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Abstract—In this paper, a new two-degree-of- 
freedom control structure is proposed for controlling 
unstable processes with time delay. The setpoint 
tracking is of open-loop control and therefore is 
decoupled with the load disturbance rejection, for 
which the controller is analytically designed in terms 
of H2 optimal performance specification. Meanwhile 
a conventional proportional(P) controller is 
additionally employed to stabilize the setpoint 
response. By proposing the desired complementary 
sensitivity transfer function form of the inner 
closed-loop for the load disturbance rejection, the 
closed-loop disturbance estimator is inversely 
derived. It is a dominant merit that the time domain 
system response specification of the proposed control 
structure can be quantitatively estimated by virtue 
of the analytical design procedures developed for the 
controllers. Illustrative simulation tests are included 
to demonstrate the superiority of the proposed 
method.  

1  Introduction 

Unstable processes are well known difficult to 
control especially when there exists dominant time 
delay in the system responses. Many different 
approaches have been developed for unstable processes. 
The conventional proportional-integral(PI) or 
proportional-integral-derivative(PID) methods based on 
the unity feedback control structure have been well 
provided by Visioli, A.(2001), Datta, A.(1999), 
Weidong Zhang et al(1999), Ho, W.K. et al(1998), and 
De Paor, A.M. et al(1989). However the setpoint 
response is usually accompanied with excessive 
overshoot and large settling time in terms of the above 
methods. Hence some two-degree-of-freedom control 
methods of PID controller have been proposed to 
overcome the aforementioned deficiencies, such as 
Ya-Gang Wang et al(2002), Yongho, Lee. et al(2000), 
Park, J.H. et al(1998), and Shafiei, Z.(1997). Wen Tan 
et al(2003) proposed a modified internal model 
control(IMC) method for obtaining the no overshoot 
setpoint tracking, and Xue-Ping Yang and Qing-Guo 

Wang et al(2002) presented an IMC-Based control 
scheme and adopted the recursive least squares(RLS) 
algorithm to find the optimum controllers, by which it 
shows superiority over recent other PI or PID controller 
methods for both the setpoint response and the load 
disturbance response. Other methods derived from the 
Smith predictor control structure such as Majhi, S. et 
al(2000) and Kwak, H.J.(1999) have also obtained good 
system performance for typical first order unstable 
processes with time delay. It is a notable merit that there 
is no overshoot in the setpoint response for unstable 
processes in terms of either the modified IMC methods 
or the modified Smith predictor methods as above. 
Moreover the setpoint response tends to be faster 
compared with the aforementioned PI or PID methods 
based on the unity feedback control structure. 
Essentially, a common character of the aforementioned 
modified IMC methods and Smith predictor methods is 
employing the process model with dead-time 
compensator in their control structures, which 
significantly helps to achieve the above merits. 
Consequently, this paper goes along the idea of 
employing the process model and develops a new 
two-degree-of-freedom control structure, which is 
shown in Fig.1. 

 
 
 
 
 
 
 

Fig.1  The proposed control structure  

In Fig.1, Gmo is the delay-free part of the process 
model Gm, i.e. ms

m moG G e θ−= . There are three 
controllers in the proposed control scheme. The 
controller Gc is employed for stabilizing the setpoint 
response and is selected as a proportional(P) controller 
for convenience. Another controller C is used for the 
setpoint tracking. The controller F in the feedback 
channel of the inner closed-loop is designed for the load 

G

G

r
C u

memo

F

C

Gp

e

y

f



disturbance rejection and is therefore called as the 
disturbance estimator. Obviously the setpoint response 
is decoupled with the load disturbance response because 
of the open-loop control strategy for the setpoint 
tracking in the proposed control structure. In addition, 
the stabilizing controller Gc will not affect the setpoint 
tracking performance specification, which is indeed 
tuned singly by the controller C. Both of the setpoint 
tracking controller C and the disturbance estimator F 
are analytically designed in terms of H2 optimal 
performance specification, which can lead the system 
response to achieve the integral-square-error(ISE) 
criterion. Another virtue of the proposed method is that 
both the controllers C and F can be monotonously tuned 
by a single parameter respectively to meet the actual 
process uncertainty. The controller design procedures 
are carefully provided in the following section. 

2  Controller design 

2.1 Stabilizing controller Gc 
   From Fig.1, it is easy to figure out the setpoint 
response transfer function in form of 
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In nominal case, that is, Gm is the perfect model of the 
process Gp, i.e. Gm=Gp, the setpoint response transfer 
function can be simplified as 
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Generally in industrial and chemical practice, the 
actual unstable processes can be identified as the first 
order form of 
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Take the stabilizing controller Gc as a conventional 
P controller for simplicity, i.e     . Hence the 
characteristic equation of the setpoint response transfer 
function in Eq.(2) is  

1 0cs k kτ + − =  
Note that the controller C is designed to be stable in the 
following section 2.2 and therefore is omitted to 
consider for the stability issue discussed here. By 
employing the Routh-Hurwitz Judgement for system 
stability, we know that it keeps stable when take     . 
It should be noted that the controller Gc may be chosen 
as a conventional PID controller to stabilize the setpoint 
response, which however tends to make the tuning of 
the control parameters much complicated and therefore 
is not recommended. 

2.2 Setpoint tracking controller C 

We adopt the H2 optimal performance 
specification 2

2min e  to design the setpoint tracking 
controller C. Here it conforms to the system 
performance specification                   , 
where ( )W s  is the setpoint input weight function. 
Usually the setpoint input is of step change in practice 
and accordingly it can be selected as 1/ s .  

By employing the /n n  order all-pass Pade 
approximation for the pure time delay se θ−  of the 
process model in Eq.(3), we obtain 
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and n  is an integer large enough to ensure that the 
introduced approximation error is negligible compared 
with the actual process uncertainty. By using Eqs.(2) 
and (3), it follows that 
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Note that           and all zeros of           are 
in the right half plane(RHP). Utilizing the orthogonality 
property of H2 norm , we have 
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Minimizing the right side, i.e. let its second term be 
equal to zero, we obtain the ideal optimal controller 
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However it is not proper and can not be physically 
realized in practice. Hence a low-pass filter  
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is introduced to copy it out and the practical optimal 
controller is in form of 
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where cλ  is the tuning parameter and when it tends to 
zero, the controller C recovers the optimality.  

Note that there is open-loop control from the 
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setpoint input to the system output, and now the 
setpoint tracking controller C is designed to be stable 
and correspondingly the nominal setpoint response 
transfer function is in form of  
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which is obviously proper and stable. Certainly the 
setpoint response of the control system keeps stable. By 
inverse Laplace transform, we obtain  
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It shows that there is no overshoot in the nominal 
setpoint response and the time domain performance 
specification can be quantitatively met by tuning the 
single parameter cλ . For instance, define the rise time 
tr of the setpoint response be the period that the system 
output reaches 90 percent of the setpoint value, we 
figure out                   from Eq.(6). It can be 
seen that when cλ  is tuned to be smaller, the nominal 
setpoint tracking performance becomes faster while the 
output energy of the setpoint tracking controller 
requires larger, and consequently more aggressive 
dynamic behavior of the setpoint response occurs in the 
presence of the actual process uncertainty; when cλ  is 
tuned to be larger, the nominal setpoint response turns 
out to be slower while the output energy of the setpoint 
tracking controller requires smaller, and consequently 
less aggressive dynamic behavior of the setpoint 
response appears in the presence of the actual process 
uncertainty. A large quantity of simulation shows that 
the rule of thumb for tuning the control parameter cλ  
is within the range of 0.5 3.0θ θ− , where θ  is the 
unstable process pure time delay. Generally it is 
recommended to fix cλ  around the process time delay 
value to make the best compromise between the 
nominal performance of the setpoint response and the 
output energy of the setpoint tracking controller C. In 
addition, here it can be identified that the stabilizing 
controller Gc really does not affect the setpoint tracking 
performance specification. 

2.3 Disturbance estimator F 

     From Fig.1 we obtain the load disturbance 
transfer functions 
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Hence the complementary sensitivity function of the 

inner closed-loop for the load disturbance rejection is in 
form of 
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In ideal case, the desired complementary 
sensitivity function should be          . That is, 
when the load disturbance di  in Fig.1 is added to the 
process input, the disturbance estimator F should detect 
the resultant system output error just after the process 
pure time delay θ and produce an inversely equivalent 
signal f  to offset the load disturbance. However there 
actually exist two asymptotic tracking constraints as 
follows. 
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where τ  is the RHP pole of Gp. In practice, Eqs.(10) 
and (11) have to be satisfied for the load disturbance 
rejection. This means some constraints have to be 
subordinated to the desired Td to keep the closed-loop 
internal stability. Inspired by the robust IMC control 
theory(Morari, M., 1989), we propose the practical 
optimal Td in terms of the H2 performance objective, i.e. 
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where fλ  is the control tuning parameter, and a  is 
determined by Eq.(10). Substitute Eq.(12) into Eq.(10), 
there is 
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Following simple calculations we obtain  
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Hence by using Eq.(9), we obtain the H2 optimal 
disturbance estimator F in form of 
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However it can be seen that there exists RHP 
zero-pole cancelling at 1/s τ=  in Eq.(14) which may 
cause the disturbance estimator to work unstably and 
can not be removed directly. Therefore the 
mathematical Maclaurin expansion formula is here 
utilized to copy out the H2 optimal disturbance 
estimator Fim. Let ( ) ( ) /imF s M s s= , we obtain 
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Obviously the first three terms of the above 
expansion is exactly a standard PID controller in form 
of 
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where          ,           and             . It 
is the practically proposed disturbance estimator in 
form of PID. It should be mentioned that the pure 
derivative term in Eq.(16) can be physically 
implemented by cascading with a first order low-pass 
filter in which the time constant can be selected 
as (0.01 ~ 0.1) DT . 

Remark. According to the well known Small-Gain 
Theorem(Doyle, J.C., 1992), the closed-loop for the 
load disturbance rejection is robustly stable iff 

1m dT ∞∆ <              (17) 

where m∆  defines the process multiplicative 
uncertainty. Substitute Eqs.(12-13) into Eq.(17), we 
obtain the tuning constraint for the control parameter 

fλ  to ensure the closed-loop robust stability, i.e. 
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For example, as for the process gain uncertainty 

m k/k∆ =∆ , the robust stability constraint to fλ  is 
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As for the process time delay uncertainty θ∆ , which 
may be converted to the multiplicative uncertainty 

1s
m e θ−∆∆ = − , the robust stability constraint to fλ  is 
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As for the process uncertainty of both gain and time 
delay, the similar robust stability constraint to fλ  can 
be derived as above. 

Moreover there is another constraint between the 
robust stability and nominal performance of the load 
disturbance rejection loop for tuning the control 
paramete fλ in terms of the robust control 
theory(Morari, M., 1989), i.e. 

( ) ( ) ( ) 1m d d oT s W s H s∆ + <  

where ( )W s  is the sensitivity weight function and 
usually is selected as 1/ s  in terms of the 
frequently-encountered step load disturbance in 
industrial and chemical practice. It indicates that tuning 
the control parameter fλ  has to meet the trade-off 
between the robust stability and the nominal 
performance of the closed-loop for the load disturbance 
rejection. That is, decreasing fλ  improves the load 
disturbance rejection performance of the closed-loop 
but deteriorates its robust stability in the presence of the 
actual process uncertainty. On the other hand, 
increasing fλ  tends to strengthen the closed-loop 
robust stability but decays its disturbance rejection 
performance.  

However all the aforementioned constraints for 
tuning the control parameter fλ  can not be solved 
analytically. Hence numerical simulations are motivated 
to ascertain the rule of thumb for tuning the control 
parameter fλ . Define perturbation peak be the 
closed-loop output peak when a unit step load 
disturbance di  is added to the process input and the 
step input r  is cut off in Fig.1. By employing the 
practical PID form of the disturbance estimator F in 
Eq.(16), simulation results on the definition are 
provided in Fig.2. 

 
 
 
 

 
 
 
 
 
 
 
 
 
Fig.2 Relationship between the perturbation peak and /fλ θ  

Therefore it is suggested by simulations to tune the 
control parameter fλ  in the range of 0.8 2.0θ θ− . 
Generally it is recommended to fix fλ  around the 
process time delay θ  value to achieve the best 
trade-off between the robust stability and nominal 
performance of the closed-loop for the load disturbance 
rejection. 
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3  Simulation tests 

Consider the widely studied unstable process such 
as in recent Wen Tan et al(2003). 
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In Wen method, which had already shown its superiority 
over many other previous approaches, the control 
parameters were     ,     ,       ,      . 
Meanwhile the modified Smith predictor method－Majhi 
et al, 2000 is also employed here for comparison, in 
which the control parameters are taken as           ， 

in terms of the 
tuning formulas. In the proposed method, take      , 

.By employing the design formula 
Eqs.(4), (14) and (16) we obtain the setpoint tracking 
controller and disturbance estimator respectively in form 
of 
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A unit step setpoint input is added at t=0 and an inverse 
unit step load disturbance is added to the process input at 
t=5. Simulation results are shown in Fig.3. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.3  Nominal system responses for the unstable process 

It can be seen from Fig.3 that the proposed method 
shows better load disturbance rejection performance 
compared with the other two methods in terms of the 
same setpoint tracking specification. The ISE 
specifications for the load disturbance response in terms 
of the three methods are listed in Tab.1. 

 Proposed  Wen  Majhi 
Attenuation 0.3098 0.3429 0.966 

Tab.1  ISE specifications for the load disturbance rejection 

Now suppose that there exists 10% error for 
estimating the process time delay θ  such as it is 

actually 10% larger. In this case, add a unit step setpoint 
input at t=0 and an inverse unit step load disturbance to 
the process input at t=7. The perturbed system 
responses are provided in Fig.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  Perturbed system responses for the unstable process 

Fig.4 shows that the proposed method keeps the 
control system good robust stability compared with the 
other two methods in the presence of the process time 
delay perturbation. It should be noted that by 
monotonously increasing the tuning parameter fλ  of the 
disturbance estimator in the proposed control structure, the 
control system robust stability becomes better at the cost 
of the slower load disturbance rejection performance. For 
illustration, we make simulation tests for the above 
perturbed unstable process, i.e. increasing the tuning 
parameters fλ  and cλ  for two cases:  
1)               , i.e.                          
2)               , i.e.                          
According to the above simulation condition, the 
simulation results are provided in Fig.5. 

 

 

 

 

 

 

 

 
 

Fig.5  Perturbed system responses in terms of increasing the 
tuning parameters 

0.4, 0.5c fλ λ= = 2.634, 0.9566, 0.4058f I Dk T T= = =
0.8, 0.6c fλ λ= = 2.4394, 1.219, 0.3596f I Dk T T= = =

1, 0.4p ik T= =
0 .3,  2 ,  1 .58 1 1f f dT K K= − = =

2ck =
1.0 0.4c fλ λ θ= = =

0 2k = 0.4λ = 2.079cK = 0.156cT =



Fig.5 shows that increasing the tuning parameter fλ  
gradually calms down the load disturbance response 
oscillation. On the other hand, increasing the tuning 
parameter cλ  gradually calms down the setpoint 
response oscillation. Hence it is convenient to 
monotonously tune the control parameter fλ  to achieve 
the best trade-off between the nominal performance and 
robust stability of the closed-loop in the proposed control 
structure so as to satisfy the disturbance rejection 
requirement in practice. So is the case for tuning the 
parameter cλ  to achieve the best trade-off between the 
nominal performance and dynamic behavior of the 
setpoint response. Therefore it is convenient to tune cλ  
and fλ  monotonously in the proposed control structure 
to meet the actual process uncertainty, which is really 
frequently-encountered in industrial and chemical practice. 

4  Conclusions 
This paper have proposed a new two-degree-of- 

freedom control structure for controlling unstable 
processes with time delay. Both of the setpoint response 
and the load disturbance response can be independently 
tuned by the setpoint tracking controller and the 
disturbance estimator in the inner closed-loop for the 
load disturbance rejection respectively. Hence the 
setpoint response is decoupled from the load 
disturbance response. Moreover there exists quantitative 
tuning relationship between the nominal time domain 
system response and the control parameters cλ  and 

fλ  of the setpoint tracking controller and the 
disturbance estimator, and both the control parameters 
can be tuned monotonously to meet the actual process 
uncertainty, which are surely very attractive for 
operating the proposed control system in practice. By 
virtue of the analytical design procedures developed for 
the controllers, the proposed control method is 
absolutely transparent, and therefore can be 
conveniently utilized for various unstable processes. 
Final simulation tests effectively demonstrate the 
superiority of the proposed control methods. 
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