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Abstract— This paper provides a design method for two-
degrees-of-freedom I-PD (2DOF-I-PD) controllers including
switched PD compensator based on bilinear matrix inequalities
(BMIs). Two design specifications based on H2 norm are
formulated in BMIs, and PID parameters can be exactly
obtained by solving the BMI problems via branch and bound
algorithms. A set of PD compensators can be obtained simul-
taneously using proposing design method. The most effective
parameter is selected out of the set of PD compensator based
on the switching criterion which obtained from estimated
system conditions using the statistic algorithms. Numerical
examples are also shown.

I. INTRODUCTION

PID control algorithms [1], [2], [3], [4] play a critical
role in 80-90 percent of chemical process systems [5].
They are widely used because of their simple structures
which consist of only three parameters, that is, proportional
parameter, integral parameter, and derivative parameter. It
is, however, difficult to tune those parameters practically
since the process dynamics often change due to changes
in operating conditions or various disturbances. We have
to design controllers such that they have both robustness
for changes in conditions of the systems and good tracking
properties. PID controllers with one-degree-of-freedom can
not have robustness and good tracking properties since they
are contrary properties. In order to design the controller
with robustness and good tracking properties, this paper
deals with 2DOF-I-PD control systems, which have a I-PD
control system and a PD compensator. Authors have already
proposed a design method for two-degrees-of-freedom PID
control systems [6], which provides a PID controller with
robustness and good tracking properties. This paper applies
the proposed method to I-PD control systems.

The design of many conventional control systems has
resulted in an optimization problem, which can be solved
by numerical computation based on powerful computer
support. One of the most useful tools is bilinear matrix

inequality (BMI), which is a flexible framework for analysis
and synthesis of control systems. Although checking the
solvability of BMI problems is NP hard [7], it is not hard
to obtain an exact solution of a BMI problem via branch and
bound algorithms if it has a few parameters. Fortunately, a
design problem of PID controller has only three parameters,
so that we can design PID controller based on BMI.

This paper formulates the design problem of I-PD con-
trollers with two-degrees-of-freedom as a BMI problem.
The aim of the control design is to make the control
system has both robustness and good tracking properties. In
order to reduce the conservativeness of the control system,
this paper deal with PD compensator which has switching
structure. This switching structure is constructed from a
system estimator using recursive least squares algorithms,
the switching criterion based on stationary gain of the
estimated system and a set of pre-specified PD parameters
corresponding to the switching criterion.

This paper is organized as follows. The system descrip-
tion, problem formulations and the design method of 2DOF-
I-PD controller based on BMI are given in Section II. In
Section III, for more effective PD compensator, a switching
structure based on the statistic algorithm is constructed.
Section IV provides branch and bound algorithms in order
to obtain an exact solution of BMI problems. Finally,
numerical simulation examples are presented in Section V.
This paper refers to the reference [6].

II. CONTROLLER DESIGN BASED ON BMI

A. System description

Consider a system described by the following continuous-
time model:

G(s) =
K0

1 + Ts
e−Ls, (1)

where K0 expresses the system gain, T is the time-constant
and L refers to the delay. By using the first order Padé



approximation of the delay, the system is approximated as

G(s) ∼= K0

1 + Ts
· 1−

Ls
2

1 + Ls
2

. (2)

By using the sampling time period Ts, the continuous-
time model (2) is transformed to the following discrete-time
model:

A(z−1)y(t) = z−1B(z−1)u(t) +
1

∆
ξ(t), (3)

where

A(z−1) = 1 + a1z
−1 + a2z

−2

B(z−1) = b0 + b1z
−1 , (4)

and u(t), y(t) and ξ(t) denote the control input signal,
the corresponding output signal and the stochastic noise,
respectively. The operator z−1 denotes a backward shift,
that is, z−1y(t) = y(t− 1), and ∆ denotes the differencing
operator defined as 1 − z−1. This paper deals with the
discrete-time model (3) as the controlled object instead of
the continuous-model (1).

Next, consider the control system represented by the I-
PD controller with two-degrees-of-freedom in Fig.1, where
r(t) and e(t) refer to the reference signal and the control
error, respectively. C1(z

−1) and C2(z
−1) denote the I-PD

controller and the PD compensator, respectively. And they
are given by

C2(z
−1) = kα + ∆kβ , (5)

and

u(t) = −kcy(t)+
ki

∆
e(t)−∆kdy(t)

+kαr(t) + ∆kβr(t). (6)

The 2DOF-I-PD controller in (5) and (6) includes five
parameters: proportional gains kc and kα, integral gain
ki and derivative gains kd and kβ . The one-degree-of-
freedom I-PD controller C1(z

−1) is required to satisfy the
design specification for the system perturbation and the
stochastic noise by using fixed I-PD parameters which are
obtained from the BMI solution discussed in Section IV.
And the PD compensator C2(z

−1) which has a set of
pre-specified PD parameters corresponding to the divided
small perturbations, is required to satisfy the good tracking
property by using switching structure based on the estimator
discussed in Section III.

B. Problem formulation

This paper deals with the H2 norms which represent the
integral squared errors (ISE) of the control system. They can
evaluate the two design specificationswhich require the ro-
bustness for the control system and the tracking property for
the reference signal. Moreover these evaluation measures
result in the optimization problem which is represented by
matrix inequalities.

Estimator

System

C2 (z    )-1

e(t)r(t) u(t) y(t)+ + +

(t)

kc + kd

ki

Fig. 1. Closed-loop system with two-degrees-of-freedom.

First, we consider the error transfer function of the
control system in Fig.1. In order to evaluate the tracking
property for the step reference signal, Er(z

−1) is defined
as the transfer function from r(t) to e(t). Since a step input
is given by r(z−1) = 1/(1−z−1) and ξ(z−1) = 0, Er(z

−1)
can be expressed as

Er(z
−1) =

A(z−1)− z−1B(z−1)C2(z
−1)

∆A(z−1) + z−1B(z−1)∆C1(z−1)
(7)

. Similarly, in order to evaluate the influence of the stochas-
tic noise ξ(t), Ed(z

−1) is defined as the transfer function
from ξ(t) to e(t). We assume that ξ(z−1) is a white noise
which is represented by ξ(z−1) = 1 and r(z−1) = 0 , then
Ed(z

−1) can be expressed as follows.

Ed(z
−1) =

−1

∆A(z−1) + z−1B(z−1)∆C1(z−1)
(8)

The ISE is described as

1

2π

∫ π

−π

E (jω)E(−jω) dω (9)

=
1

2π

∫ π

−π

|E(jω) |2 dω < γ, (10)

where E = Er or Ed and γ is positive constant. Because
the H2-norm of E(z−1) is defined as

‖ E ‖2 =

(

1

2π

∫ π

−π

|E(jω) |2 dω

)
1
2

, (11)

the performance measure based on ISE results in the fol-
lowing two inequalities.

‖ Er ‖2 <
√

γr (12)

‖ Ed ‖2 <
√

γd (13)

The purpose of this paper is to minimize γr in (12) for a
given

√
γd.

In this paper, the error systems (7) and (8) are realized in
the controllable canonical form as the following equations.

Er(z
−1) = Cer(zI −Aer)

−1Ber + Der (14)

Ed(z
−1) = Ced(zI −Aed)−1Bed + Ded (15)



where Ai, Bi, Ci and Di (i = er or ed) are given by the
following matrices:

Ai = Ae0 + kcAe1 + kiAe2 + kdAe3,
Bi = [ 0 0 0 1 ]T ,
Cer = Cer0 + kcCer1 + kiCer2 + kdCer3

+kαCer4 + kβCer5,
Ced = Ced0 + kcCed1 + kiCed2 + kdCed3,
Der = 1,
Ded = −1,

(16)

where Ai = Aer = Aed, Bi = Ber = Bed and

Ae0 =









0 1 0 0
0 0 1 0
0 0 0 1
0 a2 a1 − a2 1− a1









,

Ae1 =









0 0 0 0
0 0 0 0
0 0 0 0
0 b1 b0 − b1 −b0









,

Ae2 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 −b1 −b0









,

Ae3 =









0 0 0 0
0 0 0 0
0 0 0 0
−b1 2b1 − b0 2b0 − b1 −b0









,

Cer0 = [ 0 a2 a1 1 ],
Cer1 = [ 0 b1 b0 0 ],
Cer2 = [ 0 0 −b1 −b0 ],
Cer3 = [ −b1 b1 − b0 b0 0 ],
Cer4 = [ 0 0 −b1 −b0 ],
Cer5 = [ 0 b1 −b1 + b0 −b0 ],
Ced0 = [ 0 −a2 a2 − a1 a1 − 1 ],
Ced1 = [ 0 −b1 b1 − b0 b0 ],
Ced2 = [ 0 0 b1 b0 ],
Ced3 = [ b1 b0 − 2b1 b1 − 2b0 b0 ].

Since the continuous system (1) is perturbed, four system
parameters in realized systems have perturbations. In order
to treat with the system perturbations, we definea parameter
vector θ and the set Ω of perturbations as the following
equations.

θ :=
[

a1 a2 b0 b1

]T
(17)

Ω :=















θ=









a1

a2

b0

b1









∈ <4 :

a1min ≤ a1 ≤ a1max

a2min ≤ a2 ≤ a2max

b0min ≤ b0 ≤ b0max

b1min ≤ b1 ≤ b1max















(18)

This paper deals with the following H2 problem which
formulates the robustness for the control system.

Problem 1: Minimize γr such that ‖ Er ‖2 <
√

γr and
‖ Ed ‖2 <

√
γd for all θ ∈ Ω.

According to the reference [8], the ISE criterions which
are represented by H2 norm in (12) equal to the following
matrix inequality,

Φ =





φe0(P
−1,k1) 0 0
0 φed(P−1,k1, γd) 0
0 0 φer(P

−1,k2, γr)





� 0 , (19)

where ’Φ � 0’ denotes that Φ is a positive definite matrix,

φe0(P
−1,k1) =













P−1 P−1Bed P−1Aed

BT
edP−T 1 0

AT
edP

−T 0 P−1













,(20)

φed(P
−1,k1, γd) =













γd Ded Ced

DT
ed 1 0

CT
ed 0 P−1













, (21)

and

φer(P
−1,k2, γr) =













γr Der Cer

DT
er 1 0

CT
er 0 P−1













. (22)

Furthermore, k1 = [kc ki kd] and k2 = [kc ki kd kα kβ ]
are parameter vectors of the controller and P is a positive
symmetric matrix.

By using (19), the following problem which is equivalent
to the Problem 1 can be formulated.

Problem 2: For given constant γ̃d and hyper-rectangle
QD in <19,

Minimize γr (23)

subject to γd < γ̃d (23− a)
(

k1, P
−1

)

∈ QD (23− b)
Φ � 0 for all θ∈ Ω. (23− c)

Although it is hard to solve BMi problems, we can obtain
the exact solution of BMi problem (23) in practical time via
the branch and bound algorithms [9] because it has only few
parameters.



III. SWITCHING PD COMPENSATOR BASED ON
STATISTIC ALGORITHM

As we discussed so far in this paper, it became obvi-
ous that 2DOF-PID controller can be designed by using
the numerical optimization problems uniformly. However,
there fatefully exists the conservativeness of the proposed
controller due to the robust structure itself. To reduce such
conservativeness, the design method of a set of PD com-
pensators corresponding to small divided perturbations is
considered. Moreover we assume that the system condition
of the controlled object can be roughly estimated by using
the existing adaptive methods or the newly estimate ways.

First, a small divided perturbation is defined as follows.

Λ(i) :=



















θ ∈<4 :

a
(i)
1min ≤ a1 ≤ a

(i)
1max

a
(i)
2min ≤ a2 ≤ a

(i)
2max

b
(i)
0min ≤ b0 ≤ b

(i)
0max

b
(i)
1min ≤ b1 ≤ b

(i)
1max



















(24)

Then, PD compensator C2(z
−1) is switched based on the

following detection rule:

C2(z
−1) =























C
(1)
2 (z−1) if θ ∈ Λ(1),

C
(2)
2 (z−1) if θ ∈ Λ(2),

...
...

C
(p)
2 (z−1) if θ ∈ Λ(p),

(25)

where C
(j)
2 (z−1) (j = 1 · · · p) are PD compensators op-

timized for each sector. The design problem of the PD
compensator C

(i)
2 (z−1) corresponding to the pre-specified

small-ranged system perturbation is given as the following
problem.

Problem 3: For given given kc, ki and kd,

Minimize γr (26)

subject to ΦPD � 0 for all θ ∈ Λ(i).
(26− a)

where, ΦPD is defined as the following matrix.

ΦPD =





φe0(P
−1,k1) 0

0 φer(P
−1,k2, γr)



 � 0 (27)

The matrix inequality (27) can be represented by LMI which
includes P−1, kα and kβ as the variables. Therefore it is
easy to obtain the optimal solution of the problem (26)
because there exist polynomial algorithms based on the
interior point method.

By using the switching structure as mentioned above,
the most effective PD compensator which satisfiesthe good
tracking property is selected out of the set of pre-specified
PD parameters. The switching algorithm for the proposed
2DOF-I-PD controller is summarized as follows.

[Switching algorithm for 2DOF-I-PD controller]

[Step 1] Design the I-PD controller and the PD
compensator by solving the BMI problem (23).
[Step 2] Design the set of PD parameters corre-
sponding to the divided perturbations by solving
the LMI problem (26).
[Step 3] Estimate the system conditions.
[Step 4] Choose the most effective PD parameter
from the detection rule in (25).
[Step 5] Return to [Step 3].

In [Step 3] and [Step 4], the following detection algorithm
is employed.

[Detection algorithm for switching PD compensators]

[Step 1] Design the center model λ(j) of the set
Λ(j).
[Step 2] Input the control input u(t) to the λ(j)

and obtain the corresponding output y
(j)
λ (t).

[Step 3] Calculate the summation σ(j) of | y(t)

−y
(j)
λ (t) |2 during the given period τ .

[Step 4] Find the model λ(o) such that minimizes
σ(j). And assume λ(o) as the most likely control
model.
[Step 5] Select the C

(o)
2 (z−1) corresponding to

the set Λ(o).
[Step 6] Return to [Step 2].

IV. BMI SOLUTION BY USING AN EXACT
ALGORITHM

This section provides an exact algorithm for solving
problem (23) based on branch and bound algorithms [9].
Branch and bound algorithms give us the lower bound ΨL

and the upper bound ΨU satisfying ΨL ≤ inf γr ≤ ΨU and
(ΨU − ΨL)/ΨL ≤ ε for any ε > 0. The lower bounds are
obtained using the SDP relaxation [10], [11].

Let us define the function Ψ(·), ΨL(·) and ΨU (·) as
follows.

Ψ(Q) ≡ inf
γd < γ̃d, [k1,k2]

T
∈ Q,

Φ � 0 for all [a1, a2, b0, b1]
T
∈ Ω

γr, (28)

ΨL(Q) ≡ inf
γd < γ̃d, [k1,k2]

T
∈ Q,

Φ̂ � 0 for all [a1, a2, b0, b1]
T
∈ Ω

γr, (29)

ΨU (Q,k∗

1,k
∗

2) ≡ inf
γd < γ̃d,

Φ∗

� 0 for all [a1, a2, b0, b1]
T
∈ Ω

γr,

(30)

where Φ̂ is the SDP relaxation of Φ obtained using the
method in the papers [11], [12],

[

k
∗

1

k
∗

2

]

= arg inf
γd < γ̃d, [k1,k2]

T
∈ Q,

Φ̂ � 0 for all [a1, a2, b0, b1]
T
∈ Ω

γr,



and Φ∗ is obtained by substituting [k∗

1,k
∗

2]
T into Φ in (19).

Then ΨL(Q) ≤ Ψ(Q) ≤ ΨU (Q) holds for any Q. We can
obtain Ψ∗

L and Ψ∗

U such that ΨL ≤ inf γr ≤ ΨU holds for
any ε using the following algorithm.

[Branch and Bound Algorithm]

[Step 1] Set k ← 0, Q0 ← QD, S0 ← {Q0}, L0 ←
Ψ(Q0), U0 ←U (Q0).

[Step 2] Select Q̄ from Sk such that Lk = ΨL(Q̄).
Sk+1 ← Sk \ {Q̄}.

[Step 3] Split Q̄ along its longest edge into Q̄1 and Q̄2.
[Step 4] For i = 1, 2 if ΨL(Q̄i) ≤ Uk then Sk+1 ←

Sk+1 ∪ {Q̄i}.
[Step 5] Uk+1 ← min

Q∈Sk+1

ΨU (Q).

[Step 6] Pruning: Sk+1 ← Sk+1\{Q : ΨL(Q) > Uk+1}.
[Step 7] Lk+1 ← min

Q∈Sk+1

ΨL(Q).

[Step 8] if (Uk − Lk)/Lk ≤ ε then end else k ← k + 1
and goto [Step 2].

V. NUMERICAL EXAMPLES

In order to investigate the behavior of the proposed con-
trol scheme, numerical simulation examples are illustrated
in this section.

Let us consider the continuous-time model given by the
following equation.

G(s) =
K0

1 + Ts
e−Ls where







2.5 ≤ K0 ≤ 3.5
15 ≤ T ≤ 16

L = 3
(31)

From (3) and (4), the system parameters of the discrete-
time model which are transformed by using sampling time
period Ts = 1 are obtained as follows:

A(z−1) = 1 + a1z
−1 + a2z

−2

B(z−1) = b0 + b1z
−1 , (32)

where














−1.4528 ≤ a1 ≤ −1.4489
0.4803 ≤ a2 ≤ 0.4823
−0.1026 ≤ b0 ≤ −0.0689

0.1426 ≤ b1 ≤ 0.2124

. (33)

By solving the BMI problem (23), parameters of the I-PD
controller and the PD compensator are designed as follows:

kc = 1.0801, ki = 0.07377, kd = 0.5062,
kα = 1.0110, kβ = 0.4153,

(34)

where,H2 norms of the error transfer functions are obtained
as follows.

γr = 150.00
γd = 10.134

(35)

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

y(
t)

t[step]

Fig. 2. Control results of the proposed 2DOF-I-PD controller and the
existing 1DOF-I-PD controller.

The set of the small-divided perturbation is defined as
below:

Λ(1) :=







θ ∈ R4 :
2.5 ≤ Kc ≤ 3.0
15 ≤ T ≤ 16

L = 3







,

Λ(2) :=







θ ∈ R4 :
3.0 ≤ Kc ≤ 3.5
15 ≤ T ≤ 16

L = 3







.

(36)

Then, we designed the pre-specified PD compensators by
solving the LMI problems (26), and they are obtained as
follows.

C
(1)
2 (z−1) = 1.0801 + 0.5062∆ if θ ∈ Λ(1)

(γr = 7.0422)

C
(2)
2 (z−1) = 1.0274 + 0.5062∆ if θ ∈ Λ(2)

(γr = 6.4317)

(37)

In the above detection algorithm, the center models λ(1) of
the system models (36) is set based on K0 = 2.75, T =
15.5, and L = 3, and λ(2) is designed based on K0 = 3.25,
T = 15.5, and L = 3. The evaluation period τ equals to
10[step].

The system parameters of the controlled object are given
as follows.

G(s) =



















2.3

1 + 16s
e−3s 0 ≤ t ≤ 400[step]

3.2

1 + 15s
e−3s 400 ≤ t ≤ 401[step]

(38)

The reference signal is given as the step inputs. The
stochastic noise ξ(t) is given as a normal distribution with
N (0, 0.012).

Fig.2 shows the control results by using the obtained
2DOF-I-PD parameters in (34) and the existing 1DOF-I-
PD controller tuned by the procedure of the reference [13].
In Fig.2, the solid line denotes the control result using the
proposed 2DOF-I-PD controller, and the dotted line denotes
the control result using the existing 1DOF-I-PD controller
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Fig. 3. 2DOF-I-PD control result using the switching algorithm.
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Fig. 4. Control result using the switched 2DOF-I-PD controller and non-
switched 2DOF-I-PDcontroller.

(kc = 0.0014,ki = 9.5465, and kd = 0.0034). Although the
proposed controller does not have a switching structure in
this result, we can see that the system has the better tracking
properties than the existing controller.

Next, the control result by using the statistic algorithm are
demonstrated. Fig.3 shows the result. In Fig.3, the arrow de-
notes the switching point from C

(1)
2 (z−1) to C

(2)
2 (z−1). To

make the effectiveness of the switching structure clearer, the
non-switched 2DOF-I-PD controller in Fig. 2 and switched
2DOF-I-PD controller in Fig.3 are compared. Fig.4 shows
the figureof these control results form 0 [step] to 500 [step]
with expansion. In Fig.4, the dotted line denotes the control
result using non-switched 2DOF-I-PD controller, and the
solid line denotes the control result using switched 2DOF-
I-PD controller.

We can see that the influence by the stochastic noise can
be reduced, and that the switched 2DOF-I-PD control sys-
tem can track the reference signal better than the system of
the non-switched 2DOF-I-PD controller. When the system
perturbed in 401 [step], the most effective PD compensator
is quickly selected out.

VI. CONCLUSIONS

In this paper, a BMI based design scheme for switched
I-PD controllers with two-degrees-of-freedom has been

proposed. According to the proposed scheme, two design
specification based on H2 norm are formulated in BMIs,
and I-PD parameters can be exactly obtained by solving the
BMI problems via branch and bound algorithms. In order
to reduce the conservativeness of the control system, the
proposed PD compensators have switching structure based
on the statistic algorithm. Numerical examples have shown
the effectiveness of the proposed method.
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