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Abstract— We consider a set of decoupled dynamical sys-
tems and an optimal control problem where cost function and
constraints couple the dynamical behavior of the systems. The
coupling is described through a connected graph where each
system is a node and, cost and constraints of the optimization
problem associated to each node are only function of its state
and the states of its neighbors. For such scenario, we propose
a framework for designing decentralized Receding Horizon
Control (RHC) control schemes.

In these decentralized schemes, a centralized RHC con-
troller is broken into distinct RHC controllers of smaller sizes.
Each RHC controller is associated to a different node and
computes the local control inputs based only on the states
of the node and of its neighbors. The proposed decentralized
control schemes are formulated in a rigorous mathematical
framework. Moreover, we highlight the main issues involved
in guaranteeing stability and constraint fulfillment for such
schemes and the degree of conservativeness that the decen-
tralized approach introduces.

I. INTRODUCTION

The interest in decentralized control goes back to the
seventies. Probably Wang and Davison were the first in [1]
to envision the “increasing interest in decentralized control
systems” when “control theory is applied to solve problems
for large scale systems”. Since then the interest has grown
more than exponentially despite some non-encouraging re-
sults on the complexity of the problem [2]. Decentralized
control techniques today can be found in a broad spectrum
of applications ranging from robotics and formation flight
to civil engineering. Such a wide interest makes a survey of
all the approaches that have appeared in the literature very
difficult and goes also beyond the scope of this paper.

Approaches to decentralized control design differ from
each other in the assumptions they make on: (i) the kind
of interaction between different systems or different compo-
nents of the same system (dynamics, constraints, objective),
(ii) the model of the system (linear, nonlinear, constrained,
continuous-time, discrete-time), (iii) the model of informa-
tion exchange between the systems, (iv) the control design
technique used.

Dynamically coupled systems have been the most stud-
ied [1], [3], [4]. In this paper we focus on decoupled
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systems. In a descriptive way, the problem of decentral-
ized control for decoupled systems can be formulated as
follows. A dynamical system is composed of (or can be
decomposed into) distinct dynamical subsystems that can
be independently actuated. The subsystems are dynamically
decoupled but have common objectives and constraints
which make them interact with each other. Typically the
interaction is local, i.e. the goal and the constraints of a
subsystem are function of only a subset of other subsystems’
states. The interaction will be represented by an “interaction
graph”, where the nodes represent the subsystems and an
arc between two nodes denotes a coupling term in the
goal and/or in the constraints associated to the nodes. Also,
typically it is assumed that the exchange of information has
a special structure, i.e., it is assumed that each subsystem
can sense and/or exchange information with only a sub-
set of other subsystems. Often the interaction graph and
the information exchange graph coincide. A decentralized
control scheme consists of distinct controllers, one for
each subsystem, where the inputs to each subsystem are
computed only based on local information, i.e., on the states
of the subsystem and its neighbors.

Our interest in decentralized control for dynamically
decoupled systems arises from the abundance of networks
of independently actuated systems and the necessity of
avoiding centralized design when this becomes compu-
tationally prohibitive. Networks of vehicles in formation,
production units in a power plant, cameras at an airport,
an array of mechanical actuators for deforming a surface
are just a few examples. Each network has its peculiarity.
In formation flight for instance the coupling constraints
model collision avoidance. The interaction graph is full
(each vehicle has to avoid all the other vehicles) but it is
often approximated with a time-varying graph based on a
“closest spatial neighbors” model.

We will make use of Receding Horizon Control (RHC)
schemes [5]. Recently, centralized RHC schemes applied
to formation flight have appeared in [6], [7]. In [8] de-
centralized RHC and potential functions have been used
for flying multiple autonomous helicopters in a dynamical
environment.

In this paper we take explicitly into account constraints
and use the model of the neighbors to predict their behavior.
In this respect, the “boids” control strategy [9] can be seen
as a special case of decentralized RHC when the prediction
horizon is one. We describe a framework for designing
decentralized RHC control schemes, where a centralized



RHC controller is broken into distinct RHC controllers
of smaller sizes. Each RHC controller is associated to a
different node and computes the local control inputs based
only on the states of the node and of its neighbors. In
general, computation is distributed over the nodes and the
number of RHC controllers is smaller than the total number
of nodes.

The main issue regarding decentralized schemes is that
the inputs computed locally are, in general, not guaranteed
to be globally feasible and to stabilize the overall team. In
general, stability and feasibility of decentralized schemes
are very difficult to prove and/or too conservative. A scheme
with stability guarantees has been proposed in [10] for
dynamically coupled systems, with information exchange
between nodes and contractive stability constraints in the
distributed RHC subproblems.

We will formulate decentralized control schemes in a
rigorous mathematical framework, without giving any proof
of feasibility and stability. Instead, we will highlight the
main issues involved in guaranteeing stability and con-
straint fulfillment for such schemes and briefly discuss
their conservativeness. We will show the applicability of
the proposed approach when decentralized schemes are
used for controlling a set of vehicles in formation flight.
Simulation examples will be used to investigate the effect
of cost weights and horizon lengths on the feasibility of the
decentralized RHC schemes. We will also point out some
interesting behaviors of the decentralized scheme which are
different from what is observed in standard centralized RHC
control theory.

II. PROBLEM FORMULATION

Consider a set of Nv decoupled dynamical systems,
the i-th system being described by the discrete-time time-
invariant state equation:

xi
k+1 = f i(xi

k, ui
k) (1)

where xi
k ∈ R

ni

, ui
k ∈ R

mi

, f i : R
ni

× R
mi

→ R
ni

are state, input and state update function of the i-system,
respectively. Let X i ⊆ R

ni

and U i ⊆ R
mi

denote the set of
feasible inputs and states of the i-th system, respectively:

xi
k ∈ X i, ui

k ∈ U i, k ≥ 0 (2)

We will refer to the set of Nv constrained systems as team
system. Let x̃k ∈ R

Nv×ni

and ũk ∈ R
Nv×mi

be the vectors
which collect the states and inputs of the team system at
time k, i.e. x̃k = [x1

k, . . . , xNv

k ], ũk = [u1
k, . . . , uNv

k ], with

x̃k+1 = f(x̃k, ũk) (3)

We denote by (xi
e, u

i
e) the equilibrium pair of the i-th

system and (x̃e,ũe) the corresponding equilibrium for the
team system.

So far the systems belonging to the team system are com-
pletely decoupled. We consider an optimal control problem
for the team system where cost function and constraints
couple the dynamic behavior of individual systems. We use

a graph topology to represent the coupling in the following
way. We associate the i-th system to the i-th node of the
graph, and if an edge (i, j) connecting the i-th and j-th
node is present, then the cost and the constraints of the
optimal control problem will have a component which is a
function of both xi and xj . The graph will be undirected,
i.e. (i, j) ∈ A ⇒ (j, i) ∈ A. Before defining the optimal
control problem, we need to define a graph

G = {V,A} (4)

where V is the set of nodes V = {1, . . . , Nv} and A ⊆
V × V the sets of arcs (i, j) with i ∈ V, j ∈ V .

Once the graph structure has been fixed, the optimization
problem is formulated as follows. Denote with x̃i the states
of all neighboring systems of the i-th system, i.e. x̃i =
{xj ∈ R

nj

|(j, i) ∈ A}, x̃i ∈ R
ñi

with ñi =
∑

j|(j,i)∈A nj .

Analogously, ũi ∈ R
m̃i

denotes the inputs to all the
neighboring systems of the i-th system. Let

gi,j(xi, ui, xj , uj) ≤ 0 (5)

define the interconnection constraints between the i-th and
the j-th systems, with gi : R

ni

× R
mi

× R
nj

× R
mj

→
R

nci,j . We will often use the following shorter form of the
interconnection constraints defined between the i-th system
and all its neighbors:

gi(xi, ui, x̃i, ũi) ≤ 0 (6)

with gi : R
ni

× R
mi

× R
ñi

× R
m̃i

→ R
nci .

Consider the following cost

l(x̃, ũ) =

Nv
∑

i=1

li(xi, ui, x̃i, ũi) (7)

where li : R
ni

×R
mi

×R
ñi

×R
m̃i

→ R is the cost associated
to the i-th system and is a function of its states and the states
of its neighbor nodes. Assume that l is a positive convex
function and that li(xi

e, u
i
e, x̃

i
e, ũ

i
e) = 0 and consider the

infinite time optimal control problem

J̃∗
∞(x̃) , min

{ũ0,ũ1,...}

∞
∑

k=0

l(x̃k, ũk) (8)

subj. to















































xi
k+1 = f i(xi

k, ui
k),

i = 1, . . . , Nv, k ≥ 0

gi,j(xi
k, ui

k, x
j
k, u

j
k) ≤ 0,

i = 1, . . . , Nv, k ≥ 0,
(i, j) ∈ A

xi
k ∈ X i, ui

k ∈ U i,

i = 1, . . . , Nv, k ≥ 0
x̃0 = x̃

(9)

For all x̃ ∈ R
Nv×ni

, if problem (9) is feasible, then
the optimal input ũ∗

0, ũ
∗
1, . . . will drive the Nv systems to

their equilibrium points xi
e while satisfying state, input and

interconnection constraints.
Remark 1: Throughout the paper we assume that a so-

lution to problem (9) exists and it generates a feasible



and stable trajectory for the team system. Our assumption
is not restrictive. If there is no infinite time centralized
optimal control problem fulfilling the constraints, then there
is no reason to look for a decentralized receding horizon
controller with the same properties.

With the exception of a few cases, solving an infinite
horizon optimal control problem is computationally pro-
hibitive. An infinite horizon controller can be designed
by repeatedly solving finite time optimal control problems
in a receding horizon fashion as described next. At each
sampling time, starting at the current state, an open-loop
optimal control problem is solved over a finite horizon.
The optimal command signal is applied to the process only
during the following sampling interval. At the next time step
a new optimal control problem based on new measurements
of the state is solved over a shifted horizon. The resultant
controller is often referred to as Receding Horizon Control
(RHC). More specifically, assume at time t the current state
x̃t to be available and consider the following constrained
finite time optimal control problem

J̃∗
N (x̃t) , min

{Ut}

N−1
∑

k=0

l(x̃k,t, ũk,t) + lN (x̃N,t) (10a)

subj. to































































xi
k+1,t = f i(xi

k,t, u
i
k,t),

i = 1, . . . , Nv, k ≥ 0

gi,j(xi
k,t, u

i
k,t, x

j
k,t, u

j
k,t) ≤ 0,

i = 1, . . . , Nv, (i, j) ∈ A,

k = 1, . . . , N − 1
xi

k,t ∈ X i, ui
k,t ∈ U i

i = 1, . . . , Nv,

k = 1, . . . , N − 1
x̃N,t ∈ Xf ,

x̃0,t = x̃t

(10b)

where N is the prediction horizon, Xf ⊆ R
Nv×ni

is
a terminal region, lN is the cost on the terminal state.
In (10) we denote with Ut , [ũ0,t, . . . , ũN−1,t]

′ ∈ R
s,

s , Nv × mN the optimization vector, xi
k,t denotes the

state vector of the i-th node predicted at time t+k obtained
by starting from the state xi

t and applying to system (1)
the input sequence ui

0,t, . . . , u
i
k−1,t. The tilded vectors will

denote the prediction vectors associated to the team system.
Let U∗

t = {ũ∗
0,t, . . . , ũ

∗
N−1,t} be the optimal solution

of (10) at time t and J̃∗
N (x̃t) the corresponding value

function. Then, the first sample of U ∗
t is applied to the

team system (3)
ũt = ũ∗

0,t. (11)

The optimization (10) is repeated at time t + 1, based on
the new state xt+1.

It is well known that stability is not ensured by the RHC
law (10)–(11). Usually the terminal cost lN and the terminal
constraint set Xf are chosen to ensure closed-loop stability.
A treatment of sufficient stability conditions goes beyond
the scope of this work and can be found in the surveys [5],
[11]. We assume that the reader is familiar with the basic

concept of RHC and its main issues, we refer to [5] for a
comprehensive treatment of the topic. In this paper we will
assume that terminal cost lN and the terminal constraint set
Xf have been appropriately chosen in order to ensure the
stability of the closed-loop system.

In general, the optimal input ui
t to the i-th system

computed by solving (10) at time t, will be a function
of the overall state information x̃t. The main objective
of this work is to describe how problem (10) can be
decomposed into smaller subproblems whose independent
computation can be distributed over the graph nodes. We
propose a decentralized control scheme where problem (10)
is decomposed into Nv finite time optimal control problems,
each one associated to a different node. The i-th subproblem
will be a function of the states of the i-th node and the
states of its neighbors. The solution of the i-th subproblem
will yield a control policy for the i-th node of the form
ui

t = f i(xi
t, x̃

i
t).

Remark 2: The techniques presented next will be mean-
ingful only if the graph G is not a full graph. Often,
the interconnection graph is not fully connected because
of the nature of the problem. For instance, each node
could represent a production unit of a certain plant and the
production of a node could be related to only a few other
units of the plant. Also the interconnection graph is not fully
connected because some constraints associated to certain
arcs are implicitly satisfied by interconnection constraints
associated to other arcs. In formation flight, G is a full graph
which describes the constraints between each node (since
each vehicle has to keep a certain distance form all the other
vehicles of the formation). Rigid graph topology [7], [12]
can be used to implicitly enforce constraints between two
vehicles not connected by any arc of the graph. More often,
time-varying graph topology based on a closest neighbor
principle is used. In this work we focus on fixed graph
topology. Time-varying graph topologies have been studied
in [13].

Remark 3: In the formulation above, we are assuming
that the equilibrium (x̃e, ũe) of the formation is known a
priori. The equilibrium of the formation can be defined in
several other different ways. For instance, we can assume
that there is a leader (real or virtual) which is moving
and the equilibrium is given in terms of distances of each
vehicle from the leader. Also, it is possible to formulate
the equilibrium by using relative distances between vehicles
and signed areas [7]. The approach of this paper does not
depend on the way the formation equilibrium is defined, as
long as this is known a priori. In some formation control
schemes, the equilibrium is not known a priori, but is the
result of the evolutions of decentralized control laws. The
approach of the paper is not applicable to such schemes.

III. DECENTRALIZED CONTROL SCHEME

Consider the overall problem: systems (1), graph G, and
RHC policy (10)-(11). Consider the i-th system and the
following finite time optimal control problem Pi:



min
Ũi

t

N−1
∑

k=0

li(xi
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) + liN (xi

N,t, x̃
i
N,t) (12a)

subj. to



















































































































xi
k+1,t = f i(xi

k,t, u
i
k,t), k ≥ 0

xi
k,t ∈ X i, ui

k,t ∈ U i,

k = 1, . . . , N − 1

x
j
k+1,t = f j(xj

k,t, u
j
k,t),

(j, i) ∈ A, k ≥ 0

x
j
k,t ∈ X j , u

j
k,t ∈ U j ,

(j, i) ∈ A,

k = 1, . . . , N − 1

gi,j(xi
k,t, u

i
k,t, x

j
k,t, u

j
k,t) ≤ 0,

(i, j) ∈ A,

k = 1, . . . , N − 1
gq,r(xq

k,t, u
q
k,t, x

r
k,t, u

r
k,t) ≤ 0,

(q, i) ∈ A, (r, i) ∈ A,

k = 1, . . . , N − 1

xi
N,t ∈ X i

f , x
j
N,t ∈ X j

f , (i, j) ∈ A

xi
0,t = xi

t, x̃i
0,t = x̃i

t,

(12b)

where Ũ i
t , [ui

0,t, ũ
i
0,t, . . . , u

i
N−1,t, ũ

i
N−1,t]

′ ∈ R
s, s ,

(m̃i + mi)N denotes the optimization vector. Denote by
Ũ i∗

t = [u∗i
0,t, ũ

∗i
0,t, . . . , u

∗i
N−1,t, ũ

∗i
N−1,t] the optimizer of

problem Pi. Note that problem Pi involves only the state
and input variables of the i-th node and its neighbors.

We will define the following decentralized RHC control
scheme.

1) The i-th node at time t measures its state xi
t and the

state of all its neighbors x̃i
t.

2) Each node i solves problem Pi.
3) Each node i implements the first sample of Ũ i∗

t

ui
t = u∗i

0,t. (13)

4) Each node repeats steps 2 to 4 at time t + 1, based
on the new state information xi

t+1, x̃i
t+1.

Steps one to four describe a decentralized strategy that
uniquely defines the control inputs to the team system.
Each node knows its current states, its neighbors’ current
states, its terminal region, its neighbors’ terminal regions
and models and constraints of its neighbors. Based on such
information, each node computes its optimal inputs and
its neighbors’ optimal inputs. The input to the neighbors
will only be used to predict their trajectories and then
discarded, while the first component of the i-th optimal
input of problem Pi will be implemented on the i-th node.

Even if we assume N to be infinite, the approach de-
scribed so far does not guarantee that solutions computed
locally are globally feasible and stable (i.e. feasible for
problem (10)). The reason is simple: At the i-th node the
prediction of the neighboring state x

j
k is done independently

from the prediction of problem Pj . Therefore, the trajectory
of xj predicted by problem Pi and the one predicted
by problem Pj , based on the same initial conditions, are
different (since, in general, Pi and Pj will be different).

This will imply that constraint fulfillment will be ensured
by the optimizer u∗i

t for problem Pi but not for the overall
problem (10).

There are three main issues that arise in the decentralized
control scheme. In order to ensure central feasibility and
stability of the decentralized control scheme,

• Decoupled Terminal Cost. How does one choose the
terminal cost liN for each problem Pi?

• Decoupled Terminal Region. How does one choose the
terminal region X i

f for each problem Pi?
• Feasibility Issue. Is it enough to choose the right

decoupled terminal cost and terminal region?

We can anticipate here that the answer to the “feasibility
issue” is negative. That is, a good choice of liN and X i

f is,
in general, not sufficient to ensure stability and feasibility
of the decentralized scheme.

A. Decoupled Terminal Costs

If performance of the decentralized RHC is not critical,
then stability is not the major issue in decentralized RHC
schemes for dynamically decoupled systems. One can al-
ways sacrifice optimality of the centralized problem (10)
in order to guarantee stability. In fact, in the worst case
the cost can be chosen to be decoupled as well, i.e.
li(xi, ui, x̃i, ũi) = li(xi, ui) and each subsystem dynamics
will converge to its equilibrium. In doing so we have com-
pletely neglected the coupling term in the cost. In general, if
one writes li(xi, ui, x̃i, ũi) = li1(x

i, ui) + αli2(x̃
i, ũi), then

it can be easily proven that one can always choose α ∈ [0, 1]
such that stability is guaranteed. With α = 1 we recover the
original cost for each node and how close α can be to one
is a function of the error between predictions of neighbor’s
behavior and their real behavior. For more details we refer
the reader to the full version of this paper [14].

B. Decoupled Terminal Regions

The problem of the terminal set can be approached
in two different ways. One can start from the terminal
set Xf in problem (10) and decompose it into Nv non-
empty sets X i

f ⊂ R
ni

which will be used in (12). The

Nv sets X i
f ⊂ R

ni

can be also computed without taking
into consideration the original invariant set Xf . Often the
latter route is preferable for two main reasons; (i) it can
be computationally prohibitive to compute the invariant set
Xf in (10) for a large team of systems, (ii) it is difficult
to decompose the invariant set Xf into Nv terminal sets,
which used in (12) will guarantee the feasibility of the
decentralized control schemes.

We propose the following construction of the sets X i
f .

For each vehicle, we compute an hyper-rectangular inner
approximation of the feasible space defined by the intercon-
nection constraints which contains the equilibria (xi

e, x̃
i
e) as

follows. Consider the i-th node and the set Si,j ⊂ R
ni+nj

for (i, j) ∈ A defined by the coupling constraints gi,j :

Si,j = {xi ∈ R
ni

, xj ∈ R
nj

| gi,j(xi, xj) ≤ 0}.



Compute the sets I i
i,j and I

j
i,j satisfying

Ii
i,j × I

j
i,j ⊆ Si,j

Let Ii =
⋂

(i,j)∈A Ii
i,j and X i

f be a controlled invariant
set of the i-th system (1), subject to input and state con-
straints (2) and to the additional constraint xi

k ∈ Ii ∀k ≥ 0.
Through the procedure described above one can indepen-

dently compute Nv terminal sets X i
f which will be used in

problem (12). Such sets have the following property. If each
system enters its associated terminal set, we are ensured that
all the interconnection constraints are satisfied and that there
exists a decentralized control law which keeps each one in
its respective terminal set. The sum of the ratios between
the volumes of I i

i,j×I
j
i,j and Si,j for all (i, j) ∈ A will be a

measure of the conservativeness of the method. The smaller
this sum is, the smaller will be the region of attraction of
the decentralized control scheme. Note that the sets I i and
Ij will be convex even if Si,j is not convex.

C. Ensuring Feasibility

We have mentioned that feasibility of the decentral-
ized trajectories is the main issue in decentralized control
schemes. In this section we discuss some modification to
the original problem which can ensure feasibility.

1) Robust Constraint Fulfillment: Consider the coupling
constraints of problem Pi at step k

gi(xi
k,t, x̃

i
k,t) ≤ 0 (14)

and by using the state update equations

xi
k+1,t = f i(xi

k,t, u
i
k,t), k ≥ 0

x
j
k+1,t = f j(xj

k,t, u
j
k,t), (j, i) ∈ A, k ≥ 0

(15)

rewrite them as

gi
k(xi

t, x̃
i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ 0 (16)

where ui
[0,...,k−1] , {ui

0, . . . , u
i
k−1} and ũi

[0,...,k−1] ,

{ũi
0, . . . , ũ

i
k−1}. In order to ensure the feasibility of the

team system, a possible approach is to “robustify” the con-
straints (16) for all vehicles at all time steps. In other words,
we can require that the coupling constraints at each node
are satisfied for all possible behaviors of the neighboring
nodes, once their initial condition is known. Therefore,
the vector ũi

[0,...,k−1] can be considered as a disturbance
which can lead to possible infeasibility of constraint (16).
There are two possible schemes: open-loop and closed-
loop constraint fulfillment. An open-loop robust constraint
fulfillment is formulated next. Substitute the functions gi

k

with ḡi
k : R

ni

× R
ñi

× R
mi

→ R
ni

where

1) For all xi
t, x̃

i
t, u

i
[0,...,k−1] which satisfy

ḡi
k(xi

t, x̃
i
t, u

i
[0,...,k−1]) ≤ 0 (17)

we have

gi
k(xi

t, x̃
i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ 0

for all admissible1 ũi
[0,...,k−1].

2) The sets described by

ḡi
k(xi

t, x̃
i
t, u

i
[0,...,k−1]) ≤ 0 (18)

for i = 1, . . . , Nv k = 1, . . . , N − 1 are nonempty.

Robust closed-loop formulation [15] is less conservative
but more computationally involved. We will not describe the
details of the robust closed-loop formulation for a simple
reason. “Robust constraint fulfillment” applied to decentral-
ized control schemes results in a very conservative approach
even for the closed-loop case. For instance, consider the
case of formation flight. Assume we have only two aircraft
and we want to design a local controller on the first aircraft
using robust constraint fulfillment. The worst case scenario
will include, in most cases, the collision of the two aircraft
if they are not very far from each other and if they have
the same dynamics and constraints. However in reality,
neighboring vehicles collaborate between each other to fly
in formation.

2) Reducing Conservativeness: A less conservative ap-
proach for ensuring feasibility of the decentralized scheme
has to take into consideration that systems in a team are
cooperating, and therefore the trajectory that a node is
predicting should not be extremely different form what its
neighbors are executing. This idea can be formulated in
several ways. For instance, one could allow the exchange of
optimizers between the nodes in order to try to be as close
as possible to what the neighboring system has predicted
about a certain node. Another possibility is to tighten the
coupling constraints (6) by a quantity which is an indirect
measure of the cooperativeness of the team [10]

gi
k(xi

t, x̃
i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ εi

k (19)

where εi
k ≤ 0 is a new optimization variable. Finding

efficient methods to compute εi
k off-line, based on a priori

knowledge of the team behavior is a focus of our cur-
rent, ongoing research. Also, the idea of tightening these
constraints (19) can be exploited in a two-stage process.
In the first stage of the optimization problems (12), the
coupling constraints are substituted with the one in (19).
Their parametric solution [16] with respect to εi

k yields
the optimizer function u∗i(εi

0, . . . , ε
i
N ). In a second stage

the nodes communicate between themselves in order to
agree on a set of ε̄i

k for i = 1, . . . , Nv, k = 1, . . . , N
which ensures feasibility of the decentralized trajectories. If
the agreement algorithm ends with a positive answer, each
vehicle will implement u∗i(ε̄i

0, . . . , ε̄
i
N ).

IV. SIMULATIONS AND FINAL REMARKS

In [14], [17] the reader can find interesting simulation ex-
amples where the proposed decentralized scheme is applied
to formation flight. We simulate formation flight of vehicles
flying at a certain altitude where each vehicle is modeled as
a point mass in two dimensions with constraints on states

1admissible inputs have to satisfy constraints (2)



and inputs. The coupling between vehicles stems from the
common objective of the team (moving in formation) and its
constraints (vehicles are not allowed to violate each others
protection zones). For brevity we report here only the main
features and observations.

We use a linear model of the vehicle, piecewise-linear
cost functions and parallelepipedal protection zones so that
we can rewrite problem (12) as a Mixed Integer Linear
Program (MILP) [18], [19], for which efficient branch-and-
bound solvers are available [20]. Furthermore, assuming a
modest number of neighboring vehicles, explicit solutions
of the underlying MILP problem can be computed off-line,
which reduces the required number of calculations to a
function evaluation [21].

As in most simple decentralized schemes, even though
vehicles have only a limited knowledge of their neighbors,
the simulations show signs of a collective behavior that
could be attributed to a centralized solution. Extensive
simulations have shown that a decentralized scheme can
find reasonable solutions to cooperative problems even
though feasibility can be compromised depending on initial
conditions of the vehicles. The sizes of the protection zones
have a significant influence on overall feasibility and the
“quality” of solutions as well.

The role of the prediction horizon length is quite different
from what standard RHC theory would suggest, mainly
because of the decentralized nature of the problem. This
means, for instance, that longer horizon lengths do not
necessarily provide a better solution in general [10], since
predictions about the future behavior of neighboring vehi-
cles can be completely inaccurate. In some cases feasibility
of the decentralized scheme was lost with the use of longer
horizons.

Also, feasibility of the decentralized problem without
terminal cost and constraints is a function of the vehicles’
“strategy”. This can be influenced by selecting appropriate
weights in the cost function. For instance a larger weight
on the relative positions implies that vehicles are prompted
to reach their desired relative states (formation) and resolve
associated conflicts within a time frame that is comparable
to their horizon lengths. Once the formation is attained, the
remaining common goal of each vehicle is to “drift” to their
target points. This at the same time becomes a much simpler
objective to accomplish even in a decentralized way.

A formal stability and feasibility proof of a particular
scheme in the proposed framework which is not too conser-
vative is still under investigation. Our experience is that the
more complex the decentralized control scheme is, the more
difficult it is to give any stability or feasibility proofs. As
in most of the RHC literature, such decentralized schemes
work very well in practice even without any “theoretical
stability proof”.

Simulation examples show that the decentralized ap-
proach to formation flight can provide feasible solutions
even in challenging scenarios. A number of alternative
decentralized RHC approaches which ensure feasibility in

a decentralized way are currently under investigation [13],
[22].
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