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Abstract— We study the synthesis problem of a LQR
controller when the matrix describing the control law is
additionally constrained to lie in a particular vector space.
Our motivation is the use of such control laws to stabilize
networks of autonomous agents in a decentralized fashion;
with the information flow being dictated by the constraints
of a pre-specified topology. We formulate the problem as an
optimization problem and provide numerical procedures to
solve it. Then we apply the technique to the decentralized
vehicle formation control problem and show that the topology
can have a significant effect on the optimal cost.

I. INTRODUCTION AND MOTIVATION

Control of dynamic agents coupled to each other through
an information flow network has emerged as a topic of
major interest in recent years. Such a setting can be used to
model many real-life situations, such as air traffic control,
satellite clusters, swarms of robots, UAV formations, and
potentially such applications as the Internet. Compared
with the more traditional applications of control theory,
there are fundamentally new features introduced in this
problem. The topology of the information network can have
many effects. On one hand, it might introduce instability
if the information being fed through the network adds on
constructively to the disturbance at a node (see, e.g, [8],
[12], [10]); on the other, intuitively, it should serve as a
means for better noise rejection for the network as a whole.

However, most of the work on the problem so far has
centered on stability analysis of the formation assuming
certain control laws in place. A more general question is
that of synthesis of the control law to be used by the
agents in such a formation, such that some cost function
is optimized. The defining feature of the problem is that
while the cost function can involve all the individual agents
in the formation; the pre-specified topology of the formation
imposes constraints on the form of the control law by
limiting the information available to various agents at any
time. Thus, it is not realistic to assume that an agent would
know the state of all the other agents in the formation at any
given time and be able to use it to calculate the control input.
These features make the problem a decentralized control
problem with arbitrary information flow patterns, which is,
in general, much harder to solve than the traditional optimal
control problem.

Research in decentralized control has a long history.
Witsenhausen [23], [24] showed that under the decentral-
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ized information constraints, a linear controller might not
be optimal and also that the cost function need not be
convex in the controller variables. A discrete equivalent of
Witsenhausen’s counter-example was given in [18] where
it was also shown that the problem of finding a stabilizing
controller under the information pattern constraints is NP-
complete. For particular information structures, the problem
has been solved, e.g., see [6]. Some researchers have
also studied this problem under the assumption of spatial
invariance by using a multidimensional approach [1], [3],
[4]. Rotkowitz et al. [19] gave certain invariance conditions
under which the problem retains the convex character. A
different approach for solving the problem was inspired
by the design of reduced-order controllers (e.g. [16]) and
yielded numerical algorithms for solving the optimal linear
control with arbitrary number of free parameters [20], [22].
The vehicle formation problem was considered in [5] where
the H2 synthesis problem was posed as an optimization
problem and a sub-optimal solution presented.

In this paper, we set up the LQR problem for the problem
of controlling a network of autonomous agents with a given
information flow topology. Even if the dynamics of the
agents are not coupled and the only coupling present is due
to the cost function; the optimal control law, in general,
requires every agent to use knowledge about every other
agent. We impose a pre-specified topology on the form
of the control law which specifies the set of agents with
which a particular agent can communicate; and solve the
optimal control law for that case. The closest work to our
presentation is [22]. Since we are motivated by a concrete
problem of controlling a network of agents, we come up
with stronger results. More importantly, we come up with
a way to obtain the initial guess for numerical algorithms,
which was identified as the major problem in [22].

The outline of the paper is as follows. We address a few
mathematical preliminaries in the next section. Then we set
up and solve the constrained controller synthesis problem.
Then we show how this can be applied to the specific case of
controlling a network of autonomous agents. We see that the
specific structure of the problem can be exploited to yield
simplifications. Then we present an example to illustrate
the concepts and the method. We end with conclusions and
present some avenues for further work.

II. MATHEMATICAL PRELIMINARIES AND NOTATIONS

By a network of interconnected dynamic agents, we mean
a system of agents whose dynamics are not coupled but in
which every agent can use the information from a prescribed



set of other agents (called its out-neighbors) for calculating
its control input. The flow of information is thus described
by identifying the set of out-neighbors for each agent and
is referred to as the information flow topology. Consider a
network of n agents. Together with the information flow
topology, the network can be represented by a graph in
which the agents are vertices and allowed communication
links are edges. We refer to the agents variously as vertices,
nodes or vehicles and the network as a graph or a formation.
We define the Laplacian of a graph as L = D −A, where
D is the degree matrix and A is the adjacency matrix of
the graph. Consider the system evolving in time according
to the equation

x[k + 1] = Fx[k].

We say that the system is (asymptotically) stable, or that F
is (asymptotically) stable, if F has all its eigenvalues on or
inside (strictly inside) the unit circle and all the eigenvalues
on the unit circle are simple.

We denote the expectation of a random variable X by
E[X]. The covariance matrix of a random variable X with
zero mean is defined by E

[

XXT
]

. It is always a positive
semi-definite matrix.

III. THE OPTIMAL CONSTRAINED CONTROL LAW

Consider the following system

x[k + 1] = Ax[k] +Bu[k]

u[k] = Fx[k],

where the initial condition x[0] is random and is Gaussian
with zero mean and covariance R0. In the above equations,
x[k] ∈ R

n is the state of the system and u[k] ∈ R
m is the

control input. We denote the covariance of the state at time
step k by Rk. Suppose we wish to find the control law F
that minimizes the cost function

J = E

[

∞
∑

k=0

{xT [k]Qx[k] + uT [k]Ru[k]}
]

, (1)

where Q is positive definite while R is positive semi-
definite. This is the classical LQR design problem solved
through the discrete-time algebraic Riccati equation.

Now suppose that we wish to additionally constrain the
control law to lie within a space spanned by the basis
vectors {Φj , j = 1, 2, . . . , N}. It is fairly obvious that the
optimal constrained control law would not, in general, be
the projection of the optimal control law on to the space
we are interested in. This is reminiscent of the fact that
the optimal causal estimate for a random variable is not
the same as the projection of the general optimal estimate
on to the causal sub-space [13]. Also note that requiring a
priori that the controller be linear might be a non-trivial
assumption. But this allows us to derive algorithms for
solving the problem and leads to sharper results.

Assume that a F exists in the required space, such that
A+BF is stable. Then for that F , we obtain from (1)

J = E
[

xT [0]Px[0]
]

,

where P is defined by

P =
∞
∑

i=0

((A+BF )T )i(Q+ FTRF )(A+BF )i.

It is apparent from the definition of P , that it satisfies the
discrete algebraic Lyapunov equation (see, e.g., [9])

P = (Q+ F TRF ) + (A+BF )TP (A+BF ). (2)

Thus the cost is given by J = trace(PR0), where, as
defined above, R0 is the covariance of the initial condition
x[0]. We will call the system stabilizable if there exists a
control law in the desired space such that A+BF is stable.
Assuming that the system is stabilizable, we wish to find
the scalar coefficients α1, α2, . . . , αN such that the control
law

F =
N

∑

i=1

αiΦi

minimizes the cost J = trace(PR0), where P satisfies (2)
and A + BF is stable. By the properties of the Lyapunov
equation, if (A+BF ) is stable, P is positive semi-definite.

A. The Case where Noise is Present

Suppose that the system evolves as

x[k + 1] = Ax[k] +Bu[k] + w[k]

u[k] = Fx[k].

The additional term w[k] is stationary white Gaussian noise
with zero mean and covariance Rw. Since the random noise
goes on till infinite time, the cost function considered in (1)
will diverge. Thus we need to reconsider what we mean
by optimizing the cost function here. Following [15], we
consider the following cost function

J = lim
i→∞

E
[

xT [i]Qx[i] + uT [i]Ru[i]
]

.

Due to the assumed stabilizability, this cost function does
not depend on the initial condition x[0]. Then by a deriva-
tion similar to the one given above and using the fact that the
control law F is stabilizing, we can write J = trace (PRw) ,
where P is defined as before by (2). So we see that this
problem reduces to the formulation stated above if we
redefine R0 to be Rw. From now on, we will study only
the original formulation, assuming that such re-definitions
have been carried out.

B. Finding a Necessary Condition for the Optimal Solution

This sub-section is on the lines of the analysis presented
in [22]. We wish to find F =

∑N
i=1 αiΦi such that

trace(PR0) is minimized, where P satisfies (2). For a
critical point,

trace

(

∂P

∂αi
R0

)

= 0,∀i = 1, 2, . . . , N.

If we define

Σi = ΦTi [RF +BTP (A+BF )], (3)



we obtain from (2) that trace
(

∂P
∂αi

R0

)

equals

trace

(

(

(A+BF )T
∂P

∂αi
(A+BF ) + Σi + ΣTi

)

R0

)

.

Further using the fact that trace(AB) = trace(BA), and
that the covariance of the state at time k, Rk, evolves as

Rk+1 = (A+BF )Rk(A+BF )T ,

yields

trace

(

(A+BF )T
∂P

∂αi
(A+BF )R0

)

= trace(
∂P

∂αi
R1).

Using the above relation k times, we obtain

trace

(

∂P

∂αi
R0

)

= trace

(

∂P

∂αi
Rk + ΣiXk + ΣTi Xk

)

,

where
Xk = R0 +R1 + · · · +Rk.

But if (A + BF ) is stable, Rk would be approximately a
zero matrix for sufficiently large values of k. Thus if we
denote

X = R0 +R1 +R2 + . . . ,

so that X satisfies the Lyapunov equation

X = R0 + (A+BF )X(A+BF )T , (4)

the necessary condition for a critical point can be written
as follows. We want

trace
(

ΣiX + ΣTi X
)

= 0,∀i = 1, . . . , N, (5)

where F =
∑N
i=1 αiΦi, P satisfies (2), Σi is defined by

(3) and X satisfies (4).
Note that if Φi denotes a matrix with all elements zero

except the (ji, ki)th element being unity; the necessary
condition given in (5) reduces to
[(

BTP (A+BF ) +RF
)

X
]

ji,ki
= 0,∀i = 1, 2, . . . , N,

where [A]ij denotes the (i, j)-th element of the matrix A.
Thus in the particular case when F has no restrictions on
its structure we get back the usual condition

BTP (A+BF ) +RF = 0.

C. A Gradient Descent Method

One method to obtain the control law is to solve (5)
iteratively. Alternatively, we can also use a gradient search
algorithm for the minimization problem. The algorithm is
given by

1) Initialize:
a) Start from an initial guess of the set {αi}.
b) Solve (2) for P using this value of the control

law.
c) Check if P is positive semi-definite. If yes, pro-

ceed to the update step; else repeat initialization
with another guess.

2) Update:
a) Solve for ∂P

∂αi
using (2) and the set {αi}.

b) Calculate the cost trace(PR0) and the gradient
of the cost trace( ∂P

∂αi
R0).

c) Update the guess by changing the current guess
{αi} by some constant amount δ times the
gradient of the cost function.

d) Resolve (2) for P using this value of the control
law.

e) i) Check if P is positive semi-definite.
ii) Check if this value of P reduces the cost.

iii) If both i and ii are true, proceed to the next
step. Otherwise, reduce δ by a half and again
try to update. If stuck on this step for a long
time, declare minima reached and terminate.

f) Adopt the updated value of guess as the current
guess and go through the update step again.

Note that there exist in the literature (e.g. [22]) so-
phisticated methods to generate the initial values of the
control law which are stabilizing and satisfy the topological
constraints. However, as indicated in the next section, for
our application, there exists a particularly simple way to
generate the initial guess. Also, we have presented a very
elementary version of the gradient search algorithm. Ways
to make it more efficient and fast can readily be thought of.

Convergence Issues: As discussed later, in our specific
problem, there is always a way to generate an admissible
initial guess. Thus the algorithm will always provide us with
a solution. Numerical evidence suggests that in our problem
the algorithm converges to a global minimum; however we
have not been able to prove it. In some special cases (say
when A, B and Q are the identity matrices, R is zero and F
is constrained to be symmetric, corresponding to one of the
cases considered in [25]) the problem becomes a convex
problem; hence the algorithm does converge to a global
minimum.

D. Additional Results

We can consider the question whether we can at all
control (or stabilize) the system with control laws in a
particular space. The question reduces to whether we can
control the zeros of the polynomial det(λI − A − BF )
by choosing F appropriately. A sufficient condition can be
derived by using the implicit function theorem (e.g., [17])
and is omitted for space constraints. Bounds on the cost
function can also be derived by using the bounds on the
solution of the discrete algebraic Lyapunov equation (e.g.,
[7], [14]).

IV. APPLICATION TO CONTROL OF INTERCONNECTED

DYNAMIC AGENTS

As discussed above, the motivating example for the
constrained synthesis problem is synthesis of a control law
for a formation of interconnected agents. In this section, we
cast this problem into the framework discussed above and
discuss the decentralized implementation of the control law.



We assume that the topology of the network is fixed and
given. Moreover the topology is known to all the agents.
If that is not the case, we might need to run a broadcast
algorithm to exchange the topology information among
the nodes. We want the control law to be decentralized
in the sense that it should respect the topology for the
measurements available to each node. Thus no node should
need to access the information not directly available to it
from its neighbors. Further we assume that the links are
ideal when they exist. Finally, for simplicity, we assume
that the full state of the agents is observed and measured.
The generalization to output feedback is easily done.

Suppose the i-th agent is described by

Xi[k + 1] = ΦXi[k] + ΓUi[k],

where the control law Ui[k] is given by

Ui[k] = F 1
i Xi[k] +

∑

all out-neighbors j

F 2
ij

(

Xi[k] −Xj [k]
)

.

The system now evolves according to

X[k + 1] = (I ⊗ Φ)X[k] + (I ⊗ Γ)U [k]

U [k] = (diag(F 1
i ) + Lgen)X[k],

where X[k] is the system state obtained by stacking the
states of individual agents, I is identity matrix of suitable
dimension and diag(F 1

i ) is a block diagonal matrix with
F 1
i ’s along the diagonal and zero matrices elsewhere. Lgen

is a generalization of the Laplacian matrix of the graph and
is formed as follows. Create the adjacency matrix A for
the network. Then replace each unity element that is at the
(i, j)-th place by −F 2

ij . Replace the diagonal element in the
i-th row by a matrix which is the sum of all matrices F 2

ij

for fixed i and all possible j. Rest of the zero elements are
replaced by zero matrices of appropriate dimensions.

Thus it can be seen that the problem is within the
framework considered in the previous section. We solve for
the optimal control law pertaining to the following system

X[k + 1] = (I ⊗ Φ)X[k] + (I ⊗ Γ)U [k]

U [k] = FX[k],

with the additional constraint that F should have those
elements as 0 which correspond to zero entries in the Lgen

of the interconnection topology formed as above. F can
then readily be cast in the form diag(F 1

i ) + Lgen and the
matrices F 1

i and F 2
i,j obtained.

Remarks:
1) It may be noted that since each node knows the

topology of the network, it knows the space within
which the matrix F should lie. Thus every node can
carry the calculation given above in parallel to obtain
the optimal control law for the whole system. Then
it can extract the control law that it needs to apply.

2) If all the vehicles are not identical, a similar procedure
can be applied. The matrices I ⊗ Φ and I ⊗ Γ will
be replaced by block diagonal matrices diag(Φi) and
diag(Γi), but other details remain similar.

A. Stabilizability

We wish to answer the question if it is possible to
stabilize a formation when the vehicles are individually not
stable. We have the following result.

Theorem 1: Consider a formation of interconnected dy-
namic agents as defined in section II.

1) A formation is controllable if and only if each indi-
vidual agent is controllable.

2) A formation is stabilizable if and only if each indi-
vidual agent is stabilizable.

Proof: The proof is relatively straight-forward. We
write the controllability matrices of the formation and of
the agent and use the standard properties of Kronecker
products. We readily obtain that the controllability matrix
of the formation is full rank if and only if each individual
agent is controllable. Further the subspace not spanned by
the columns of the controllability matrix of the formation
is the same as the uncontrollable subspace of the agents.

Remarks:

1) Note that the theorem holds for both identical and
different agent dynamics as well.

2) In our case, this result is important since it can be uti-
lized to generate the starting guess for the numerical
algorithms presented before. We find the control law
required by each vehicle to stabilize itself while using
only its own information. The initial guess can always
be the block diagonal matrix formed by stacking this
law along the diagonal of a matrix. This will always
be a control law which stabilizes the formation, yet
satisfies the topological constraints. Thus we are rid
of the problem of choosing initial guesses for the
algorithms. As discussed in [22], generating suitable
initial guesses for the general case is a non-trivial
task.

B. The Completely Decentralized Case

We consider the case where no agent has access to
measurements of states of other agents. This case is in-
teresting since we can analytically calculate the optimal
control law and evaluate the cost. Moreover, since we
always allow absolute measurements of the vehicle’s own
state, the control matrix always has at least the diagonal
elements non-zero. Thus a lower bound for the cost for any
topology is given by the cost achievable for the completely
decentralized case.

For simplicity, we consider the case for the agent dynam-
ics being a single integrator. We denote the (i, j)-th element
of matrix P by [P ]i,j . If we let Φi be the matrix with zeros
everywhere except the (i, i)-th element, we know that the
optimal control law is of the form

F =
∑

i

αiΦi,

such that F satisfies

[(hP (I + hF ) +RF )X]i,i = 0,∀i.



The matrix X satisfies the Lyapunov equation

X = (I + hF )X(I + hF )T +R0.

Assume that all the initial states are independent of each
other; thus R0 is a diagonal matrix. X satisfies

X =
∞
∑

k=0

(I + hF )kR0((I + hF )k)T ,

and thus X is also a diagonal matrix. The (i, i)-th element
is given by

[X]i,i =
[R0]i,i

1 − (1 + h[F ]i,i)2
.

Note that as long as the initial cost is randomly chosen,
no diagonal element of X can be zero. The condition for
optimal F reduces to

[hP (I + hF )X]i,i + [RFX]i,i = 0,

which, in turn, reduces to
(

[hP (I + hF )]i,i + [RF ]i,i

)

[X]i,i = 0.

Now since no diagonal element of X is 0, this yields

[hP (I + hF )]i,i + [RF ]i,i = 0,

or finally

h[P ]i,i + h2[P ]i,i[F ]i,i + [R]i,i[F ]i,i = 0.

But since P is given by

P =

∞
∑

k=0

((I + hF )T )k(FTRF +Q)(I + hF )k,

thus [P ]i,i is calculated to be

[P ]i,i =

∞
∑

k=0

(1 + h[F ]i,i)
2k[FTRF +Q]i,i.

Thus only the diagonal terms of Q and R play a role. The
element [P ]i,i evaluates to

[P ]i,i =
([F ]i,i)

2[R]i,i + [Q]i,i
1 − (1 + h[F ]i,i)2

.

The optimal control law and the resulting cost can be readily
calculated. We see that if we do not allow the vehicles to
talk to each other, the off-diagonal terms of the cost matrices
do not matter. Moreover, in this case, the cost simply turns
out to be the sums of the costs incurred in controlling
individual vehicles using their own state measurements with
the cost function using only the diagonal terms of the
cost function matrices. Also note that this analysis holds
for the cases of all vehicles not being the same and also
for general plant dynamics where we talk about block
diagonal matrices. However it breaks down if, e.g., the
initial conditions are not all independent. As stated above,
this analysis provides a lower bound for the cost incurred
in any topology. Similarly the completely centralized case
provides an upper bound for the cost achieved by any
topology.

C. Example

We now consider an example to illustrate the issues in-
volved. We use the dynamics of each agent as the dynamics
of the Caltech Multi Vehicle Wireless Testbed vehicles, as
described in [2], [21]. The non-linear dynamics are given
by

mẍ = −µẋ+ (FL + FR) cos(θ)

mÿ = −µẏ + (FL + FR) sin(θ)

Jθ̈ = −ψθ̇ + (FR − FL)rf .

FL and FR are the inputs, m = 0.749kg is the mass of ve-
hicle, J = 0.0031kg m2 is the moment of inertia, µ = 0.15
kg-s is the linear frictional coefficient, ψ = 0.005kgm2/s
is the rotational friction coefficient and rf = 0.089m is the
distance from the center of mass of the vehicle to the axis
of the fan. On linearizing the dynamics about the straight
line y = x at a velocity of 1ms−1 along the x and y axes,
we obtain the linearized dynamics of each agent described
according to

Ẋ =AX +BU U = FX

X =
[

x y θ ẋ ẏ θ̇
]T

U =
[

FL FR
]T

A =

















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0
−(Fn

L +Fn
R) sin(θn)
m

−µ
m

0 0

0 0
(Fn

L +Fn
R) cos(θn)
m

0 µ
m

0

0 0 0 0 0 −ψ
J

















B =

















0 0
0 0
0 0
cos(θn)
m

cos(θn)
m

sin(θn)
m

sin(θn)
m

−rf

J

−rf

J

















θn =
π

4
FnL = FnR =

µ√
2
.

We discretize the above equations with a step size h = 0.2.
We consider 8 vehicles starting from an octagonal formation
and consider the topologies possible as the communication
radius of each vehicle is increased. It is apparent that by
symmetry there are 5 distinct topologies possible, with each
vehicle talking to 0, 2, 4, 6 and 7 other vehicles respectively.
The initial covariance matrix R0 is the identity matrix. The
cost function matrix R is also identity while the matrix Q
is randomly generated. A typical curve for the varying of
the costs as the communication radius is increased is given
in figure 1.

Following general conclusions can be drawn for the
example from the plot.

1) As more and more communication is allowed, the cost
goes down.
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Fig. 1. As the communication radius is increased, the cost goes down.

2) The marginal utility of each communication link
decreases as more and more links are added. However
this might simply be due to the fact that the edges
added later bring the data of far-away vehicles which
is not so important for stabilization.

V. CONCLUSIONS AND FUTURE WORK

In this paper, motivated by the problem of synthesis of
optimal control laws for interconnected network of agents,
we considered the synthesis of a LQR optimal control law
which is constrained to lie in a particular space. We pre-
sented equations which can be iteratively solved to obtain
the desired control law or used in a simple gradient descent
algorithm for optimization. We saw that for the networked
autonomous agents problem the numerical algorithms are
free from the initial guess issues which are a big hurdle
in the general problem. We discussed the implementation
of the control laws so obtained in a decentralized fashion
for the formation problem. We presented an example which
illustrated the intuitive fact that communication in general
helps to bring down the cost.

The work can potentially be extended in many ways. The
most obvious direction is to consider the case when the
nodes do not have an accurate or complete knowledge of the
entire network. It would be interesting if we could evaluate
the cost if the nodes utilize the information corresponding
only to the neighboring nodes. Another avenue is to look
at the issue of optimal topology. In general, the optimal
cost is achieved by the fully centralized topology which is
equivalent to every vehicle talking to every other vehicle.
We might, however, be interested in putting additional con-
straints on the topology such as limiting the total number of
links for reasons of congestion. Assuming identical vehicles
and a symmetric cost function, a brute-force search on non-
isomorphic graphs (see, e.g., [11]) is sufficient, rather than
on all graphs on n-vertices. Even though that represents a
huge reduction in number of graphs to be searched (e.g.,

for 5 vertices, we need to search only 34 graphs out of a
possible 1024), a method better than brute-force search is
desirable for large problems.
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