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Abstract— We develop convex conditions that are necessary
and sufficient for the existence of a controller that yields a
closed loop that achieves consensus. The conditions generate
controllers with no particular communication structure, but
with optimal H2 performance on the non-consensus part of
the closed loop. We further explore the conditions to impose
topology on the interconnection structure generated by the
controllers. This is achieved by restricting a certain Lyapunov
matrix to be block diagonal, in order to produce convex
synthesis results.

I. I NTRODUCTION

Recently there has been a large interest in the coordina-
tion of groups of mobile agents, some examples are [4], [5],
[7], [9]. One very important problem in that setting is that
of agreement, or consensus, between the agents. A system
composed of subsystems (or agents) achieves consensus
with respect to a certain state variable of interest if for any
set of initial conditions, the value of that variable for each
agent converges to the same value for all agents.

Research on this problem started in the field of computer
science, but only recently acceptable proofs of convergence
for consensus protocols have been made. Moreover, the
connection between physical consensus phenomena present
in schooling fish, flocking birds, herds, have motivated
investigation of such properties, along with potential appli-
cations in the design of controllers for systems composed
of agents such as formation flight [4], [5], [6], platoons of
vehicles [12], large segmented telescopes [8]. For example,
in [7] and some references therein a motivating example is
the heading of agents moving in the plane with constant
velocity. The authors prove that a “nearest-neighbor” type
of rule guarantees that the system achieves a consensus in
the headings, as long as the graph that defines the intercon-
nections remains connected most of the time. In much of
that and other work in this area, the focus is on relating
graph-theoretical tools to consensus of the interconnected
system. One such example is in [4], where a decentralized
control is used to yield a system that stabilizes a formation,
therefore achieving consensus. Also the work in [9] shows
that for the case where each agent has scalar dynamics,
a protocol defined by the Laplacian of the interconnection
graph yields a system that achieves consensus even under
the assumption of bounded control, or in the presence of
time delay in the links.

Most of the work in this area (e.g, [7], [9]) involves
imposing a priori a specific control law and subsequently
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analyzing its dynamics. For example, in [9] it is shown that
consensus can be achieved if the controller interconnection
graph has certain properties. Since they are essentially
analyses, these methods provide no means for a direct
search for a controller while optimizing a performance
criterion.

The objective of this paper is to characterizeall consensus
achieving controllers, and then to provide synthesis methods
to impose topological information structure on the resulting
controllers. In this way we allow, in principle, for a broad
search for possible “protocols” that achieve consensus.
Another departure worth mentioning; in [7], [9] the focus is
on systems composed of one dimensional dynamical agents,
while here we develop an approach that allows to tackle
systems with higher-order dynamics modelling each agent.

The paper is organized as follows. In Section II we review
some results needed for our discussion. Most importantly,
we present the concept from [9], which says that consensus
is equivalent to stability with respect to an invariant mani-
fold. Then in Section III we develop necessary and sufficient
Linear Matrix Inequality (LMI) conditions for consensus
analysis in a system. In their most direct form, these
conditions do not yield convex synthesis, but after a suitable
transformation we are able in Section IV to obtain LMI
conditions for state-feedback synthesis achieving consensus.
The same transformation can be used to incorporate anH2

performance condition on the synthesis as a convex con-
straint. Both LMI conditions are necessary and sufficient,
therefore totally characterizing the class of all controllers
that achieve consensus. Even though the conditions are
convex, they provide no means to directly impose a certain
communication topology. That issue is tackled in Section
V, in which we use decentralized Lyapunov functions [1],
[2] to develop convex sufficient conditions for synthesis of
structured controllers for consensus, also with anH2 norm
objective. An illustrative example is presented in Section
VI, and some concluding remarks are made in Section VII.

II. PRELIMINARIES AND BACKGROUND

We consider a systemΣ composed ofN interconnected
agents, where each agent is assumed to have the following
state space description:

ẋi = Aiixi + B
(1)
i wi + B

(2)
i ui +

∑

j 6=i

Aijxj . (1)

We assume that all agents have arbitrary state space descrip-
tions, but to save on notation, we restrict those descriptions
to have the same dimensions, namelyAij ∈ R

n×n, B
(1)
i ∈



R
n×m, B

(2)
i ∈ R

n×r, for all i, j. It is straightforward
to generalize the results in this paper for subsystems of
different dimensions, i.e, a totally heterogeneous network.

The system (1) may have a preexisting communication
structure. A nonzero matrixAij in (1), with i 6= j, repre-
sents information being sent from subsystemj to subsystem
i.

Our model assumes the control actionui only influences
the statexi. From a practical point of view, it is a reasonable
assumption, since for most networked systems the control
actions taken at one location do not directly influence other
locations. Nevertheless, the local control law could be in
general a function of all the statesx1, x2, . . . , xN in the
systemΣ, in other words, the control action need not be
decentralized, i.e,ui = f(xi).

Notice that we can stack up the local signals of the sub-
systemsGi, i = 1, . . . , N , to form the global version of
such signals. For example, the global state is

x(t) =







x1(t)
...

xN (t)






,

where x(t) ∈ R
Nn×Nn at each time t. Denote by

diag(B
(1)
1 , · · · , B(1)

N ) the block diagonal matrix obtained in
the obvious way. Then the systemΣ describes the evolution
of the global statex(t) of the interconnection of allN
subsystems, and its state space description is induced by
the collection of systems:

ẋ = Ax + B1w + B2u, (2)

with

A =







A11 · · · A1N

...
. . .

...
AN1 · · · ANN






,

where B1 = diag(B
(1)
1 , · · · , B(1)

N ) and B2 =

diag(B
(2)
1 , · · · , B(1)

N ). For the rest of this paper we
will focus on the global state space description (2).
For motivation, the reader should keep in mind the
“interconnection-based” view of the system (2) given by
(1).

A. LMI control

We briefly review some results in linear matrix inequal-
ities (LMI) control, see e.g. [3]. We start with stability
analysis and stabilization. A matrixA is stable if and only
if there exists a symmetric positive definite matrixX > 0
such that the LMI

AX + XA∗ < 0

is feasible, whereA∗ stands for the transpose ofA. For state
feedback stabilization of a linear system such as (2) with
B1 = 0, consider the feedbacku = Fx and cast the analysis
condition for the closed loop matrixAcl = A + B2F:

(A + B2F)X + X(A + B2F)∗ < 0.

The condition above is not an LMI inF and X but the
transformationY = FX turns that inequality in an LMI:

AX + B2Y + XA∗ + Y
∗B∗

2 < 0.

If the LMI is feasible, the stabilizing feedback matrix can
be reconstructed from the feasible solutionX and Y by
computingF = YX

−1.
The same idea applies to state feedbackH2 control.

Define the performance variablez as:

z = C1x + D12u.

We remark theH2 norm of the transfer fromw to z is
defined by

||Tzw||22 =
1

2π

∫ ∞

−∞

trace(Tzw(jω)∗Tzw(jω))dω.

Then the following proposition [3] gives LMI conditions
for synthesis of a state feedbacku = Fx controller that
achieves a certainH2 norm.

Proposition 1 (State FeedbackH2 Control): Given γ >

0, there exists a static state feedback lawu = Fx that
internally stabilizes the system (2) and satisfies‖Tzw‖2

2 < γ

if and only if there exist matricesX > 0, Z and Y such
that the following inequalities are satisfied

AX + B2Y +XA∗ + Y
∗B∗

2 + B1B
∗
1 < 0 (3)

[

X (•)∗
(C1X + D12Y) Z

]

> 0 (4)

trace(Z) < γ. (5)

In this case, a suitable feedback isF = YX
−1.

We remark the LMI conditions above can be used to find
theH2 optimal state feedback by minimizingγ.

B. Consensus

Now we define the main concept in the paper, that of
consensus or agreement for dynamical systems. Consider
an autonomous version of the systemΣ with local state
space description for each subsystem is given by:

ẋi = Aiixi +
∑

j 6=i

Aijxj , (6)

and the global autonomous system given by:

ẋ = Ax. (7)

Definition 1 (consensus toS): Let S be an orthonormal
matrix in R

Nn×p, for somep. The system (7) achieves con-
sensus to the subspaceS = span{S} if S is a minimal set
such that for any initial condition, the statex(t) converges
to a point inS.
The definition, extracted from concepts in [9] (and also in
[7]), implies that every point inS is a (marginally) stable
equilibrium point of the equation (7), i.e,AS = 0, where
S is simply an orthonormal basis forS, the nullspace of
A. Since the state of the system has to converge to a fixed
point (a function of initial conditions only) it follows that



the system must be marginally stable with no poles injω

for ω 6= 0. In other words, the geometric and algebraic
multiplicity of the zero eigenvalues must be the same.

Example 1:Consider a system where each agent’s dy-
namics is given by

ẋi(t) = ui(t)

Namely, each system is a scalar integrator. For example,x

could model the heading particles moving in the plane with
constant velocity [7]. In this case, the subspace in which
we are interested in achieving consensus is that where all
the headings coincide, namely, the span of the vector

S =











1
1
...
1











.

If a controller u(t) = f(x) is designed in a way that
the system achieves consensus with respect toS, then the
headings of all subsystems will converge to the same value.

III. C ONSENSUS ANALYSIS

We now seek convex conditions for analysis of con-
sensus for autonomous systems such as (7) in the sense
of Definition 1. So assume that the autonomous system
(7) achieves consensus toS. We begin by exploring the
essential properties of the matrixA. Define the orthonormal
complement of the matrixS as S⊥, i.e, S∗

⊥S⊥ = I and
S∗
⊥S = 0. Then, anyx ∈ R

nN can be written as:

x =
[

S⊥ S
]

[

ζ

η

]

, (8)

for uniqueζ ∈ R
Nn−p andη ∈ R

p. Substituting the relation
(8) in the state space equations (7), we obtain:

[

S⊥ S
]

[

ζ̇

η̇

]

= A
[

S⊥ S
]

[

ζ

η

]

= AS⊥ζ, (9)

where the last equality holds fromAS = 0. Now, since
[

S⊥ S
]

is an invertible (unitary) matrix, its inverse is
given by:

[

S⊥ S
]−1

=

[

S∗
⊥

S∗

]

,

and we can write (9) as:
[

ζ̇

η̇

]

=

[

S∗
⊥

S∗

]

AS⊥ζ =

=

[

S∗
⊥AS⊥ 0

S∗AS⊥ 0

] [

ζ

η

]

. (10)

It follows that the eigenvalues of the system above are the
union of the eigenvalues ofS∗

⊥AS⊥ and the matrix0 ∈
R

p×p. Thus consensus is equivalent to stability ofS∗
⊥AS⊥

and AS = 0. The next Lemma formalizes this statement
and provides an immediate LMI formulation for consensus
analysis.

Lemma 2:The autonomous system (7) achieves consen-
sus toS in the sense of Definition 1 if and only if

i. AS = 0, and
ii. there exists a matrixP > 0 such that

S∗
⊥AS⊥P + PS∗

⊥A∗S⊥ < 0. (11)

Proof: The solution of (10) is given byζ(t) =

eS∗

⊥
AS⊥tζ(0), η(t) = η(0) +

t
∫

0

eS∗

⊥
AS⊥τζ(0)dτ , that is,

ζ is totally decoupled fromη. To show necessity, assume
the Lyapunov inequality (11) is satisfied, then it is clear
that S∗

⊥AS⊥ is stable andζ(t) → 0 as t → ∞, and

η(t) → η(0) +
∞
∫

0

eS∗

⊥
AS⊥τ ζ(0)dτ . The integral converges

by stability of S∗
⊥AS⊥, and therefore the statex(t) =

S⊥ζ(t) + Sη(t) converges to a point inS as t → ∞.
Conversely, assume the system achieves consensus and
there exists no solutionP > 0 to the Lyapunov LMI (ii).
Then it follows thatS∗

⊥AS⊥ has some eigenvalues with
real(λ) ≥ 0. That means it we can always find aζ(0) = ζ0

such thatlimt→∞ ζ(t) 6= 0. Sincex(t) = S⊥ζ(t) + Sη(t),
is is clear thatx(t) will not converge toS, contradicting
Definition 1.

The conditions in Lemma 2 are by itself already convex
conditions equivalent to consensus; nevertheless, the matrix
A is “boxed in” between the basis matrixS⊥. Such a
condition is not very attractive when we are interested in
the problem from a synthesis perspective since it poses a
difficulty for convexifying the synthesis problem. The next
theorem gives us a necessary and sufficient condition for
consensus without the presence ofS⊥ betweenA and the
Lyapunov function.

Theorem 3 (LMI for Consensus Analysis):Given a ma-
trix S ∈ R

Nn×p, the autonomous system (7) achieves
consensus toS if and only if

i. AS = 0, and
ii. there existsX > 0 such that

S∗
⊥(AX + XA∗)S⊥ < 0 (12)

whereX satisfies:

X = S⊥S∗
⊥XS⊥S∗

⊥ + SS∗
XSS∗. (13)

Proof: We first tackle sufficiency. AssumeAS = 0
and there existX > 0 such that the conditions (i) and
(ii) are feasible. Then, note thatXS⊥ = S⊥S∗

⊥XS⊥, and
substitute that expression in (12) to obtain:

0 > S∗
⊥AXS⊥ + S∗

⊥XA∗S⊥ =

S∗
⊥AS⊥P + PS∗

⊥A∗S⊥,

where we have definedP := S∗
⊥XS⊥. Invoking Lemma 2

we conclude the system achieves consensus.
We now prove necessity. Assume the system (7) achieves

consensus. Then by Lemma 2 the conditions (11) are
satisfied, in particular there exists a solutionP > 0 to the



LMI (11) in Lemma 2. Now, letM > 0 be an arbitrary
matrix and define

X =
[

S⊥ S
]

[

P 0
0 M

] [

S∗
⊥

S∗

]

. (14)

It is clear thatX > 0 and (13) is satisfied. Moreover, we
again have

XS⊥ = S⊥P, (15)

and since by assumption the LMI (11) in Lemma 2 is
feasible, we can substitute the relation (15) in that LMI,
to arrive at (12):

0 > S∗
⊥AS⊥P + PS∗

⊥A∗S⊥ =

= S∗
⊥AXS⊥ + S∗

⊥XA∗S⊥ =

= S∗
⊥ (AX + XA∗) S⊥. (16)

IV. SYNTHESIS FOR CONSENSUS

Assume we are interested in finding a control lawu =
Fx, such that the closed loop system

ẋ = (A + B2F) x (17)

achieves consensus. Namely, we want the closed loop
system to satisfy the conditions in Theorem 3, i.e:

i. (A + B2F)S = 0;
ii. there existsX > 0 such that

S∗
⊥ ((A + B2F)X + X(A + B2F)∗) S⊥ < 0,

whereX = S⊥S∗
⊥XS⊥S∗

⊥ + SS∗
XSS∗.

The conditions are not convex in the variablesF, X, etc.
Note that the standard change of variables for state feedback
can be used to convexify the inequality (ii), namely, if we
defineY = FX, then that inequality becomes:

S∗
⊥ ((A + B2F)X + X(A + B2F)∗) S⊥ =

S∗
⊥ (AX + B2Y + XA∗ + Y

∗B∗
2) S⊥ < 0,

which is now an LMI inX andY. Now the condition (i)
under the change of variablesY = FX becomes

(A + B2YX
−1)S = 0, (18)

and is still non convex. Note that Theorem 3 guarantees that
X = S⊥S∗

⊥XS⊥S∗
⊥ + SS∗

XSS∗, and moreover since the
matrix

[

S⊥ S
]

is unitary, we can conclude:

X
−1 =

(

[

S⊥ S
]

[

S∗

⊥XS⊥ 0
0 S∗

XS

] [

S∗

⊥

S∗

])

−1

=

=
[

S⊥ S
]

[

(S∗

⊥XS⊥)−1 0
0 (S∗

XS)−1

] [

S∗

⊥

S∗

]

=

= S⊥(S∗

⊥XS⊥)
−1

S
∗

⊥ + S(S∗
XS)

−1
S

∗
. (19)

Now making use of this expression in (18) we obtain

(A + B2YX
−1)S =

= AS + B2Y

(

S⊥(S∗

⊥XS⊥)
−1

S
∗

⊥ + S(S∗
XS)

−1
S

∗

)

S =

= AS + B2YS(S∗
XS)−1

, (20)

where we have made use of the orthonormal identities
S∗
⊥S = 0 and S∗S = I. In view of (20), we right

multiply (A + B2YX
−1)S = 0 by S∗

XS, and noting that
SS∗

XS = XS, we can obtain the equivalent condition:

AXS + B2YS = 0,

which is a linear condition in the variablesX andY. We
have just proved the following theorem.

Theorem 4 (Convex synthesis for consensus):Assume
B1 = 0. Then, there exists a state feedbacku = Fx such
that the system (2) achieves consensus toS if and only if
there exist matricesX > 0 andY such that

i. AXS + B2YS = 0
ii. S∗

⊥ (AX + XA∗ + B2Y + Y
∗B∗

2) S⊥ < 0.
iii X = S⊥S∗

⊥XS⊥S∗
⊥ + SS∗

XSS∗

The control law can be reconstructed byF = YX
−1.

We now tackle the design of a state feedback controller
that minimizes theH2 norm of the transfer fromw to z in
(1) and such that the closed loop achieves consensus.

Before we look at the general case, let us assume for now
that the open loop matrix satisfiesAS = 0, and thatB2 is
full column rank. We consider the performance variable

zζ = C1S⊥ζ(t) + D12u(t). (21)

If we are looking for a state feedback controlleru = Fx,
sinceAS = 0, the equality constraint (i) in Theorem 4 is
simply given byFS = 0. That is equivalent to the relation
F = F̃S∗

⊥, for someF̃. Then the performance variable is:

zζ = C1S⊥ζ(t) + D12u(t) =

= C1S⊥ζ(t) + D12F̃S∗
⊥x(t) =

= C1S⊥ζ(t) + D12F̃ζ(t),

and sinceFS⊥ = F̃, we can write the performance variable
as:

zζ = C1S⊥ζ(t) + D12FS⊥ζ(t).

Intuitively, if AS = 0 the steady state control output will
be zero. In caseAS = 0 is not satisfied, then the more
suitable definition for performance would be (22), which
excludes the constant control terms that will be present
in steady state. The reasoning is that since the system is
marginally stable we can only hope to minimize the transfer
with respect to the stable part of the statex, namelyS⊥ζ.

That is, for the consensus problem in the general case,
when AS 6= 0, the meaningful definition for performance
variable is:

zζ = C1S⊥ζ(t) + D12FS⊥ζ(t). (22)

Such a definition of performance allows us to prove the
following theorem.

Theorem 5 (H2 State feedback for consensus):Given
γ > 0, there exists a static state feedback lawu = Fx

that yields consensus toS in the system (2) and satisfies
‖Tzw‖2

2 < γ if and only if there exist matricesX > 0, Z,
andY such that the following conditions are satisfied



AXS + B2YS = 0

S
∗

⊥ (AX + XA
∗ + B2Y + Y

∗
B

∗

2 + B1B
∗

1 ) S⊥ < 0 (23)
[

S∗

⊥XS⊥ (•)∗

(C1XS⊥ + D12YS⊥) Z

]

> 0 (24)

trace(Z) < γ. (25)

X = S⊥S
∗

⊥XS⊥S
∗

⊥ + SS
∗
XSS

∗ (26)

In this case, a suitable feedback isF = YX
−1.

Remark 1: Imposing left nullspace conditions Note
that consensus with respect to a certainS guarantees that
the nullspace of(A+BF) has dimensionp. Therefore, there
exists a matrixT ∈ R

Nn×p such thatT ∗(A + BF) = 0.
In some cases it may be interesting to include this as a
condition in the synthesis problem. Under the linearizing
transformationY = FX, this condition becomesT ∗(A +
BYX

−1) = 0, which is easily turned linear by right
multiplying by X, yielding the condition:

T ∗AX + T ∗BY = 0, (27)

By adding condition (27) to those of Theorems 4 or 5,
we obtain necessary and sufficient conditions for consensus
synthesis with a specific left nullspace. It can be shown
[9] that the left nullspace of(A + BF ) plays a role in the
value to which the state converges. In the particular case
of integrators modelling headings, whereS∗ = [1 1 · · · 1],
forcingT = S yields a system that converges to the average
of the initial conditions on the headings.

V. SYNTHESIS FOR A GIVEN NETWORK TOPOLOGY

From a practical point of view, the synthesis result in
Theorem 4 lacks an important feature, it does not include
in the design a restriction in the communication between
units. In other words, in general a solution obtained from
Theorem 4 would have afull block state feedback matrix
F, i.e, each unitGi would receive information from every
other unit in the system. That is a very strong condition
and typically undesirable. It would be more interesting to
be able to impose a certain communication structure in the
system, by designing the structure of the feedback matrixF.
We address the solution to this problem with an approach
similar to that of [1], [2].

For example, assume we are dealing with a system com-
posed of4 subsystems, and we wish to design a feedback
law with the particular structure:

F =









F11 0 F13 0
F21 F22 0 0
0 0 F33 F34

F11 0 0 F44









, (28)

where the partition is made in the obvious way, withFij ∈
R

m×n. Now, assume we wish to find a feasible solution for
the conditions in Theorem 4 such thatF has the form (28).

Imposing structure inF would mean imposing the for-
mula for the controllerF = YX

−1 to yield a structured

matrix. That is, some terms in the multiplicationYX
−1

would have to vanish. That cancellation feature is not
convex. Efficient solutions to such problems typically rely
on some form of relaxation of the problem, or consider a
special structure, e.g, [1], [2], [11], [13].

Now assume we impose thatX ∈ R
4n×4n be a block

diagonal matrixdiag(X1,X2,X3,X4), with each block
Xi ∈ R

n×n. Then the resultingF will have the desired
structure if and only ifY has the desired structure forF.
Specifically, in our4 system case example we obtain:

F = YX
−1 =

=







Y11 0 Y13 0
Y21 Y22 0 0
0 0 Y33 Y34

Y11 0 0 Y44















X
−1

1
0 0 0

0 X
−1

2
0 0

0 0 X
−1

3
0

0 0 0 X
−1

4









=

=:







F11 0 F13 0
F21 F22 0 0
0 0 F33 F34

F11 0 0 F44







This example illustrates the idea behind our approach.
For the general case, letF = Fχ denote that a matrixF
belongs to the set of prescribed structuresχ = {F : Fij =
0 ∈ R

m×n, for(i, j) ∈ I} (hard zeros in some blocks
indexed by some setI). Then, if in the synthesis conditions
of Theorems 4 and 5 we restrict the Lyapunov-like matrix
X to be block diagonal, ie,X = diag(X1, · · · ,XN ), F will
have the desired structureF = Fχ if and only if it Y = Yχ.
The next two corollaries result immediately from applying
this idea to Theorems 4 and 5. The conservativeness behind
such a restriction on the Lyapunov matrix has been studied
in the context of spatially invariant systems in [2], where it
is shown to be equivalent to an IQC in the local state space.

Corollary 6 (Structured synthesis for consensus):
Assume B2 = 0, and let χ = {F : Fij = 0 ∈
R

m×n, for(i, j) ∈ I}. Then, there exists a structured state
feedbacku = Fχx, such that the system (2) achieves
consensus toS if there exist matricesY = Yχ, and
Xi > 0, i = 1, . . . , N , such that

i. AXS + B2YχS = 0
ii. S∗

⊥

(

AX + XA + B2Yχ + Y
∗
χB∗

2

)

S⊥ < 0.

iii. diag(X1, · · · ,XN = S⊥S
∗

⊥diag(X1, · · · ,XN )S⊥S
∗

⊥ +

+ SS
∗diag(X1, · · · ,XN )SS

∗
.

The control law can be reconstructed by
Fχ = Yχdiag(X−1

1 , · · · ,X−1
N ).

Proof: The proof is immediate by substituting the
restrictedY = Yχ, and X = diag(X1, · · · ,XN ), with
χ = {Y : Yij = 0 ∈ R

m×n, for(i, j) ∈ I} in the original
conditions in Theorem 4.

Similarly, we can prove the following corollary to the
state feedbackH2 control Theorem 5.

Corollary 7 (StructuredH2 control for consensus):Let
χ = {F : Fij = 0 ∈ R

m×n, for(i, j) ∈ I} be a desired
structure. Givenγ > 0, there exists a static state feedback
law u = Fχx that internally stabilizes the system (2) and
satisfies‖Tzw‖2

2 < γ if there exist matricesZ, Y = Yχ,



and Xi > 0, i = 1, . . . , N , such that the following
conditions are satisfied

AXS + B2YχS = 0

S
∗

⊥

(

AX + XA + B2Yχ + Y
∗

χB
∗

2 + B1B
∗

1

)

S⊥ < 0
[

S∗

⊥XS⊥ (•)∗

(C1XS⊥ + D12YχS⊥) Z

]

> 0

trace(Z) < γ,

diag(X1, · · · ,XN ) = S⊥S
∗

⊥diag(X1, · · · ,XN )S⊥S
∗

⊥ +

+ SS
∗diag(X1, · · · ,XN )SS

∗
.

In this case, a suitable feedback is
Fχ = Yχdiag(X−1

1 , · · · ,X−1
N ).

Remark 2:Synthesis for networks of integratorsAs-
sume each local system is an integratorẋi = ui, where
xi ∈ R, i.e, n = 1, A = 0, B2 = I andB1 = 0 in (2). In
[9] it is shown that their solution always accepts a Lyapunov
functionP = I. Now sinceA = 0, condition (29) becomes
YS = 0 and does not depend onM. In such a case we can
set M = 1 without loss of generality and obtainX = I,
therefore block diagonal. So any solutions in [9] are also
feasible points for the LMIs of Corollary 6.

VI. EXAMPLE

We consider a network of 20 integrators, namely each
unit is described by the state space equation:

d

dt
xk(t) = uk(t) + wk(t),

whereuk is the local control input andwk is an input noise.
We wish to find a control law to minimize theH2 norm of
the transferTzw where:

z = C1S⊥ζ(t) + D12u(t).

Moreover, that control should achieve consensus to the
subspace where all the headings coincide:

S = (
√

20)−1







1
...
1






.

We take the following values:

C1 =

[

S∗
⊥

0

]

D12 =

[

0
I

]

.

The Laplacian associated with the information structure
considered is given by:

-3 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 -2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -4 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
0 0 0 0 -4 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 -2 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 -2 0 0 0 0 0 0 0 0 0 0

L= - 1 0 0 0 0 1 0 0 0 0 -2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 -3 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 -3 0 0 1 1 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 -3 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 -3 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -2 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 -4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1

An application of theH2 synthesis method of Theorem
5 results in a controller feedback matrix with the structure
above and with anH2 performance of5.3744.

In order to compare the solution with the best possibleH2

norm generated by this Laplacian, we search overα > 0 for
the smallestH2 norm generated by−αL. After a bisection
search overα, the optimalH2 norm with this Laplacian is
found to be5.6034.

VII. F UTURE WORK AND CONCLUSIONS

We have derived necessary and sufficient LMIs that
characterize all the state feedback controllers that solve
the problem of consensus. The consequences are twofold;
first, this shows that consensus is a convex problem up
to a problem of structured control design. Second, using
those LMIs, we have showed that an assumption on the
matrix X yields convex conditions for structured synthesis
for consensus. Our results apply to systems composed by a
heterogenous collection of agents (or subsystems), in other
words, the agents may have arbitrary dynamics.
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