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Abstract
The strong consistency of parameter estimation has
always been one of the main problems in system iden-
tification theory especially for the nonlinear systems.
Although there are several approaches and algorithms
set up for the nonlinear stochastical system, the strong
consistency of the parameter estimation has not been
discussed and proved for most of them. In this paper,
for a class of discrete-time nonlinear stochastic sys-
tems, an Extended Recursive Least Squares (ERLS)
algorithm is developed.
It has been proved that the proposed ERLS algorithm
has strong consistency without the strict restrictions
on the system. i.e. (1) The persistent excitation con-
dition has been replaced by a less restrictive condi-
tion. (2) The system noises don’t have to be white
noise. (3) The variance functions of the system noises
don’t have to be bounded. The convergence rate of the
parameter estimation can also be worked out. The re-
sults presented in this paper can be applied in more
general classes of nonlinear systems such as some of
the variable parameter and state dependent parameter
nonlinear stochastic systems as well.

1 Introduction

System identification using linear model struc-
tures has been extensively developed and the theories
such as model order selection, consistency and opti-
mal input selection are mature and have been well
discussed in several landmark literatures (Young 1968,
Solo 1979, 1980, Chen 1981a, b, Chen 1982, Ljung and
Söderström 1983, Chen and Guo 1985, Söderström
and Stoica, 1989, Ljung 1999).
However, most of the real system are nonlinear sys-
tems. In recent years, there has been much study of
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the identification problem of nonlinear systems. Al-
though several significant efforts have been put during
the past decades to develop techniques and theories for
nonlinear system identification theory, the strong con-
sistency issues haven’t been discussed and resolved as
they have been done in linear systems.
Chen et al (1996) has studied the problem for a class
of discrete-time bilinear time-invariant stochatic sys-
tem with coloured noise, the strong consistency of the
parameter estimates of extended least squares identi-
fication and its convergence rate has been studied for
various conditions.
The field of non-linear system identification has had
a rapid development in the last decade. Hu et al
(2001) proposed a class of quasi-ARMAX models
for nonlinear systems, which have been successfully
applied to prediction, fault detection and adaptive
control of nonlinear systems. Van Pelt and Bern-
stein (2001), considered the identification of Ham-
merstein/nonlinear feedback models by approximat-
ing internal nonlinearities using piecewise linear static
maps. They claimed the identification method simul-
taneously identifies the linear dynamic and static non-
linear blocks without requiring prior assumptions on
the form of the static nonlinearity. Coca and Billings
(2001) developed a new methodology for identifying
nonlinear NARMAX models, from noise corrupted
data, is introduced based semi-orthogonal wavelet
multiresolution approximations. Young et al (2001)
outlined how improved estimates of time variable pa-
rameters in modles of stochastic dynamic systems can
be obtained using recursive filtering and fixed inter-
val smoothing (FIS) techniques, with the associated
hyper-parameters optimized by maximum likeihood
based on prediction error decomposition. Westwick
and Kearney (2001) proposed the use of separable
least squares algorithm for the identification of Ham-
merstein cascades and analyzing stretch reflex elec-
tromyogram data from two experimental subjects. Le



Caillec and Garello (2001) studied the identification
of a special class of nonlinear systems, Quadratic Au-
toRegressive Moving Average systems, QARMA.
The strong consistency of the parameter estimate
means the estimated parameters in the algorithm con-
verge to the real parameters of the system with prob-
ability one (or almost sure). The strong consistency
in the parameter estimate is very important in the
mathematical modeling since we need to know if the
estimated model is appropriate to the real system. We
need to see if the proposed algorithm is convergent.
Even if it does converge, does it converge to the real
parameters of the model. What we have done in this
paper is to develop an algorithm, which can guarantee
the system parameters converges to the real parame-
ter and the convergence rate can be calculated as well
under the assumptions of the system.
This paper is organised as follows: In section 2, a class
of nonlinear stochastic system is introduced. Some no-
tations, assumptions and detailed ERLS algorithm are
given in the section 3. The main system and conver-
gence analysis for the nonlinear ERLS are presented in
the section 4. Some simulation results are presented in
the section 5. Some conclusion and further comments
are made in the section 6.

2 A class of nonlinear stochastic
Systems

A(z)yt = B(z)ft + C(z)wt, t = 1, 2, 3, ..., (1)

where z is the unit shift backshift operator, A(z), B(z)
and C(z) are the polynomials:

A(z) = In −A1z − . . .−Anyzny ;
B(z) = B1z + . . .+Bnf z

nf ;
C(z) = In + C1z + . . .+ Cnwz

nw ;

yt, ut and wt are the n-dimensional output vectors, m-
dimentional input vectors and n-dimensional noise ve-
tors of the system respectively and yt ≡ wt ≡ 0;ut ≡
0 ∀t ≤ 0; ft is a mf -dimensional known bounded
function of the system input, output with noises, i.e.
ft = f(ut, ..., ut−q, yt, ..., yt−p).
where p and q are integers; In is an n × n unit ma-
trix, Ai , Bj and Ck are n × n, n × mf and n × n
matrices respectively, i = 1, ..., ny, j = 1, . . . , nf and
k = 1, . . . , nw;
The model (1) we introduced in this paper is a quite
general nonlinear system model. The model structure
we presented in the form of (1) theoretically can as
an approximated model for most of the nonlinear re-
lationship systems. In practical, first we can estimate

an unknown system by using of all previous mentioned
algorithms or bigger dimension parameter structure
form of (1) as a primary model, then can use the pri-
mary models’ identification information to do more
precise model structure estimation and validation for
the model (1). So it is very important we introduce
the model (1) as our key model to discuss algorithms.
We introduce the following notations:

θ = [A1, A2, . . . , Any , B1, . . . , Bnf ,

C1, C2, . . . , Cnw ]T ;
ϕot = [yTt , y

T
t−1, . . . , y

T
t−ny , f

T
t , . . . , , f

T
t−nf ,

wTt−1, . . . , w
T
t−nw ]T (2)

and the system (1) can also be written as the following
form:

yt = θTϕot + wt (3)

3 Notations, Assumptions and
ERLS Algorithm

The extended least squares method is applied to
estimate the unknown parameter θ of (2), and let θt
represent the estimate of θ at time t. The recursive
algorithms is the same as that presented by Chen at
al (1986).

Kt = Rt−1ϕt/(1 + ϕTt Rt−1ϕt) (4)
Rt = Rt−1 −Ktϕ

T
t Rt−1 (5)

θt = θt−1 +Kt(yTt − ϕTt θt−1) (6)
et = yt − ϕTt θt (7)

where ϕt is constructed by using et−i instead of wt−i in
ϕot , i = 1, 2, . . . , nw and et = 0 when t ≤ 0. θ is a n×n
matrix and ϕt is h-dimensional vector, where h = ny×
n+nf ×mf +nw×n. We select R0 = hIh, θ0 = 0h×n.
Actually, R0 can be any hth order positive definite
matrix and θ0 can be any h-dimensional vector.
Several notations and definitions are given in the fol-
lowing, which will be used in the system and algorithm
convergence analysis later in the paper.

• The norm of the vector x is defined as ‖x‖ =
(xTx)1/2 and the norm of the matrix X is defined
as maximum eigenvalue of the matrix XTX.

• The series of the trace of the matrices Rt is given
as follows;

r0 = Tr(R−1
0 ), rt = rt−1 +

t∑
i=1

‖ϕi‖2 (8)

where Tr(X) denotes the trace of the matrix X.



• The set Ft is the σ−algebra set generated by
{ws, s ≤ t}, i .e. Ft = σ{ws, s ≤ t}.

• The estimate error matrix of the parameter θ̃t =
θ − θt.

• bt = et − wt.

• The λmaxt and λmint are denoted as the maximum
and minimum eigenvalues of the matrix R−1

t re-
spectively.

• We denote det(X) as the determinant of the ma-
trix X.

• We define two functions as follows:

log k(x) = log log . . . log(x)︸ ︷︷ ︸
k times

(9)

Lδk(x) = log(x) log 2(x) . . .
log(k − 1)(x)[log k(x)]δ

where x is a sufficient large positive number and
δ > 1.

In order to prove the strong consistency of the algo-
rithms, several assumptions are needed for the system
as follows:

• A1: The system (1) is a BIBO system.

• A2: The noise wt is assumed to be a martingale
difference sequence and for all t = 2, 3, . . ., the
following properties hold:

E(wt/Ft−1) = 0, a.s. ∀t ≥ 1, F0 = {∅,Ω}
E(w2

t /Ft−1) ≤ ξ0r
ε
t−1, a.s ∀t ≥ 1,
0 < ξ0 <∞, 0 ≤ ε < 1 (10)

wher E is an expectation operator.

• A3: The input ut is Ft-measurable and
E(‖ut‖2) ≤ ∞, t = 0, 1, 2, . . .. If ut is a de-
terministic signal, then ut is bounded.

• A4: f is a bounded function

• A5: rt →∞ as t→∞

• A6: Positive real condition:

C−1(z) − 1
2I is strictly positive real and all the

zeros of C(z) are outside the unit circle.

• A7: Improved persistent excitation condition:

There exists a natural number k and constant c >
δ > 1 such that

lim
t→∞

rεtL
c
k(rt)/λmint = 0 a.s. (11)

Remark 1. It should also assume that the system is
stable when its parameters take values at the current
parameter estimate.

4 Convergence Analysis

In this section, we discuss the issue of the strong
consistency and convergence rate of the Extended Re-
cursive Least Squares (ERLS) Identification for the
system (1).
Lemma 1: Under the assumptions of A1-A7, the
ERLS algorithm (4-7) of the system (2) has the fol-
lowing properties, for t=1,2,3,...

rt = Tr(R−1), rt <∞ (12)
E(‖yt‖2) <∞, E(‖θt‖2) <∞, E(‖et‖2) <∞, a.s. (13)

E(‖θ̃t‖2) <∞, E(‖bt‖2) <∞, a.s. (14)
θ̃t = θ̃t−1 −Rt−1ϕt(bt + wt) (15)

ϕTt Rtϕt = (detR−1
t − detR−1

t−1)/detR−1
t (16)

C(z)bt = θ̃Tt ϕt (17)

Proof:
It could be proved in a vary similar way in (Chen et
al, 1996).
Lemma 2: Under the assumptions of A1-A7, for any
natural number k and some positive number δ > 1,
there exists an integer N(k) such that

∞∑
t=N(k)

ϕTt Rtϕt/L
δ
k(rt) <∞ a.s. (18)

Proof:
It could be proved in a vary similar way in (Chen et
al, 1996).
Lemma 3: Under the assumptions of A1-A7, for any
natural number k, some positive number δ > 1 and
integers k1, k2 and N(k), and let:

Vt = Tr(θ̃tR−1
t θ̃t)/rεtL

δ
k(rt), ∀t ≥ N(k) (19)

where ε is given by (12). Then

lim
t→∞

Vt = V <∞ (20)

The outline of the Proof:
1. First we prove that:

E(Vt/Ft−1) ≤ Vt−1 + 2ξ0ϕTt Rtϕt/L
δ
k(rt)

+E(ϕTt θ̃t(ϕ
T
t θ̃t − 2bt)/Ft−1)/rεtL

δ
k(rt), ∀t ≥ N(k) (21)

2. Second we prove that :

E(ξt+1/Ft) ≤ ξt + ηt − ζt (22)



where

St =
t∑

i=N(k)

ϕTi θ̃i

(
C−1(z)− 1 + k1

2

)
ϕTi θ̃i

+k2 ≥ 0, ∀t ≥ N(k) (23)

and

ξt = Vt + 2St/rεtL
δ
k(rt+1) (24)

ηt = 2ξ0ϕTt+1Rt+1ϕt+1/L
δ
k(rt+1) (25)

ζt = k1E
(
‖(ϕTt+1θ̃t+1)‖2/Ft

)
/rεt+1L

δ
k(rt+1)(26)

3. Thirdly we prove that

lim
t→∞

Vt = V <∞ (27)

Theorem 1: Under the assumptions of A1-A7, the
ERLS algorithm (4-7) of the system (2) has results as
followings:

1. lim
t→∞

θt = θ a.s. (28)

2. ‖θ̃t‖ = O(rεtL
c
k(rt)/λmint )1/2 a.s. (29)

3. lim
t→∞

1
rεtL

δ
k(rt)

t∑
i=1

‖bi‖2 = 0 a.s. (30)

Proof:
Since θ̃Tt R

−1
t θ̃t ≥ λmint ‖θ̃t‖2, and from (19), we have:

‖θ̃t‖2 ≤ VtrεtLδk(rt)/λmint , a.s. (31)

From A7 and (27), both of the equations (28) and (29)
can be deduced. The equation (30) can be obtained
directly from (21).

5 Simulations

In this section several examples are given to show the
performance and application of the algorithm devel-
oped in this paper. We considered a nonlinear system
with correlated noise εt = et − 0.4et−1 as follows:

yt = 0.8yt−1 cos(
1
2
ut−1)− 0.8ut−1 cos(

1
2
yt−1)

+et − 0.4et−1 (32)

We use different model strutures with unknown pa-
rameters to estimate the model respectively and the
simulation details are given as follows:
In the following examples, the system input ut =
U [−0.5, 0.5], which is a uniform distribution between
−0.5 to 0.5 and et = N(0, σ2) is a normal distribution
with the zero mean and σ2 variance.

The estimations are based on 1000 samples of ut and
yt under several different noise conditions. Here the
percentage noise is defined in terms of the standard
deviation of the noise et in relation to the standard
deviation of the noise-free output.

Example 1 The model to be identified is in
the third order approximation form of any nonlinear
system of yt = f(ut−1, yt−1) + et + c1et−1 as follows:

yt = a1yt−1 + b1,1ut−1 + b2,1ut−1yt−1 + b3,1u
2
t−1

+b4,1y2
t−1 + b5,1u

2
t−1yt−1 + b6,1ut−1y

2
t−1

+b7,1u3
t−1yt + b8,1y

3
t−1 + et + c1et−1 (33)

For the model (32) and Taylor expansion, we can know
the true value of the parameters of the third order
approximation form of (33). i.e. a1 = 0.8, b1,1 =
−0.8, b5,1 = −0.1, b6,1 = 0.1, c1 = −0.4 and b2,1 =
b3,1 = b4,1 = b7,1 = b8,1 = 0.
The details of the simulation result are given in the
following Table 1.

Table 1. Parameter estimation for Model
given by Example 1

Noise Parameter Estimation
σ â1 b̂1,1 b̂2,1 b̂3,1 b̂4,1

10% 0.80 -0.81 0.00 0.00 -0.00
(0.03) (0.03) (0.01) (0.01) (0.00)

50% 0.81 -0.80 -0.01 -0.02 0.02
(0.04) (0.03) (0.04) (0.03) (0.03)

100% 0.82 -0.81 -0.00 0.03 0.01
(0.04) (0.05) (0.05) (0.13) (0.04)

b̂5,1 b̂6,1 b̂7,1 b̂8,1 ĉ1
10% -0.10 0.10 0.01 0.01 -0.41

(0.01) (0.01) (0.01) (0.01) (0.02)
50% -0.11 0.11 -0.02 -0.02 -0.41

(0.03) (0.03) (0.02) (0.03) (0.02)
100% -0.09 0.09 0.02 -0.01 -0.39

(0.09) (0.04) (0.04) (0.03) (0.06)

where the number inside the bracket denoting the
standard deviation of the relevant parameter, which
is calculated based on the samples of the relevant
estimated parameters. From Table 1 and Figure
1, it may be noticed that the parameter estimates
b̂2,1, b̂3,1, b̂4,1, b̂7,1 and b̂8,1 are very close to zero.
It can be made the assumption that they are zero
parameters and a new model candidate can be
suggested to investigate as in Chen (2003).

Example 2.
The model to be identified is assumed as the following
form:

yt = ayt−1 cos(
1
2
ut−1) + but−1 cos(

1
2
yt−1)



+et + cet−1 (34)

where a = 0.8, b = −0.8, c = −0.4 The details of the
simulation result are given in the following Table 2.

Table 2. Parameter estimation for Model
given by Example 2

Noise Parameter Estimation
σ â b̂ ĉ

10% 0.8023 -0.8039 -0.4057
(0.0255) (0.0262) (0.0172)

50% 0.8043 -0.8050 -0.4083
(0.0335) (0.0340) (0.0192)

100% 0.8095 -0.8079 -0.3962
(0.0341) (0.0430) (0.0656)

From above mentioned Examples 1-2, it is shown that
the proposed algorithm has a very good performance
for the nonlinear system and the wide range applica-
tions. The algorithm can be either used as the primary
model structure identification, or further model struc-
ture identification and validation since it has guaran-
teed the strong consistency for the parameter estima-
tions. It can also be suggested to select an appropri-
ate model structure to make the comprimise between
model accuracy and calculation cost according to the
data and model requirement.
The 200 sample segments (800-1000) of the parameter
estimations from Example 1 in the case of 10% noise
level are presented in Figure 1.

6 Comments and Conclusion

The model we discussed here is a quite general
one. The algorithm we introduced in this paper
has a major advantage of the results of the strong
consistency and covergence rate as long as the system
meets certain assumptions listed as A1-A7. In order
to identify the nonlinear system properly, we can
either use the algorithm and system model (1) as a
primary model structure identification and do the
model modification and validation afterwards; or use
the identification results from some other mentioned
methods such as Young et al (2001), Pelt and Bern-
stein (2001), Hu et al (2001) and Coca and Billings
(2001) to do some further parameter estimation or
model validations. The simulation results given by
the examples 1-2 have shown the good convergence
results of the algorithm.
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