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Abstract— The paper presents the application results con-
cerning the fault detection of a dynamic process using linear
system identification and model–based residual generation
techniques. The first step of the considered approach consists
of identifying different families of linear models for the mon-
itored system in order to describe the dynamic behaviour of
the considered process. The second step of the scheme requires
the design of output estimators (e.g., dynamic observers or
Kalman filters) which are used as residual generators. The
proposed fault detection and system identification schemes
have been tested on a chemical process in the presence of
sensor, actuator, component faults and disturbance. The results
and concluding remarks have been finally reported.

I. INTRODUCTION

Since the early 1970’s, the problem of reliable fault
diagnosis in dynamic processes has received great attention
and a wide variety of robust approaches has been proposed
and developed. Recently, different analytical redundancy–
based methods have been developed to diagnose faults in
linear, time-invariant, dynamic systems and a wide variety
of model–based approaches has been proposed [1].

There are different model–based approaches to the fault
diagnosis problem [2], namely parameter identification [3],
parity equations [4], methods in frequency [5] or in state–
space domain, such as diagnosis observers [6] and Kalman
filters [7].

Even if analytical redundancy methods have been recog-
nised as a powerful and effective technique for detecting
faults, the generation of robust residuals is a critical issue
because of the presence of unavoidable modelling uncer-
tainty. The main problem regarding the reliability of fault
diagnosis schemes consists of the modelling uncertainties
which are due, for example, to process noise, parameter
variations and non–linearities.

Model–based methods use a model of the monitored
process in order to produce the symptom or residual gener-
ator. If the system is not complex and can be described
accurately by the mathematical model, fault detection is
directly performed by using a simple geometrical analysis
of residuals. In real industrial systems however, since the
modelling uncertainty is unavoidable, the design of a robust
fault diagnosis scheme should consider the modelling un-
certainty with respect to the sensitivity of the faults. Several
papers addressed this problem. For example, optimal robust
parity relations were proposed in [4], and the threshold
selector concept was introduced in [8]. One other promising
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approach is the decoupling between disturbances and resid-
uals achieved by means of a proper observer scheme and
design [9], [1]. This approach requires the knowledge of a
model of the process under investigation and, in particular,
of the disturbance distribution matrix. Thus, modelling [9]
or identification [10], [11], [12] procedures can be defined
to estimate the disturbance distribution matrix.

This work aims to define a comprehensive methodology
for the detection of actuator, component and sensor fault of
an industrial process by using an output estimation approach
[11], in conjunction with residual processing schemes which
may include a simple threshold detection [9].

Two main aspects of the proposed methodology should
be underlined. A linear dynamic model of the input–output
links is obtained by means of identification schemes which
use Equation Error (EE), Errors–In–Variables (EIV) and
State–Space (SS) models [10], [11], [12].

In the case of the EIV identification technique, it is
based on the Frisch scheme methodology [13], [11], [12].
This approach gives a reliable model of the plant under
investigation, as well as providing variances of the input–
output noises [14], [11]. Secondly, this work exploits linear
prototypes for the design of linear output estimators [11].
In fact, as the feature of system supervision is to monitor
the operation and performance of the system with respect
to an expected point of operation, linear system methods
are still very valid.

The paper is organised as follows. In Section II the prob-
lem statement is given and described from a mathematical
point of view. The fault diagnosis scheme is then presented
in Section III. In Section IV, the chemical industrial process
used to test the proposed methodology is presented and the
results concerning the diagnosis of faults are also reported.
Finally, conclusions reported in Section V close the paper.

II. MATHEMATICAL DESCRIPTION

This section recalls the methods for the mathematical
modelling of the system under diagnosis and that are
exploited for the problem of model–based fault diagnosis.

Let us suppose that a number of N samples can be
acquired form the monitored system depicted in Figure (1).
Such time sequences of data can represent the input and the
output variables u(t) ∈ �r and y(t) ∈ �m of the process,
with t = 1, . . . , N , respectively.

In the general framework of linear systems, in this paper
we consider the description of the plant (1) and its input–
output measurements by means of a discrete–time, time–
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Fig. 1. The monitored system.

invariant, input–output dynamic model with the following
structure:

y(t) = F(z) u(t) + G(z) e(t), t = 1, . . . , N. (1)

The entries of the discrete–time transfer matrices F(z) and
G(z) are parametrised as rational functions of polynomi-
als in the variable z, the coefficients of which are the
model parameters to be identified [10]. Since the equation
error term e(t) is introduced to describe the disturbance
(un–modelled dynamics) affecting the model, the system
(1) is often called equation error (EE) model structure.
The variable z represents the forward shift operator, i.e.
z y(t) = y(t + 1) and it is consistent with the conventional
definition of the z–transform. Depending on the structure
of the transfer matrices F(z) and G(z), the family of the
EE models can describe the classes of the so–called ARX
(Auto–Regressive eXogenous), ARMAX (Auto–Regressive
Moving Average eXogenous) and the most general Box–
Jenkins (BJ) structures [10].

The input–output models represented by the system fam-
ily (1) can be transformed into a state–space formulation,
in which a first–order difference equation exploits an aux-
iliary state vector x(t) ∈ �n [10]. Hence, the following
representation can also be considered:

{
x(t + 1) = A x(t) + B u(t) + H e(t)
y(t) = C x(t) + e(t) , t = 1, . . . , N,

(2)

where A, B, C and H are matrices of appropriate dimen-
sions that can be obtained by direct identification proce-
dures, e.g., the subspace approaches [15], [16]. Since the
vector e(t) appears explicitly as in (1), the SS representation
(2) is known as the innovation form of the state–space
description.

Finally, another set of models which can be used for
identification purpose is represented by the EIV systems.
According to this theory, it is assumed that the monitored
system can be described by a linear, discrete–time, time–
invariant, dynamic model of the type:

y(t) = F(z) u(t), t = 1, . . . , N, (3)

where the transfer matrix F(z) consists of polynomial
rational function of z representing the link between the input
and the output measurements.

As depicted in Figure (1), the input and the output vari-
ables u∗(t) and y∗(t) are usually measured through actuator
and sensors. Generally, sensor and actuator measurements
are affected by additive noise, that can be modelled as:

{
u(t) = u∗(t) + ũ(t),
y(t) = y∗(t) + ỹ(t). (4)

According to the EIV model theory, the variables ũ(t) and
ỹ(t) are generally described as white, zero-mean, uncor-
related Gaussian noises [13], [14], [11]. Since the error
vector e(t) does not appear explicitly in the EIV models
as in (1), the uncertainty is represented by the noise terms
ũ(t) and ỹ(t) and their variances, that have to be identified
[14]. Hence, it is assumed that u(t) and y(t) are the only
available measurements from the real process. These model
sets (1), (2) and (3) belong to the most commonly used
ones in practice and we have therefore reason to present
and use them since both explicit algorithms for parameter
identification and analytic results are available [15], [10].

The model description in Eqs. (1), (2) and (3) assumes
fault–free system operations and working conditions. As
depicted in Figure (1), additive fault occurrence can be
modelled by means of the following relations

{
u(t) = u∗(t) + fu(t)
y(t) = y∗(t) + fy(t) (5)

where fu(t) and fy(t) are the actuator and sensor faults,
respectively.

These vectors may be modelled by step and ramp signals
in order to describe the presence of bias or drift on the mea-
surements (abrupt and slowly developing faults). Signals
u(t) and y(t) represent the input and output measurements,
respectively, which have been used for the fault detection
task. Therefore, by neglecting actuator and sensor dynamics,
under fault–free assumptions (1), u(t) = u∗(t) and y(t) =
y∗(t). On the other hand, the case of component faults fc(t)
cannot be described by Eqs. (5). On the other hand, by as-
suming general detectability conditions [9], faults affecting
output measurements y(t) can be successfully detected by
monitoring both u(t) and y(t) signals. In particular, in some
cases, the fault fc(t) could be described as:

x(t + 1) = A x(t) + B u(t) + fc(t) (6)

where the fault is represented as the case when some
condition changes in the system rendering the dynamic
relations (2) invalid.

The orders and parameters (structures) of the EE and SS
models (1) and (2) can be estimated from the measured
data u(t) and t(t) by means of automatic identification
procedures available in the System Identification Toolbox



in Matlab environment [15], [10]. On the other hand,
the estimation of EIV models (3) was presented in [14]
and was achieved by a software program implemented in
Matlab environment by the same author [11]. Among all the
systems presented above, the aim of the paper consists of
selecting the most accurate identified model which is able
to describe the measured data u(t) and y(t) in the “best
possible” way. Since the essence of an identified model
is its prediction aspect, we can introduce the following
performance index:

J =
m∑

i=1

1
N

N∑
t=1

(
ŷi(t) − yi(t)

)2
(7)

representing the sum of the mean square errors between the
i–th output vector ŷi(t) predicted by the different MIMO
models (1), (2) and (3) and the corresponding i–th output
measurement yi(t).

It is worth noting how another very effective way of
evaluating the adequacy and flexibility of the identified
models consists in their use for performing complete sim-
ulations (i.e. using only the initial samples of the predicted
outputs) and in comparing the obtained predictions with
the measured output samples. This procedure gives the best
results when applied to sequences different from those used
to identify the model. The mean square prediction error (7)
between the measured outputs and the ones obtained by
simulation can be used to compare the different identified
models.

III. RESIDUAL GENERATOR FUNCTION

The problem treated in this work regards the diagnosis
of faults on the basis of the knowledge of the measured
sequences u(t) and y(t).

The structure of the fault detection device is depicted
in Figure (2). The symptom or residual generation r(t) is
implemented by means of dynamic observers or Kalman
filters, driven by u(t) and y(t), in order to produce a
set of signals from which it will be possible to diagnose
faults associated to actuators, components and sensors.
As depicted in Figure (2), the symptom evaluation refers
to a logic device which processes the redundant signals
generated by the first block in order to unequivocally detect
any fault occurrence.

Residual

generation

Residual

evaluation

u(t)

y(t)
r(t)

Residuals Fault signals

Fig. 2. Logic diagram of the residual generator.

Fault diagnosis is therefore achieved through the pro-
cessing of the residual signals r(t) = y(t) − ŷ(t) =
y(t)−C x̂(t). They are obtained by comparing the system

measurements with the dynamic observer or Kalman filter
predictions designed on the basis of the identified model of
the process under diagnosis.

As an example, a dynamic observer for the SS model has
the following structure:

x̂(t + 1) = Ax̂(t) + Bu(t) + K
(
y(t) − C x̂(t)

)
(8)

x̂(t) being the observer state vector. The observer eigenval-
ues are often chosen in order to maximise fault detection
promptness and to minimise the occurrence of false alarms.
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Fig. 3. The observer (filter) residual generator scheme.

On the other hand, for the Kalman filter design, the
essential difference regards the choice of the feedback
matrix K which is computed by solving a Riccati equa-
tion. The solution of this equation requires the knowledge
also of the variance matrices of the input and the output
noises, which can be identified by means of the dynamic
Frisch scheme [13], [14], [11]. The proposed fault detection
scheme is applied to a Continuous Stirring Tank Reactor
(CSTR) process [17], the dynamic behaviour description of
which has been achieved by using a model obtained from
identification procedures.

IV. CHEMICAL PROCESS FAULT DETECTION

The aim of the study presented in this paper is to develop
a general procedure for the diagnosis of faults in a chemical
process by means of identified models of the process under
investigation.

In particular, the monitored process is a real Continuous
Stirring Tank Reactor, where the reaction between reactant
and product is exothermic. The main input variables (r = 3)
are: the reactor jacket inlet temperature Tin(t) [K], the
reactor temperature T (t) [K] and the reactor cooling water
rate q(t) [ m3

min ]. The main output (m = 4) measurements
are: the reactor jacket outlet temperature Tout(t) [K], the
product percentage conversion C(t) [%], the number av-
erage molecular weight Nm(t) [ g

mol ] and weight average
molecular weight Wm(t) [ g

mol ]. The process objective is
to maintain constant the reactor polymer production by
controlling the main input variables in despite of the unmea-
surable disturbance, i.e., the reactor impurity concentration
and fouling d(t).



The importance of this case study is that there are many
examples of reactors in industry like polymerisation reactor
[17]. The CSTR with cooling jacket is shown in Figure (4).
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Fig. 4. Schematic of the CSTR process.

Hence, the process has r = 3 control inputs, u(t) =
[Tin(t), T (t), q(t)], while the output measurements (m = 4)
are y(t) = [Tout(t), C(t), Nm(t),Wm(t)]. These actual
signals can be acquired from the real plant depicted in
Figure (4). The disturbance vector d(t) represents reactor
impurities and fouling. Constant physical properties and
constant boundary pressures of all input and output streams
are assumed.

Both process normal operating time series and faulty
data (with different amount of impurities and fouling) have
been measured from the real process. A sampling rate
of 0.5s. was used to acquire a number of N = 240
actual data sequences. The measurements acquired from the
actual chemical process have been modified for proprietary
reasons.

According to Section (II), several families of multiple
input–multiple output (MIMO) models (three inputs and
four outputs) have been identified by using a batch sequence
of normal operating data. Each MIMO model of type (1),
(2) and (3) is driven by u(t) and provides the prediction of
the output ŷ(t) for t = 1, . . . , N .

Table (I) shows the performances of the different iden-
tified models by reporting the values of the J index (7)
with respect to the identification data. Each model has been
tested also in different operating conditions and the output
reconstruction errors J are compared in Table (I). Several
time series of batch data from by reactor corresponding to
different amounts of reactor impurities and fouling (valida-
tion data) have been also exploited in order to validate the
ARX, ARMAX, BJ, SS and EIV models.

The dynamic model orders reported in Table (I) have
been chosen on the basis of the trend of J performance
index with respect to n and, in particular, when an increase
of n does not correspond to a meaningful decrease of J .

On the basis of the simulation results summarised in
Table (I), a MIMO SS model can be chosen to describe with
the “best accuracy” the monitored process dynamics. The
CSTR process data contains several faults. Some of these
faults are known (actuator fu(t) and sensor fy(t)), and other
are unknown (component or system fc(t)). Abrupt fault

TABLE I

CSTR MODEL PERFORMANCES J WITH IDENTIFICATION AND

VALIDATION DATA.

Model Order n J (Ident.) J (Valid.)
ARX (EE) 5 0.1203 0.4631

ARMAX (EE) 3 0.0067 0.0161
BJ (EE) 3 0.0826 0.0996

SS 4 0.0034 0.0081
EIV 5 0.1082 0.3511

dynamics can be associated with a step change in process
variables. On the other hand, slow developing faults can
be associated with an increase in the variability of some
process variables, e.g., a slow drift in the reaction kinetics.

In this work different fault cases have been considered:
(a) the reactor jacket inlet temperature Tin(t) (sudden ac-
tuator fault fu(t)), (b) the reactor jacket outlet temperature
Tout(t) (incipient sensor fault fy(t)) and (c) the process
fc(t) fault (reactor impurities and fouling) concerning the
product percentage conversion C(t) have been considered in
the following. Therefore, in such fault scenario, in order to
successfully perform the fault detection task, three process
measurements Tin(t), Tout(t) and C(t) are exploited. The
residual r(t) generation has been performed according to
the fault diagnosis scheme presented in Section (III).

The dynamic observers for the residual signal r(t) com-
putation can be designed on the basis of the most accurate
identified SS model of the process under diagnosis. Residual
signals are defined as r(t) = y(t) − ŷ(t), i.e. by the dif-
ference between the measured y(t) (actual measurements)
and estimated outputs ŷ(t) (provided by output estimators).

The observer eigenvalues have been selected with a trial
and error procedure in order to maximise the fault residual
sensitivity and to minimise the false alarm occurrence [11].
On the other hand, the Kalman filters design requires
the identification noise covariance matrices affecting the
input–output measurements. They have been estimated by
exploiting the Frisch scheme identification method [14],
[11].

As an example, Figure (5) represents fault–free and faulty
residual r(t) abrupt change for the case in which the
additive actuator fault fu(t) affects the reactor jacket inlet
temperature Tin(t) commencing at the sample 50 (t = 25s.).

On the other hand, Figure (6) represents the healthy
and the faulty residual r(t) slow variation for the case in
which the additive sensor fault fy(t) affects the reactor
jacket outlet temperature Tout(t) starting at the sample 150
(t = 75s.).

Finally, Figure (7) represents the fault–free and the faulty
residual r(t) changes when a reactor system fault fc(t)
affects the product percentage conversion C(t). Such a
process fault fc(t) is due to the formation of reactor
impurities and fouling.

It is worth noting that, in general, in order to achieve
the maximal fault detection capability, the measurement
corresponding to the most sensitive output y(t) to a fault



Fig. 5. Fault case (a) concerning the reactor jacket inlet temperature
Tin(t).

Fig. 6. Fault case (b) regarding the reactor jacket outlet temperature
Tout(t).

Fig. 7. Fault case (c) affecting the product percentage conversion C(t).

signal has to be selected. Moreover, with reference to this
case study, the monitored signals are enough to accomplish

fault isolation, as well [11].
Finally, the results obtained by this approach indicated

that the minimal detectable faults on the system actuator,
component and sensor are of interest for the industrial di-
agnostic applications. The main aspect of this work was the
use of linear system identification and modelling methods,
although the system considered was non–linear. This is
considered important to avoid the complexities that would
otherwise be inevitable when non–linear models are used.

There is certainly an increasing interest in the use of non–
linear methods (non–linear observers, extended Kalman
filters, fuzzy–logic methods, etc). However, as the feature
of system supervision is to monitor the operation and
performance of the system with respect to an expected point
of operation, linear system methods are still very valid.
Deviations from expected behaviour can be used to monitor
system performance changes as well as system component
malfunctions.

V. CONCLUSION

The complete design procedure for fault detection of
actuators, components and sensors in an industrial process
was described in this work. A model of the process under
investigation was obtained by selecting the most accurate
identified linear model. The fault diagnosis was performed
by using dynamic observers or Kalman filters, designed on
the basis of the linear identified model. Faults on the com-
ponent of the system, actuator and sensors were therefore
considered. It is worth observing how the presented method
did not require the physical knowledge of the process under
observation. Such a procedure was applied to the real data
acquired from an industrial chemical process.

REFERENCES

[1] R. J. Patton, P. M. Frank, and R. N. Clark, eds., Issues of Fault
Diagnosis for Dynamic Systems. London Limited: Springer–Verlag,
2000.

[2] P. M. Frank, S. X. Ding, and B. Köpper-Seliger, “Current Develop-
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