Stabilization of input delayed systems via memoryless state feedback

Shin KANNO[†] and Gan CHEN^{*}

†: R&D Center, Kyocera Corporation, Kokubu, Kagoshima, JAPAN

*: Dept. of Math. Sci., Nanzan University, Aichi 489-0863, JAPAN

Abstract—This paper considers the problem of stabilization for input delayed systems. Using redundant descriptor representation, we derive a sufficient condition for stability of input delayed systems via memoryless (static) state feedback. Furthermore, we give a robust stabilization condition for input delayed system whose coefficient matrices depend rationally on real uncertainty parameters.

I. INTRODUCTION

Recently, increasing attention has been paid to the problems of stability and stabilization of linear systems with time-delay. For state-delayed systems, a number of results have been reported. Some of the results are delayindependent, and some of the results are delay-dependent. However for the systems with input delay, the results are almost delay-independent [1], [2]. A few of the results are delay-dependent, however the results are obtained by designing dynamic state-feedback controller [3], [4]. In this paper, first, we derive a delay-dependent sufficient condition for stabilization of input and state delayed systems via static state-feedback. This result is obtained by using redundant descriptor form. Applying a new descriptor variables which is substituted for derivative of the state[6], [5], we can design a static state-feedback controller. Second, we give a delay-dependent robust stabilization condition for input and state delayed systems whose coefficient matrices depend rationally on uncertain parameters. These conditions are derived by computing a finite set of linear matrix inequalities.

II. STABILIZATION VIA STATIC STATE FEEDBACK

Consider linear time delay systems described by

$$\dot{x}(t) = Ax(t) + A_h x(t-h) + B_u u(t-g)$$
(1)

where x(t) = 0, t < 0, h > 0 and g > 0 are constant time delays. For this system, we design the static state-feedback controller. When we apply the controller u = Kx to the system (1), the closed loop system is given by

$$\dot{x}(t) = (A + A_h + B_u K) x(t) - (A_h + B_u K) \int_{t-h}^t \dot{x}(\tau) d\tau.$$
(2)

Now we apply $y(t) := \dot{x}(t)$, and represent an extended closed loop via descriptor form:

$$E\dot{\xi}(t) = (\bar{A} + \bar{B}_{u}\bar{K})\xi(t) - \begin{bmatrix} 0\\A_{h} \end{bmatrix} \int_{t-h}^{t} \begin{bmatrix} 0 & I \end{bmatrix} \xi(\tau)d\tau \\ -\begin{bmatrix} 0\\B_{u}K \end{bmatrix} \int_{t-g}^{t} \begin{bmatrix} 0 & I \end{bmatrix} \xi(\tau)d\tau,$$
(3)

$$\bar{A} = \begin{bmatrix} 0 & I \\ A+A_h & -I \end{bmatrix}, \ \bar{B}_u = \begin{bmatrix} 0 \\ B_u \end{bmatrix}, \ \xi(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, \\ \bar{K} = \begin{bmatrix} K & 0 \end{bmatrix}, \ E = \text{diag}\{I, 0\}.$$
(4)

Using the representation, we obtain the following theorem.

Theorem 1: The system (1) is stabilizable by u = Kx if there exist matrices $X_{11} > 0$, Q > 0, R > 0, Y and positive scalars n_1 and n_2 satisfying the following matrix inequality:

$$\begin{bmatrix} \Psi_{1} & \Psi_{2}^{T} & \Psi_{3}^{T} \\ \Psi_{2} & -hQ & 0 \\ \Psi_{3} & 0 & -gR \end{bmatrix} < 0,$$
(5)

$$\Psi_1 := \operatorname{He}\{\bar{A}X + \bar{B}_u\bar{Y}\} + hQ + gR, \tag{6}$$

$$\Psi_{2} := h \begin{bmatrix} 0 & 0 \\ -n_{1}A_{h}X_{11} & n_{2}A_{h}X_{11} \end{bmatrix},$$
(7)

$$\Psi_3 := g \begin{bmatrix} 0 & 0 \\ -n_1 B_u Y & n_2 B_u Y \end{bmatrix}, \tag{8}$$

$$X := \begin{bmatrix} X_{11} & 0 \\ -n_1 X_{11} & n_2 X_{11} \end{bmatrix}, \ \bar{Y} := \begin{bmatrix} Y & 0 \end{bmatrix}.$$
(9)

The state feedback gain is then given by $K = YX_{11}^{-1}$.

V

Proof: Consider the following Lyapunov function candidate for the system (3)

$$:= V_1 + V_2 + V_3 \tag{10}$$

$$V_1 := \xi^T(t) E P \xi(t) \tag{11}$$

$$V_{2} := \int_{-h}^{0} \int_{t+s}^{I} \xi^{T}(\theta) \begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix} 0 & A_{h}^{T} \end{bmatrix} Q^{-1} \\ \times \begin{bmatrix} 0 \\ A_{h} \end{bmatrix} \begin{bmatrix} 0 & I \end{bmatrix} \xi(\theta) d\theta ds$$
(12)
$$V_{i} := \int_{-h}^{0} \int_{t-s}^{t} \xi^{T}(\theta) \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & \kappa^{T} B^{T} \end{bmatrix} R^{-1}$$

$$V_{3} := \int_{-g} \int_{t+s} \xi^{I}(\theta) \begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix} 0 & K^{I} B_{u}^{I} \end{bmatrix} R^{-1} \\ \times \begin{bmatrix} 0 \\ B_{u}K \end{bmatrix} \begin{bmatrix} 0 & I \end{bmatrix} \xi(\theta) d\theta ds,$$
(13)

$$P := \begin{bmatrix} P_{11} & 0\\ \frac{n_1}{n_2} P_{11} & \frac{1}{n_2} P_{11} \end{bmatrix}, \ P_{11} = P_{11}^T > 0.$$
(14)

The time derivatives of V_1 , V_2 and V_3 along the solution of (3) are given by the followings

$$\begin{split} \frac{dV_1}{dt} &= \xi^T(t) \{ (\bar{A} + \bar{B}_u \bar{K})^T P + P^T (\bar{A} + \bar{B}_u \bar{K}) \} \xi(t) \\ &- \int_{t-h}^t 2\xi^T(t) P^T \begin{bmatrix} 0 & 0 \\ 0 & A_h \end{bmatrix} \xi(\tau) d\tau \\ &- \int_{t-g}^t 2\xi^T(t) P^T \begin{bmatrix} 0 & 0 \\ 0 & B_u K \end{bmatrix} \xi(\tau) d\tau \\ &\leq \xi^T(t) \{ (\bar{A} + \bar{B}_u \bar{K})^T P + P^T (\bar{A} + \bar{B}_u \bar{K}) \} \xi(t) \\ &+ \int_{t-h}^t \xi^T(t) P^T Q P \xi(t) d\tau + \int_{t-g}^t \xi^T(t) P^T R P \xi(t) d\tau \\ &+ \int_{t-h}^t \xi^T(\tau) \begin{bmatrix} 0 & 0 \\ 0 & A_h \end{bmatrix}^T Q^{-1} \begin{bmatrix} 0 & 0 \\ 0 & A_h \end{bmatrix} \xi(\tau) d\tau \end{split}$$

$$+ \int_{t-g}^{t} \xi^{T}(\tau) \begin{bmatrix} 0 & 0 \\ 0 & B_{u}K \end{bmatrix}^{T} R^{-1} \begin{bmatrix} 0 & 0 \\ 0 & B_{u}K \end{bmatrix} \xi(\tau) d\tau$$

$$\frac{dV_{2}}{dt} = h\xi^{T}(t) \begin{bmatrix} 0 & 0 \\ 0 & A_{h} \end{bmatrix}^{T} Q^{-1} \begin{bmatrix} 0 & 0 \\ 0 & A_{h} \end{bmatrix} \xi(t)$$

$$- \int_{t-h}^{t} \xi^{T}(\tau) \begin{bmatrix} 0 & 0 \\ 0 & A_{h} \end{bmatrix}^{T} Q^{-1} \begin{bmatrix} 0 & 0 \\ 0 & A_{h} \end{bmatrix} \xi(\tau) d\tau$$

$$\frac{dV_{3}}{dt} = g\xi^{T}(t) \begin{bmatrix} 0 & 0 \\ 0 & B_{u}K \end{bmatrix}^{T} R^{-1} \begin{bmatrix} 0 & 0 \\ 0 & B_{u}K \end{bmatrix} \xi(t)$$

$$- \int_{t-g}^{t} \xi^{T}(\tau) \begin{bmatrix} 0 & 0 \\ 0 & B_{u}K \end{bmatrix}^{T} R^{-1} \begin{bmatrix} 0 & 0 \\ 0 & B_{u}K \end{bmatrix} \xi(\tau) d\tau$$

Hence, the upper bound of \dot{V} is given by $\frac{dV}{dt} \leq \xi^T(t)M\xi(t)$,

$$M := \operatorname{He}\{(\bar{A} + \bar{B}_{u}\bar{K})^{T}P\} + h \begin{bmatrix} 0 & 0 \\ 0 & A_{h} \end{bmatrix}^{T} Q^{-1} \begin{bmatrix} 0 & 0 \\ 0 & A_{h} \end{bmatrix} + hP^{T}QP + gP^{T}RP + g \begin{bmatrix} 0 & 0 \\ 0 & B_{u}K \end{bmatrix}^{T} R^{-1} \begin{bmatrix} 0 & 0 \\ 0 & B_{u}K \end{bmatrix}.$$

If M < 0 has solutions, system (3) is asymptotically stable. Pre- and post-multiplying $X^T = P^{-T}$ and $X = P^{-1}$ to M, and applying Schur complement, we obtain (5).

III. ROBUST STABILIZATION

Now, we derive a delay-dependent robust stabilization condition for input and state delayed systems with real rational parametric time-varying uncertainty described by

$$\begin{cases} \dot{x}(t) = Ax(t) + A_h x(t-h) + Bw(t) + B_u u(t-g) \\ z(t) = Cx(t) + C_h x(t-h) + Dw(t) + D_u u(t-g) \\ w(t) = \Delta(t)z(t), \ \Delta(t) \in U \\ U := \{ \operatorname{diag}\{r_1 I, r_2 I, \cdots \} \mid r_i \in [-1, 1] \} \end{cases}$$
(15)

where h > 0 and g > 0 are constant time delays. Note that the system has *D* matrix, i.e., real rational uncertainties. Synthesis for the system is difficult even without time delay.

Theorem 2: The system (15) is stabilizable by u = Kx, if there exist matrices $\tilde{Q} > 0$, $\tilde{R} > 0$, \tilde{X} , \tilde{Y} and positive scalars n_1 and n_2 satisfying the following matrix inequality:

$$\begin{bmatrix} \tilde{\Psi}_1 & \tilde{\Psi}_2^T & \tilde{\Psi}_3^T \\ \tilde{\Psi}_2 & -h\tilde{Q} & 0 \\ \tilde{\Psi}_3 & 0 & -g\tilde{R} \end{bmatrix} < 0$$
(16)

$$\tilde{\Psi}_1 := \operatorname{He}\{\tilde{A}\tilde{X} + \tilde{B}_u\tilde{Y}\} + h\tilde{Q} + g\tilde{R}, \qquad (17)$$

$$\tilde{\Psi}_{2} := h \begin{bmatrix} 0 & 0 & 0 \\ -n_{1}A_{h}X_{11} & n_{2}A_{h}X_{11} & 0 \\ -n_{1}C_{h}X_{11} & n_{2}C_{h}X_{11} & 0 \end{bmatrix},$$
(18)

$$\tilde{\Psi}_{3} := g \begin{bmatrix} 0 & 0 & 0 \\ -n_{1}B_{u}Y & n_{2}B_{u}Y & 0 \\ -n_{1}D_{u}Y & n_{2}D_{u}Y & 0 \end{bmatrix},$$
(19)

$$\tilde{X} := \begin{bmatrix} X_{11} & 0 & 0 \\ -n_1 X_{11} & n_2 X_{11} & 0 \\ X_{31} & X_{32} & X_{33} \end{bmatrix}, X_{11} > 0, \quad (20)$$

$$\tilde{A} = \begin{bmatrix} 0 & I & 0 \\ A + A_h & -I & B\Delta(t) \\ C + C_h & 0 & -I + D\Delta(t) \end{bmatrix},$$
(21)

$$\tilde{B}_{u} = \begin{bmatrix} 0 & B_{u}^{T} & D_{u}^{T} \end{bmatrix}^{T}, \quad \tilde{Y} = \begin{bmatrix} Y & 0 & 0 \end{bmatrix}. \quad (22)$$

The state feedback gain is then given by $K = YX_{11}^{-1}$.

Proof: Similar to (2), we apply $y(t) := \dot{x}(t)$, and we represent an extended closed loop via descriptor form:

$$E\dot{\xi}(t) = (\tilde{A} + \tilde{B}_{u}\tilde{K})\xi(t) - \begin{bmatrix} 0\\A_{h}\\C_{h} \end{bmatrix} \int_{t-h}^{t} \begin{bmatrix} 0 & I & 0 \end{bmatrix} \xi(\tau)d\tau$$
$$- \begin{bmatrix} 0\\B_{u}K\\D_{u}K \end{bmatrix} \int_{t-g}^{t} \begin{bmatrix} 0 & I & 0 \end{bmatrix} \xi(\tau)d\tau \qquad (23)$$

where

$$E = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \xi(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}, \tilde{K} = \begin{bmatrix} K^T \\ 0 \\ 0 \end{bmatrix}^T (24)$$

Consider the following Lyapunov function candidate,

$$V := \xi^{T}(t) E \tilde{P} \xi(t) + V_{2} + V_{3}, \qquad (25)$$

$$V_{2} := \int_{-h}^{0} \int_{t+s}^{t} \xi^{T}(\theta) \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix} \begin{bmatrix} 0 & A_{h}^{T} & C_{h}^{T} \end{bmatrix} \\ \times Q^{-1} \begin{bmatrix} 0 \\ A_{h} \\ C_{h} \end{bmatrix} \begin{bmatrix} 0 & I & 0 \end{bmatrix} \xi(\theta) d\theta ds, \qquad (26)$$

$$V_{3} := \int_{-g}^{0} \int_{t+s}^{t} \xi^{T}(\theta) \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix} \begin{bmatrix} 0 & K^{T} B_{u}^{T} & K^{T} D_{u}^{T} \end{bmatrix}$$

 $\times R^{-1} \begin{bmatrix} B_{u}K \\ D_{u}K \end{bmatrix} \begin{bmatrix} 0 & I & 0 \end{bmatrix} \xi(\theta) d\theta ds.$ (27)

As with the proof of Theorem 1, we obtain (16).

IV. CONCLUSION

In this paper, using descriptor form, we proposed a delaydependent stabilization condition for systems with input and state delay via static state-feedback controller. Furthermore, we derived a delay-dependent robust stabilization condition for input and state delayed systems whose coefficient matrix depend rationally on uncertain parameters.

REFERENCES

- E.T.Jeung, D.C.Oh, J.H.Kim and H.B.Park, Robust Controller Design for Uncertain Systems with Time Delays: LMI Approach, Automatica, 32-8, 1229/1231 (1996)
- [2] J.H.Kim, E.T.Jeung and H.B.Park, Robust Control for Parameter Uncertain Delay Systems in State and Control Input, Automatica, 32-9, 1337/1339 (1996)
- [3] X.Xue and D.Qiu: Robust H_∞-Compensator Design for Time-Delay Systems with Norm-Bounded Time-Varying Uncertainties, IEEE Transactions on Automatic Control, AC-45-7, 1363/1369 (2000)
- [4] Y.S.Moon, P.Park, W.H.Kwon, Robust stabilization of uncertain input-delayed systems using reduction method, Automatica, 37, 307/312 (2001)
- [5] E.Fridman: New Lyapunov-Krasovski functions for stability of linear retarded and neutral type systems, System & Control Letters, 43, 309/319 (2001)
- [6] E. Fridman and U. Shaked, A descriptor system approach to H_∞ control of linear time-delay systems, IEEE Transactions on Automatic Control, Vol. 47, No. 2, pp. 253–270, 2002.