relative to their own
position (for example a radar might infer the distance from
the radar antenna to the target from the time-of-flight of
an electromagnetic pulse). In many applications, only the
relative distance from the platform to the target is important.
In those cases, the target position can be represented on
a coordinate system centered on the sensor. However, if
the location of the target relative to some other location is
important, then a more general, global coordinate system is
required (as when an airborne radar sentry relays a target’s
location to a ground-based or sea-based tracking system). In
this case, the location of the sensor in the global coordinate
system becomes as important as that of the target. Any error
in the estimate of the sensor’s position will become an error
in the estimate of the target’s position. If multiple targets are
tracked by that sensor, they will all have a correlated error
that is a function of the sensor position error. When fusing
the outputs of multiple sensors, it will generally be the case
that these sensors are not all located in one position. Thus
a global coordinate system is required, as well as accurate
locations of each sensor. The process of eliminating such
errors is known as sensor registration.
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In its most general sense, sensor registration is another
state estimation problem, only in this case the state being
estimated is that of the sensor platform, regardless of
whether it is stationary or mobile. The most straightforward
approach is to measure the location of a target whose
position is very well known, and use that measurement to
correct the estimate of the sensor’s location. Of course for
mobile platforms this will involve repeated measurements of
the reference target as well as some sort of predictive filter
such as the Kalman filter to maintain an accurate estimate.

One way to accomplish registration for both stationary
and moving platforms is by augmenting the target’s state
with that of the sensor platform’s (e.g., [53], [64]). Thus the
same tracking filter that is being used to locate the target
will do the same for the sensor platform.

The addition of multiple targets tracked by each sensor
increases the complexity of the sensor registration task.
Now the different target tracks must be correlated with one
another to determine which tracks correspond to the same
objects. However, if the tracks can be correctly associated,
the relative bias of the different sensors can be identified and
eliminated — relative registration. Several methods of track
correlation and bias estimation exist, including [46], [47],
[71]. The issues of sensor bias observability and absolute
registration with only targets of opportunity are discussed
in [46], [47].

V. DISTRIBUTED VS. CENTRALIZED TRACKING

While the fusion of measurements from multiple sensors
can dramatically improve tracking accuracy, there is a cost
in computational demand as well as communication band-
width requirements. Each measurement must be transmitted
to a central processor to be processed, representing a signif-
icant burden in high clutter or target-rich environments. An
alternative architecture is shown in Figure 4, where a single
processor has been replaced by a group of processors, each
of which monitors a subset of the total number of sensors
and reports the results to a single, global processor. By
distributing the tracking tasks among a group of processors,
the computational demand on any one processor can be
reduced. Furthermore, if those processors can send only
the target tracks, rather than each measurement, then the
communication requirements would also be dramatically
reduced (even more so if track information can be commu-
nicated at a reduced rate). Additionally, such an architecture
will result in a more robust tracking system as the failure
of a single processor no longer represents a catastrophic
failure.

The drawback to this approach is that because each pro-
cessed track includes the effects of process noise originating
with the target itself, the errors among the tracks are now
correlated [4]. There are several approaches to distributed
track fusion, including both maximum-likelihood (e.g., [6])
and minimum mean square error (MMSE) solutions. Here,
we will overview two approaches to MMSE track fusion.

The first approach, direct track-to-track fusion, includes
the correlation effects directly in the fusion process. Apply-
ing this approach to the linear case, with two sensor-level
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Fig. 4. A distributed architecture divides the tracking task among multiple
processors to reduce communication burden and the computational demand
on individual processors.

tracks i and j being fused at the global level, the state
estimate becomes [19]

x̂(k|k) = P(k|k) (
P−1

i (k|k)x̂i(k|k)
+P−1

j (k|k)x̂j(k|k)
−P−1

i (k|k − 1)x̂i(k|k − 1)
−P−1

j (k|k − 1)x̂j(k|k − 1)

+P−1(k|k − 1)x̂(k|k − 1)
)

(43)

P(k|k) =
(
P−1

i (k|k) + P−1
j (k|k) − P−1

i (k|k − 1)

−P−1
j (k|k − 1) + P−1(k|k − 1)

)−1

(44)

where x̂i(k|k), x̂j(k|k), and x̂(k|k) are the updated state
estimates of the tracks from processor/sensor i, j, and the
global processor, respectively, while x̂i(k|k−1), x̂j(k|k−1)
and x̂(k|k − 1), are the a priori predictions of the state
from the previous scan, and Pi(k|·), Pj(k|·), and P(k|·)
are the respective covariances. This approach is only exact
when the updates from the processors are synchronized and
take place at every scan. If the updates from the sensor-
level processors are not passed to the global processor every
scan, then the propagation of the common process noise
again causes correlation between the estimation errors. This
track-to-track fusion approach has not yet been extended to
account for clutter and data association as well as more
general classes of architectures.

An alternative approach1 is known as decorrelation,
where the correlation between sensor-level tracks is re-
moved, allowing the global processor to treat the incoming
target tracks as uncorrelated measurements. Although orig-
inally derived for pure filtering in [23], [27], it has recently

1This is really an algebraic rearrangement of (43)–(44); see Eq. (8.6.1-9)
in [8].
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been extended to address tracking targets in clutter [40]. In
this approach, decorrelation is achieved by subtracting the
a priori component of each state estimate

y(k) = x̂(k|k) − C(k)x̂(k|k − 1) (45)

C(k) = P(k|k)P−1(k|k − 1) (46)

Y(k) = P(k|k) − P(k|k)P−1(k|k − 1)P(k|k)
(47)

where x̂(k|k − 1) is the a priori target state estimate,
P(k|k− 1) is the a priori covariance of that state estimate,
y(k) is the decorrelated state estimate, and Y(k) is the
covariance of that estimate. As a “pseudomeasurement”,
y(k), along with its covariance, are sent from each local
processor for each track to a global processor. The mea-
surement matrix for the decorrelated estimate becomes

B(k) = I − C(k) (48)

= I − P(k|k)P−1(k|k − 1) (49)

where I is the identity matrix. Because the y(k) se-
quences are decorrelated, the global processor can use well-
established ‘centralized’ fusion algorithms for processing
the y(k) to form global estimates of the target states.
This technique has been further extended for multisensor
multitarget tracking of targets in clutter [40], [41], including
feeding back information from global to local processors
[42].

VI. SENSOR MANAGEMENT

Sensor managers are a general class of systems that
generate sensing actions, then prioritize and schedule those
actions [52]. Sensing actions can include the tasking of
sensors to illuminate a target, the selection of sensor modes,
or scanning an area for unknown targets. These actions will
be selected to achieve various goals such as maintaining a
target track, optimizing the chance of detecting new targets,
identifying detected targets, and minimizing electromag-
netic emissions to reduce the chance of detection by the
enemy. Since sensing resources are generally limited, sensor
managers must solve an optimization problem that balances
those resources with tracking goals. A discussion of the
various sensor manager approaches becomes essentially a
discussion on how to formulate the optimization problem.
Although much work has been done on the management
of individual sensors, especially radar (where the sampling
or revisit rate [44], [13], [21], [43], [79], [80], or emitted
waveforms [39] can be modified to control the level of
uncertainty in the target track), since this tutorial focuses
on multisensor fusion, only the selection of sensors from a
larger group of sensors will be discussed.

Figure 5 shows how a sensor manager is incorporated into
a target tracking system. The target state estimate covariance
is used to select the appropriate set of sensors to use on a
given target. Those sensors then produce measurements that
will be used to update the state estimate of that target. The
sensors are selected based on their ability to optimize some
function of either the resulting target estimate covariances
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Fig. 5. Block diagram of a multisensor tracking system with a sensor
manager. The a priori covariance from the target tracker is passed to the
sensor manager which then selects a subset Φi of the sensor suite to
use during the following scans. Sensors can be chosen to maximize the
information gain from each sensor [66], achieve a desired track covariance
[36], or to optimize some other tracking metric.

across all targets or the amount of information from the
sensors. This approach can generally be defined by

Φi = arg mini f (P(k|k − 1),Pi(·|k)) (50)

where Φi is sensor combination i, P(k|k − 1) is the a
priori covariance of the target track, and Pi(·|k) is the a
posteriori covariance (possibly propagated forward in time)
after the application of sensor combination i. The possible
cost functions include one consisting of the trace of each
target’s state estimate covariance weighted by target priority
(which presumably increases with importance) [54],

f (P(k|k − 1),Pi(k + 1|k)) = priority

×Tr(Pi(k + 1|k))
(51)

as well as one that uses a spectral decomposition of the
covariance matrix to select a sensor that will reduce the
largest eigenvalue of that matrix [57].

The 1990’s brought the application of information theory
to the sensor management field, which has dominated it
ever since. Here, instead of minimizing a cost function as in
(51), the goal is to maximize the information gained by each
sensor. Information gain is defined by taking the natural log
of the quotient formed by dividing the determinant of the
a priori covariance by the determinant of the a posteriori
covariance for each sensor combination [66]:

I (P(k|k − 1),Pi(k|k)) =
1
2

ln
|P(k|k − 1)|
|Pi(k|k)|

(52)

This amounts to a measure of the uncertainty volume reduc-
tion. Other, similar definitions of information gain have also
been proposed [31], [68]. The use of the information metric
has been extended to include multitarget tracking scenarios
requiring data association [67].
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The information metric is particularly useful in that it
can be applied to a range of sensing activities, allowing
the sensor manager to compare the utility of a variety
of activities under one metric. For example, information
resulting from a target search can be calculated based on
the difference in the probability of a given cell containing
a target depending on whether the sensor will or will not
detect a target there. When combined with the information
metric of [66], the tasks of target search and tracking can
be combined into a single sensor manager [51].

A relatively new approach to sensor management is
known as Covariance Control. This approach defines a
desired target estimate covariance, Pd, for each track and
attempts to achieve that covariance. The desired covariance
can be a function of the target’s priority or of an external
goal such as achieving enough estimate accuracy before
applying weapons to that target. A variety of approaches
based on these metrics exist [36]. One metric, known
as the Eigenvalue/Minimum Sensors Algorithm, attempts
to achieve the desired covariance goal while minimizing
the number of sensors used. The fact that achieving Pd

will result in the difference Pd − Pi having all positive
eigenvalues, gives this algorithm its name. More rigorously,
the algorithm selects a sensor combination iev with the
fewest sensors that achieves the covariance goal:

Φev = {Φi : Pd − Pi > 0} (53)

iev = arg min
i

|Φi|, Φi ∈ Φev (54)

where |Φi| = Nsi
is the number of sensors in combination

i. This approach has been extended to include the influence
of the PDAF algorithm on the covariance [34]. Addition-
ally, algorithms for selecting a desired covariance and the
appropriate sensors have been derived to reduce the effect
of closely-spaced targets on probabilistic data association
methods [35].

VII. COMPUTATIONAL COMPLEXITY AND REAL-TIME

IMPLEMENTATION ISSUES

The view of the computational complexity for different
tracking algorithms is affected by their intended application.
An understanding of the tradeoffs between the performance
and computational complexity of the applied algorithms
may provide guidance for users to select the best algorithms
for their purposes.

One such study presents the computational requirements
and the performance of a parallel implementation of the
multisensor JPDA algorithm [26], [58]. A sequential imple-
mentation of the multisensor JPDA algorithm was presented
in [26], and it was shown that it has linear growth in
complexity with an increasing number of sensors, and that
it results in better performance (in terms of both root-mean
squared position error (RMSE) and track lifetime metrics)
for tracking in cluttered environments.

In [60], five data association algorithms were compared
in simulation using a common linear single-target motion
test bed. The comparison included the NN, PMHT, PDA,
MR, and MFEAMLE algorithms described in Section III).
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Fig. 6. Average track lifetime as a function of normalized clutter density

The performance measures were: track lifetime (Figure 6),
root-mean squared position error (RMSE) (Figure 7), and
computational complexity (Figure 8), while the variable
parameters were normalized target acceleration and normal-
ized clutter density. Figures 6, 7, and 8 present results for
tracking a single target until it is lost.

The definition of track loss used is that proposed in [65]:
a track is determined to be lost when either the estimate is
sufficiently far from the true track (the “norm test”) or the
true measurement falls outside of the gate (the “acceptance
test”) for five consecutive time steps. Track lifetime is the
difference between the time step of track loss and the time
step of track initiation (assumed to be at time zero, since
track initiation was not considered in [60]). Track lifetimes
for a given normalized clutter density were averaged across
all trials.

The reported results show some expected trends, e.g., the
nearest neighbor algorithm has acceptable performance for
low and medium clutter, has low computational burden, but
tracks poorly in high clutter; MR with 10 modes performs
well in terms of track lifetime, but at the cost of higher
computational complexity compared to other algorithms,
whereas the PDA algorithm yields a “middle of the road”
solution; PMHT shows superior performance in the RMSE
metric at the cost of additional computational burden across
the clutter range; and the MFEAMLE algorithm shows high
computational demand due to inherent numerical issues.

The rise in computational complexity with the number
of sensors is an issue for sensor managers as well. A
global search over all possible sensor combinations grows
exponentially with the number of sensors, often outstripping
the computational cost of simply using all of the sensors
(other limitations, such a maximum number of sensor
dwells, may make sensor management necessary even if the
computational demand is large). There are however, several
search methods that can reduce this growth. The most
straightforward is the “Greedy” algorithm, which selects
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Fig. 7. Average RMS position estimate error as a function of normalized
clutter density
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Fig. 8. Computational burden as a function of normalized clutter density

sensors that maximize the change in the cost function,
driving the farthest towards its maximum or minimum,
depending on the formulation, which reduces the compu-
tational demand to a polynomial growth with the number
of sensors [36], [82]. Other search techniques add a random
component to the search to further improve the performance
of the sensor selection algorithm [37].

Comparison of different tracking algorithms or parameter
sets within one algorithm relies on time-consuming and
computationally demanding Monte Carlo simulations. In
[76] a method is presented to minimize simulation time,
yet to achieve a desirable confidence of recognizing better
designs. It is achieved by applying ordinal optimization
ideas (i.e., determining rank order instead of quantifying
the performance of the best design) and computing budget
allocation techniques [73] (i.e., allocating computational

resources so that better designs get more simulation time).
The developed method is applied to a general tracking
problem of Ns sensors tracking T targets using a sequential
multi-sensor data fusion tracking algorithm (MSJPDA). The
optimization consists of finding the order of processing
sensor information that results in the smallest variance of
the position error. Results obtained with high confidence
levels and in reduced simulation times show that processing
the best available sensor the last in sequential MSJPDA
has the smallest RMS error, e.g., the order of processing
sensor information affects tracking precision in the pres-
ence of clutter (i.e., when data association algorithm is
necessary). The presented method can be applied to any
ranking and selection problem where variance (or standard
deviation) is the performance metric. Further improvement
in comparison of tracking algorithm was achieved when the
distribution of position error was modeled with Gaussian
mixture pdf [74], [75]. Incorporating the improved statistical
modeling of the position error variance in computing budget
allocation algorithm [74], simulation time is reduced by
an order of magnitude compared to long Monte Carlo
experiment.

One application of the developed variance ranking al-
gorithm is comparing sensor-order designs in sequential
MSJPDA as a function of clutter density λ and RMSE as
performance metric. A design is an ordered set of sensor
noise covariance parameters, θj = {r1, r2, . . . , rNs

}, with
senor noise covariance Rs = rs I in (8). A better sensor is
characterized with smaller sensor noise parameter r. In [75],
the sequential MSJPDA algorithm with Ns = 3 sensors
tracking T = 4 targets are considered. The compared de-
signs are defined as ordered sets of sensor noise parameters
(two identical sensors with r = 0.1 and one better sensor
with r = 0.01). The objective is to find the best design in
terms of the RMSE for various clutter densities λ. The three
designs are

θ1 = {0.1, 0.1, 0.01}, θ2 = {0.1, 0.01, 0.1},
θ3 = {0.01, 0.1, 0.1}. (55)

The variance ranking tools [73], [75] were used in the
optimization algorithm to yield the results in Fig. 9 and
Table I. For low clutter densities λ, the order of sensor
processing does not affect the tracking performance. Since
the RMSE’s do not differ significantly, the best ranking
design θb is selected with a small confidence level when
the maximum number of simulation runs Nmax = 100
is exhausted. For higher clutter λ, the order of sensor
processing affects the tracking more significantly. The best
ranking design is consistently the one where the best sensor
is processed last.

VIII. APPLICATIONS

Multisensor fusion was developed to combine sensor in-
formation and to improve target state estimates (over using
a single sensor) in a surveillance region, or in other words,
to resolve uncertainty in diverse data sets retrieved from
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Fig. 9. Root-mean squared position error (RMSE) of the sequential
MSJPDA algorithm as a function of clutter density λ for three designs.

λ 0.01 0.1 0.5 1.0 1.4 2.0

θb θ2 θ1 θ1 θ1 θ1 θ1

Nruns 100 100 93 85 21 15
conf. level 0.43 0.86 0.98 0.98 0.98 0.99

TABLE I

THE SELECTED BEST RANKING DESIGN θb , THE TOTAL NUMBER OF

SIMULATION RUNS Nruns , AND THE CONFIDENCE LEVEL AS

FUNCTIONS OF CLUTTER DENSITY λ. THE MAXIMUM ALLOWED

NUMBER OF RUNS IS Nmax = 100.

different sensors. Early applications were mostly military,
such as automatic target recognition, battlefield assessment,
and smart weapons. However, techniques originally de-
veloped in multisensor fusion have now found their way
in applications and projects of interdisciplinary nature for
civilian use (space technology [12], [18] and earth sciences
[61]) where some form of uncertainty is built in the acquired
data sets.

Sensor fusion algorithms have also been validated with
biomedical data [17]. Though the methods for sensor fu-
sion in biomedical applications originate in information
processing, artificial intelligence, and classification algo-
rithms, the applied estimation methods combine statistical
and control theory algorithms (e.g., weighted least squares,
maximum a posteriori probability, minimum a posteriori
variance estimation, etc.). Estimates are recursively updated
via Kalman or adaptive Kalman filters. Clinical testing
of software for detecting respiratory phases has shown
that the complex techniques of sensor fusion have become
accepted by physicians to aide diagnostics only after the
introduction of user-friendly interfaces. Another step for-
ward has been the implementation of soft computing on a
symbol level through which the user can integrate his or her
own experience and terminology. More complex medical
applications of multisensor fusion include improvement of
image processing and pattern recognition, and hence fall in
the information fusion category, which is beyond the scope

of this paper.

A. Tracking of Ground Targets

The tracking of aerial or sea-based targets usually rely on
the assumptions that the motion of each target is constrained
only by the motion models, which may include types of
motion as well as limits to acceleration and velocity; that
the target will generally not be obscured (may not hold in
optical tracking); and that target clutter will be uniformly
distributed. These assumptions are far less likely to hold
when tracking ground targets (see e.g., [24] and [70],
p. 423). In these applications, the motion of the target may
be constrained by terrain, targets may often be obscured
by foliage or other terrain, and clutter distribution is more
likely to deviate from uniform. These difficulties may hold
for air- and sea-based tracking as well when targets are
flying close to the earth or are in littoral areas. One approach
for tracking ground targets on-road and off-road has been
presented in [45].

There are several ways of dealing with the increased
tracking difficulties described above. One is to use moving
target indicators or doppler radar to distinguish moving
targets from stationary objects ([70], p. 104). While this
will reduce the amount of clutter, it does not alleviate ob-
scuration (in this case, a stopped vehicle can be considered
obscured) or constraints on motion. Obscuration by foliage
can be reduced through the use of lower frequency radars
that can see through the tree canopy. The inclusion of
terrain information can be used in conjunction with sensor
measurements to improve the target state estimates [1], [24],
[30]. Roadway intersections lead naturally to the use of
MHT or IMM trackers, as well.

Investigation efforts in the development of high-accuracy
multisensor vehicle state estimation schemes using the UKF
is presented in [77]. The model is able to cope with vehicle
slip using multisensor data from internal sensors, odometry,
and Differential Global Positioning System (D-GPS).

IX. SUMMARY AND AREAS OF FUTURE WORK

Multisensor data fusion seeks to combine information
from multiple sensors and sources to improve inferences
about a surveillance region that are not achievable from a
single sensor or source. Applications include military appli-
cations such as automatic target recognition, automated situ-
ation assessment, and for smart weapons, as well as civilian
applications such as automated plant management, mobile
robot navigation, and environmental modeling. Thus, an ex-
tensive legacy exists including: process models, algorithms,
evolving tool kits, and systems engineering methodology
(system design and algorithm selection).

There are still a number of growing challenges for data
fusion, at lower levels of inferences: understanding sensor
processing and sensor limitations, multitarget tracking and
identification, and at higher levels of inferences: automated
reasoning for situation assessment, development of alter-
native hypotheses for threat assessment, monitoring, and
control of fusion processes.
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One potential area of future improvement in sensor
fusion algorithms is incorporating the continuously emerg-
ing advanced filtering techniques developed to handle the
nonlinear nature of tracking while reducing computational
burden. Another area is resolving issues in data fusion
over distributed sensor networks with data communication
delays [55].
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